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DENSITY CONVERGENCE IN THE BREUER-MAJOR THEOREM

FOR GAUSSIAN STATIONARY SEQUENCES

YAOZHONG HU, DAVID NUALART, SAMY TINDEL, AND FANGJUN XU

Abstract. Consider a Gaussian stationary sequence with unit variance X = {Xk; k ∈
N∪{0}}. Assume that the central limit theorem holds for a weighted sum of the form Vn =

n−1/2
∑n−1

k=0
f(Xk), where f designates a finite sum of Hermite polynomials. Then we prove

that the uniform convergence of the density of Vn towards the standard Gaussian density
also holds true, under a mild additional assumption involving the causal representation of
X .

1. Introduction

Let X = {Xk; k ∈ N∪{0}} be a centered Gaussian stationary sequence with unit variance.
For all v ∈ Z, we set ρ(v) = E[X0X|v|]. Therefore ρ(0) = 1 and |ρ(v)| ≤ 1 for all v. Let γ be
the standard Gaussian probability measure and f ∈ L2(γ) be a fixed deterministic function
such that E[f(X1)] = 0. We expand f in the orthonormal basis of Hermite polynomials
{Hk; k ≥ 0}, which are more specifically defined in Section 2.2. In particular, if f has
Hermite rank d ≥ 1, it admits the following Hermite expansion:

f(x) =
∞∑

j=d

ajHj(x),

with ad 6= 0. Define Vn = 1√
n

∑n−1
k=0 f(Xk). Then the celebrated Breuer-Major Theorem (see

[3] or Theorem 7.2.4 in [13]) can be written as follows:

Theorem 1.1. Suppose that
∑

v∈Z |ρ(v)|d < ∞ and set σ2 =
∑∞

j=d j!a
2
j

∑
v∈Z ρ(v)

j, which

is assumed to be in (0,∞). Then the convergence:

Vn
Law−−→ N (0, σ2) (1)

holds true as n tends to infinity.

We shall be in fact interested in a particular case of Theorem 1.1 for finite linear combi-
nations of Hermite polynomials, which is stated here for convenience:

Corollary 1.2. Consider 2 ≤ d ≤ q < ∞ and a family of real numbers {aj; j = d, . . . , q}.
Let Hj be the jth order Hermite polynomial, and assume that σ2 ∈ (0,∞), where σ2 ≡
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∑q
j=d j!a

2
j

∑
v∈Z ρ(v)

j. Set

V d,q
n =

1√
n

n−1∑

k=0

q∑

j=d

aj Hj(Xk). (2)

Then V d,q
n

Law−−→ N (0, σ2) as n tends to infinity. In particular, we have:

lim
n→0

E
[(
V d,q
n

)4]
= 3σ4. (3)

Remark 1.3. The relation between Gaussian convergence in law for sequences in a fixed
Wiener chaos and behavior of the fourth moment has been extensively studied since the
seminal paper [18]. We will need only a small part of the information available on the topic,
such as relation (3).

Due to its importance, Breuer-Major theorem has been extended and refined in several
directions. Important generalizations can be found in Arcones [1] (multidimensional case),
Chambers and Slud [6] and Giraitis and Surgailis [7]. A proof of Theorem 1.1 using a
combination of Stein’s method with Malliavin calculus was given by Nourdin, Peccati and
Podolskij in [14], where one can find explicit bounds in the total variation and Wasserstein
distances. We refer the reader to the monograph by Nourdin and Peccati [12] for a more
detailed account on this topic.

We shall mainly be concerned here by convergences of densities, and here again the re-
lationship between fourth moment behavior and various type of convergences of random
variables in a fixed Wiener chaos have been thoroughly studied in the recent past. The
interested reader is referred to [13] for further details, but we will use here the following
recent criterion (see [11, Corollary 1.2] and [10, Corollary 4.6]).

Theorem 1.4. Let {Fn; n ∈ N} be a sequence of random variables belonging to a fixed
chaos Hq with q ≥ 2. Suppose E[F 2

n ] = 1 and limn→∞E[F 4
n ] = 3. Let pFn be the density of

the random variable Fn and let φ(x) = (2π)−1/2 exp(−|x|2/2) be the density of the standard
Gaussian distribution on R.

