Edge identifying codes - Archive ouverte HAL
Communication Dans Un Congrès Electronic Notes in Discrete Mathematics Année : 2011

Edge identifying codes

Sylvain Gravier
Aline Parreau
Petru Valicov

Résumé

We study the edge identifying code problem, i.e. the identifying code problem in line graphs. If $\M(G)$ denotes the size of a minimum identifying code of a graph $G$, we show that the usual bound $\M(G)\ge \lceil\log_2(n+1)\rceil$, where $n$ denotes the order of $G$, can be improved to $\Theta(\sqrt{n})$ in the class of line graphs. Moreover this bound is tight. We also prove that the upper bound $\M(\mathcal{L}(G))\leq 2\cdot|V(G)|-4$ holds. This implies that a conjecture of R.~Klasing, A.~Kosowski, A.~Raspaud and the first author holds for a subclass of line graphs. Finally, we show that the edge identifying code problem is NP-complete, even for the class of planar bipartite graphs of maximum degree~3 and arbitrarily large girth.

Dates et versions

hal-00960555 , version 1 (18-03-2014)

Identifiants

Citer

Florent Foucaud, Sylvain Gravier, Reza Naserasr, Aline Parreau, Petru Valicov. Edge identifying codes. European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB), Aug 2011, Budapest, Hungary. pp.343-348, ⟨10.1016/j.endm.2011.09.056⟩. ⟨hal-00960555⟩
100 Consultations
0 Téléchargements

Altmetric

Partager

More