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Abstract

We study the edge identifying code problem, i.e. the identifying code problem in line
graphs. If γID(G) denotes the size of a minimum identifying code of a graph G, we
show that the usual bound γID(G) ≥ dlog2(n+ 1)e, where n denotes the order of G,
can be improved to Θ(

√
n) in the class of line graphs. Moreover this bound is tight.

We also prove that the upper bound γID(L(G)) ≤ 2 · |V (G)| − 4 holds. This implies
that a conjecture of R. Klasing, A. Kosowski, A. Raspaud and the �rst author holds
for a subclass of line graphs. Finally, we show that the edge identifying code problem
is NP-complete, even for the class of planar bipartite graphs of maximum degree 3
and arbitrarily large girth.
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1 Introduction

An identifying code of a graph G is a subset C of vertices such that each
vertex of G has a unique and non-empty neighbourhood within C. More
formally, on the one hand, for each vertex v ∈ V (G), N [v] ∩ C 6= ∅ (where
N [v] denotes the closed neighbourhood of v), that is, C is a dominating set of
G. On the other hand, for each pair u, v of distinct vertices of G, N [u]∩C 6=
N [v] ∩ C. This concept was introduced in 1998 [9] and is a well-studied one
(see e.g. [1,2,3,6,7,8,9,10]).
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In this paper, we introduce the related concept of an edge identifying code,
i.e. a set CE of edges of a graph G, such that each edge e of G is uniquely
determined by the set of edges belonging to CE which are adjacent to e. More
formally, for each edge e ∈ E(G), I[e] ∩ CE 6= ∅ (where I[e] denotes the set
of edges adjacent to e together with e itself). Moreover, for each pair e, f of
distinct edges of G, I[e] ∩ CE 6= I[f ] ∩ CE.

Note that CE is an edge identifying code of G if and only if CE is an
identifying code in L(G), the line graph of G. Hence, the study of edge
identifying codes is the study of identifying codes in line graphs.

Not all graphs admit an identifying code or an edge identifying code. In
fact a graph is identi�able if and only if it is twin-free, i.e., it has no pair
of twins : vertices having the same closed neighbourhood. We say that a
graph G is edge-identi�able if L(G) is identi�able. It is easy to observe that a
graph is edge-identi�able if and only if it has no pair u, v of vertices such that
d(u) = d(v) = 1 and they have a common neighbour, or d(u) = d(v) = 2, u
and v are adjacent, and they have a common neighbour.

We de�ne the identifying code number of an identi�able graph G, denoted
γID(G), to be the cardinality of a minimum-size identifying code of G. If G
is edge-identi�able, the edge identifying code number of G, denoted γEID(G),
is the cardinality of a minimum-size edge identifying code of G. If G is edge-
identi�able, it follows that γEID(G) = γID(L(G)).

Determining the exact value of γID(G) is an NP-complete problem, even for
restricted classes of graphs (such as bipartite graphs of maximum degree 3 [2]
or planar graphs of maximum degree 4 and arbitrarily large girth [1]).

In this paper, we present improved lower and upper bounds for the edge
identifying code number of a graph, and show that the edge identifying code
problem is NP-complete for a highly restricted class of graphs.

2 Lower bounds

In the case of vertex-identifying codes, given a graph G and an identifying
code C of G, we have |C| ≥ dlog(|V (G)| + 1)e [9]. All graphs reaching this
bound were described in [10], but they are far from being line graphs. We
show that a stronger bound holds for line graphs. We �rst consider the case
where the minimum edge identifying code induces a connected subgraph.

Theorem 2.1 If an edge identifying code CE of a nontrivial graph G induces

a connected subgraph G′ of G, then G has at most
(|CE |+2

2

)
− 4 edges.

The main idea of the proof is that each edge e = uv of G is uniquely



determined by the set of edges of G′ incident to u together with the set of
edges of G′ incident to v. There are at most |V (G′)| +

(|V (G′)|
2

)
=

(|V (G′)|+1
2

)
such sets. Hence if G′ is not a tree, |V (G′)| ≤ |CE| and we are done. If G′ is
a tree, we further show that at least four of these sets cannot be used, which
proves the bound.

When the subgraph induced by CE is not necessarily connected, we get:

Theorem 2.2 Let G be an edge-identi�able graph with γEID(G) = k. Then

|E(G)| ≤
(4

3
k

2

)
,
( 4

3
(k−1)+1

2

)
+1,

( 4
3

(k−2)+2
2

)
+2 for k ≡ 0, 1, 2 mod 3 respectively.

In order to prove this, we consider all graphs having maximum number of
edges among the graphs having edge identifying code number k. We show that
there exists such a graph, G, having an edge identifying code CE with |CE| = k
such that all but two connected components of G[CE] are isomorphic to P4.
The other two components can be paths of length at most 6 (with certain
restrictions). The bound is tight and extremal examples are built inside the
proof. This gives the following corollary:

Corollary 2.3 Let G be an identi�able line graph. Then γID(G) >
3
√

2|V (G)|
4

.