(i) Suppose that for some ǫ > 0,

sup
n

E
[
‖DFn‖−4−ε] <∞.

Then, there exists a constant c such that for all n ≥ 1,

sup
x∈R

|pFn(x)− φ(x)| ≤ c
√

E[F 4
n ]− 3.

(ii) Suppose that for all p ≥ 1,

sup
n

E
[
‖DFn‖−p

]
<∞.

Then, for any m ≥ 0, there exists a constant cm such that for all n ≥ 1,

sup
x∈R

|p(m)
Fn

(x)− φ(m)(x)| ≤ cm
√
E[F 4

n ]− 3.



LIMIT THEOREMS FOR GAUSSIAN STATIONARY SEQUENCES 3

The goal of the current paper is to apply the criterion given by Theorem 1.4 in order to
get convergence of density in the landmark of Breuer-Major theorem. In order to do this we
need a uniform estimate on the negative moments of the Malliavin derivative of the sequence,
and this is the contents of our main result.

Theorem 1.5. Let X be a Gaussian stationary sequence whose spectral density fρ satisfies
fρ ∈ L1/2([−π, π]) and log(fρ) ∈ L1([−π, π]) (see the hypothesis 2.1 and examples in the
next section). Let V d,q

n be the random variable defined by (2), and assume the hypothesis of
Corollary 1.2 to be satisfied. Then for any p ≥ 1, there exists n0 such that

sup
n≥n0

E
[
‖DV d,q

n ‖−p
]
<∞. (4)

In the case of a fixed Wiener chaos we can obtain the following consequence.

Corollary 1.6. Under the conditions of Theorem 1.5, if q = d, and we define Fn = V d,d
n /σn,

where σ2
n = E[(V d,d

n )2], then, for all m ≥ 0 there exists an n0 (depending on m) such that

sup
n≥n0

sup
x∈R

|p(m)
Fn

(x)− φ(m)(x)| ≤ cm
√
E[F 4

n ]− 3.

In the case q 6= d, Theorem 1.4 cannot be applied. In the reference [10] one can find
results on the uniform convergence of density for general random variables similar to those
stated in Theorem 1.4, but they require a uniform lower bound for the negative moments
of the random variable |〈DFn,−DL−1Fn〉H|, and our approach does not seem to work in
this case because it is not clear how to express 〈DFn,−DL−1Fn〉H as a sum of squares.
Nevertheless, condition (4) allows us to derive the uniform convergence of the densities and
their derivatives from a general result proved below (see Proposition 2.6) although in this
case we have no information about the rate of convergence.

Corollary 1.7. Under the conditions of Theorem 1.5, if we define Fn = V d,q
n /σn, where

σ2
n = E[(V d,q

n )2], then, for all m ≥ 0 we have

lim
n→∞

sup
x∈R

|p(m)
Fn

(x)− φ(m)x)| = 0.

Notice that a particular case of Theorem 1.5 has been established in [11], for q = 2
and Xk = Bk+1 − Bk for a fractional Brownian motion B with Hurst parameter H ∈
(0, 1). The proof of the existence of negative moments for ‖DFn‖ there is based on the
Volterra representation of B, which leads to long computations. In comparison our current
Theorem 1.5 is more general, since it is valid for a wide class of Gaussian stationary sequences.
Its proof is also significantly simplified. These are achieved by the introduction of two new
ingredients in the proof, namely:

• A general formula to compute conditional expectations for random variables of the
form Hq(Xk).

• Related to the previous item, we heavily resort to the causal representation of Xk,
which is particularly convenient in order to compute conditional expectations.

Here is how our paper is structured: we give some preliminary results concerning Gaussian
stationary sequences and related Malliavin calculus in Section 2. We then prove our main
Theorem 1.5 in Section 3.
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2. Preliminaries

This section is devoted to some preliminaries on causal or moving average representations
for Gaussian stationary sequences, as well as Malliavin calculus tools which will be used in
the sequel.

