Density convergence in the Breuer-Major theorem for Gaussian stationary sequences - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2015

Density convergence in the Breuer-Major theorem for Gaussian stationary sequences

Résumé

Consider a Gaussian stationary sequence with unit variance X. Assume that the central limit theorem holds for a weighted sum of elements of the form f(X_k), where f designates a finite sum of Hermite polynomials. Then we prove that the uniform convergence of the density of this weighted sum towards the standard Gaussian density also holds true, under a mild additional assumption involving the causal representation of X.
Fichier principal
Vignette du fichier
lim-stat-Hq-6.pdf (203.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00959089 , version 1 (13-03-2014)

Identifiants

Citer

Yaozhong Hu, David Nualart, Samy Tindel, Fangjun Xu. Density convergence in the Breuer-Major theorem for Gaussian stationary sequences. Bernoulli, 2015, 21 (4), pp.2336-2350. ⟨10.3150/14-BEJ646⟩. ⟨hal-00959089⟩
254 Consultations
189 Téléchargements

Altmetric

Partager

More