Covalent vs. non-covalent redox functionalization of C-LiFePO4 based electrodes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Power Sources Année : 2013

Covalent vs. non-covalent redox functionalization of C-LiFePO4 based electrodes

Résumé

During high rate utilization of porous Li battery, Li+ refuelling from the electrolyte limits the discharge kinetics of positive electrodes. In the case of thick electrodes a strategy to buffer the resulting sharp drop of Li+ concentration gradient would be to functionalize the electrode with anionic based redox molecules (RMR) that would be therefore able to relay intercalation process. The occurrence of these RMR in the electrode should not however, induce adverse effect on Li intercalation processes. In this respect, this work studies the effect of functionalizing LFPC based electrodes by either covalent or non-covalent chemistry, on Li intercalation kinetics. To do so, model molecules containing a nitro group were introduced at the surface of both carbon conducting additives and active material (C-LiFePO4). It is shown that presumably due to formation of sp3 defects, covalent anchoring using diazonium chemistry inhibits the intercalation kinetics in C-FePO4. On the contrary, if molecules such as pyrene derivatives are immobilized by pi-staking interactions, Li intercalation is not impeded. Therefore non-covalent functionalization of pyrene based RMR appears as a promising route to relay Li intercalation reaction during high power demand. The framework for future development of this strategy is discussed.

Dates et versions

hal-00961242 , version 1 (19-03-2014)

Identifiants

Citer

Lénaïc Madec, Bernard Humbert, B. Lestriez, Thierry Brousse, C. Cougnon, et al.. Covalent vs. non-covalent redox functionalization of C-LiFePO4 based electrodes. Journal of Power Sources, 2013, 232, pp.246. ⟨10.1016/j.jpowsour.2012.10.100⟩. ⟨hal-00961242⟩
40 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More