2.1. Moving average representation. The classical results on time series presented here
are borrowed from [2, 4], to which we refer for further details. Start from our Gaussian
stationary sequence {Xk; k ∈ N ∪ {0}} with covariance function ρ. We will work under the
following assumptions:

Hypothesis 2.1. We suppose that ρ admits a spectral density called fρ, defined by

fρ(λ) =
1

2π

∑

k∈Z
ρ(k) eıkλ, λ ∈ [−π, π]. (5)

We further assume that

fρ ∈ L1/2([−π, π]) and log(fρ) ∈ L1([−π, π]). (6)

Notice that the condition log(fρ) ∈ L1([−π, π]) is referred to as purely nondeterministic
property in the literature.

The interest of dealing with purely nondeterministic sequences is that they admit a so-
called causal representation which is particularly convenient for conditional expectation com-
putations. Let us state a result in this direction, which is taken from [4, Chapter 5].

Proposition 2.2. Let X be a Gaussian stationary sequence satisfying Hypothesis 2.1. Then
for each k ∈ N ∪ {0} the random variable Xk can be decomposed as

Xk =
∑

j≥0

ψj wk−j, (7)

where (wk)k∈Z is a discrete Gaussian white noise and the coefficients ψj are deterministic.
With a slight abuse of notation, extend the sequence ψ to (ψj)j∈Z by setting ψ−j = 0 for
j ≥ 0. Then one can choose ψ such that it enjoys the following properties:

(i) The sequence ψ admits a spectral density fψ such that fψ =
f
1/2
ρ

2π
.

(ii) In particular, ψ0 =
1
2π

∫ π
−π f

1/2
ρ (λ) dλ and ψ0 > 0.

(iii) For all k1, k2 ∈ N we have ρ(k1 − k2) =
∑k1∧k2

l=−∞ ψk1−l ψk2−l.

Proof. As mentioned above, those results are classic and borrowed from [4], see in particular
formula (5.7.9) therein. Let us justify briefly the fact that ψ0 > 0. Indeed, the purely non-
deterministic assumption imposes log(fρ) ∈ L1([−π, π]), and thus fρ > 0 almost everywhere.
This easily yields

ψ0 =

∫ π

−π
f 1/2
ρ (λ) dλ > 0.

Item (iii) is obtained by writing E[Xk1 Xk2 ] with the expression of Xk given by (7).
�
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Let us now turn to examples for which our standing assumptions of Hypothesis 2.1 are
met. The following proposition provides two typical and classical cases for which a spectral
density exists and satisfies some integrability properties.

Proposition 2.3. Let ρ be the covariance function of X. We have the following statements.

(i) If ρ ∈ ℓ1, then the spectral density fρ exists and is a nonnegative L2 function defined on
[−π, π]. Condition (5) is thus fulfilled.

(ii) If limk→∞ |k|αρ(k) = cρ for some α ∈ (0, 1) and some positive constant cρ, then the spec-
tral density exists, is strictly positive almost everywhere and satisfies limλ→0 |λ|1−αfρ(λ) = cf .
In particular, condition (5) is satisfied.

We now give two specific and important examples which satisfy Hypothesis 2.1.

Example 2.4. The so-called autoregressive fractionally integrated moving-average (ARFIMA)
processes are introduced in [8] and [9]. Denote by B the one lag backward operator (BXk =
Xk−1). Let φ(z) and θ(z) be two polynomials which have no common zeros and such that
the zeros of φ lie outside the closed unit disk {z , |z| ≤ 1}. Suppose that Xk is given by

φ(B)Xk = (Id−B)−dθ(B)wk , (8)

where −1 < d < 1/2, and where the operator (Id− B)−d is defined by:

(Id−B)−d =
∞∑

j=1

ηjB
j with ηj =

Γ(d+ j)

Γ(j + 1)Γ(d)
.

Also notice that in (8) the sequence (wk)k∈Z is a discrete Gaussian white noise. It is well-
known (see [19], Theorem 3.4 and equation (3.19)) that under the above conditions, {Xk, k ∈
N} admits a spectral density whose exact expression is:

f(λ) =
1

2π

[
2 sin

λ

2

]−2d |θ(e−iλ)|2
|φ(e−iλ)|2 .

It is thus readily checked that the conditions (5) and (6) are satisfied, and hence Xk has a
causal representation.