3 Upper bounds

Several upper bounds for parameter γID exist in the literature. It was shown
in [8] that any non-trivial identi�able graph of order n admits an identifying
code of size n−1. The class of graphsG with γID(G) = n−1 was classi�ed in [6].
It is easy to check that none but six of the graphs of this class are line graphs.
Thus, if G is an identi�able line graph with G /∈ {P3, P4, C4, C4 ./ K1, P4 ./
K1,L(K4)} (where ./ denotes the join operation), then γID(G) ≤ n− 2. Since
γEID(K2,r) = 2r − 2, this bound is tight for an in�nite family of graphs.

It was conjectured in [7] that for connected identi�able graphs of maximum
degree ∆, the general upper bound of n− 1 can be improved to n− n

∆
+O(1).

For any ∆ and arbitrarily large n, there exist ∆-regular line graphs G of order
n having γID(G) = n− n

∆
. Indeed, consider the following construction. Given

any ∆-regular loopless multigraph H, subdivide each edge of H once, and let
H ′ be the resulting graph. Now, one can see that the graph L(H ′) is twin-free
and γID(L(H ′)) = n− n

∆
.

Theorem 3.1 Let G be an edge-identi�able graph and let CE be a minimum

edge identifying code of G. Then G′ = G[CE] is 2-degenerated.

In order to prove this, we consider an edge uv belonging to CE, and use the



local structure of the neighbourhood of uv to de�ne an order {v1, . . . , v|V (G′)|}
over V (G′) such that each vertex vi has degree at most 2 inG[{vi, . . . , v|V (G′)|}].
By further analysis of the proof we obtain the following result:

Corollary 3.2 If G is an edge-identi�able graph on n vertices not isomorphic

to K4, then γ
EID(G) ≤ 2n− 4.

Considering the example of K4 minus one edge, this bound is tight. More-
over, for r ≥ 3 we have γEID(K2,r) = 2r − 2 = 2n− 6.

By Corollary 3.2 together with some easy calculations, we show that the
conjecture of [7] holds for some subclass of line graphs:

Corollary 3.3 If G is an edge-identi�able graph of average degree at least 5,

then γEID(G) ≤ n− n
∆(L(G))

, where n = |V (L(G))|.

4 Complexity

Given a graph G and an integer k, the EDGE IDCODE problem consists
in deciding whether G has an edge identifying code of size at most k. The
IDCODE problem asks whether G has an identifying code of size at most k.

The following restricted version of the PLANAR (≤ 3, 3)-SAT problem was
introduced and proved to be NP-complete in [5]. The instance is a collection
Q of clauses over a set X of boolean variables, where each clause contains at
most three distinct literals. Each variable appears in exactly two clauses in its
non-negated form, and in exactly one clause in its negated form. Finally, the
bipartite incidence graph B(Q), de�ned over the clauses and the variables, is
planar. The PLANAR (≤ 3, 3)-SAT problem is about deciding if Q can be
satis�ed, i.e. whether there is a truth assignment of the variables of X such
that each clause contains at least one true literal.

Note that EDGE IDCODE is expressable in monadic second order logic
using quanti�cation over edges. Hence it follows from Courcelle's theorem
(see [4]) that it is linear time solvable for any class of graphs having bounded
tree-width (e.g. trees, series-parallel graphs or outerplanar graphs). However:

Theorem 4.1 EDGE IDCODE is NP-complete even when restricted to pla-

nar bipartite graphs of maximum degree 3 and arbitrarily large girth.

The proof is a reduction from PLANAR (≤ 3, 3)-SAT to EDGE IDCODE.
Let Q = {Q1, . . . , Qm} be an instance of PLANAR (≤ 3, 3)-SAT over the
set of boolean variables X = {x1, . . . , xn}. Given two integers λ ≥ 2 and
µ ≥ 1, we build the graph GQ(λ, µ) as follows. For each variable xj and each



clause Qi we build the subgraphs Gxj
(µ) and GQi

(λ) respectively, as shown in
Figures 1, 2 and 3. For each clause Qi = {li1 , li2 , li3}, we identify the vertex
representing lik in clause gadget GQi

(λ) with one of the vertices representing
lik in the corresponding variable gadget. The identi�cation of the vertices can
be done such that GQ(λ, µ) is planar. The whole construction can be done in
polynomial time. Moreover GQ(λ, µ) is bipartite, has maximum degree 3, and
girth min{4µ, 8(λ+1)}. Now, it can be shown that Q is satis�able if and only
if GQ(λ, µ) has an identifying code of size at most k = (21λ+4)m+(17µ−12)n.

G G

P

Figure 1. Generic P -gadget
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Figure 2. Variable gadget Gxj (µ)

GQ(λ, µ) is bipartite. Hence L(GQ(λ, µ)) is perfect [11]. Moreover L(GQ(λ, µ))
is planar, has maximum degree 4 and clique number 3. Hence we get:

Corollary 4.2 IDCODE is NP-complete even when restricted to perfect 3-

colorable planar line graphs of maximum degree 4.
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