Example 2.5. Our second example is the fractional Gaussian noise. Let {Bt, t ≥ 0} be a
fractional Brownian motion of Hurst parameter H ∈ (0, 1). Then {Xk = Bk+1 − Bk , k ∈
N ∪ {0}} is a stationary Gaussian process with correlation

ρ(k) =
1

2

[
(k + 1)2H − 2k2H − (k − 1)2H

]
.

Its spectral density (see e.g. [2], equation (2.17)) is:

f(λ) =
1

2π

∞∑

k=−∞
ρ(|k|)eiλ = 2cf (1− cos(λ))

∞∑

j=−∞
|2πj + λ|−2H−1 , λ ∈ [−π, π] ,

where cf = (2π)−1 sin(πH)Γ(2H+1). If H ≤ 1/2, it is clear that
∑∞

k=−∞ |ρ(|k|)| <∞. This
implies

sup
λ∈[−π,π]

|f(λ)| <∞ .
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Thus f ∈ L1/2. If 1/2 < H < 1, then

0 ≤ f(λ) ≤ 2cf(1− cos(λ))|λ|−2H−1 + 2cf
∑

j 6=0

|2πj + λ|−2H−1 , λ ∈ [−π, π] .

The first term is in L1 since H < 1. When j 6= 0,
∫ π
−π |2πj + λ|−2H−1dλ ≤ Cj−2H for

some positive constant C. Thus
∫ π
−π
∑

j 6=0 |2πj + λ|−2H−1 dλ < ∞, owing to the fact that

H > 1/2. Therefore, we have f ∈ L1 and hence f ∈ L1/2. Summarizing we have f ∈ L1/2

for all H ∈ (0, 1). This also implies log+ f(λ) ∈ L1. To see log− f(λ) ∈ L1, we notice that

f(λ) ≥ 2cf (1− cos(λ))|λ|−2H−1 .

So log− f(λ) ≤ C +
∣∣ log

[
(1− cos(λ))|λ|−2H−1

] ∣∣ which is in L1. In conclusion, the sequence
X satisfies Hypothesis 2.1.

2.2. Malliavin calculus. We start by briefly recalling some basic notation and results
connected to Gaussian analysis and Malliavin calculus. The reader is referred to [13, 17] for
details or missing proofs.

2.2.1. Wiener space and generalities. Let H be a real separable Hilbert space with inner
product 〈·, ·〉H. The norm of H will be denoted by ‖ · ‖ = ‖ · ‖H. Recall that we call isonormal
Gaussian process over H any centered Gaussian family W = {W (h) : h ∈ H}, defined on a
probability space (Ω,F ,P) and such that E[W (h)W (g)] = 〈h, g〉H for every h, g ∈ H.

In our application the underlying Gaussian family will be a discrete Gaussian white noise
(wk)k∈Z. The space H is given here by H = ℓ2(Z) (the space of square integrable sequences
indexed by Z) equipped with its natural inner product. Set {εj; j ∈ Z} for the canonical
basis of ℓ2(Z), that is εjk = δj(k). We thus identify wj with W (εj). Assume from now on
that our underlying σ-algebra F is generated by W .

For any integer q ∈ N∪ {0}, we denote by Hq the qth Wiener chaos of W . We recall that
H0 is simply R whereas, for any q ≥ 1, Hq is the closed linear subspace of L2(Ω) generated
by the family of random variables {Hq(W (h)), h ∈ H, ‖h‖H = 1}, with Hq the q-th Hermite
polynomial given by

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e−

x2

2

)
. (9)

Let S be the set of all cylindrical random variables of the form

F = g(W (h1), . . . ,W (hn)),

where n ≥ 1, hi ∈ H, and g is infinitely differentiable such that all its partial derivatives
have polynomial growth. The Malliavin derivative of F is the element of L2(Ω;H) defined
by

DF =

n∑

i=1

∂g

∂xi
(W (h1), . . . ,W (hn)) hi.

By iteration, for every m ≥ 2, we define the mth derivative DmF . This is an element of
L2(Ω;H⊙m), where H⊙m designates the symmetric mth tensor product of H. For m ≥ 1 and
p ≥ 1, Dm,p denote the closure of S with respect to the norm ‖ · ‖m,p defined by

‖F‖pm,p = E[|F |p] +
m∑

j=1

E
[
‖DjF‖p

H⊗j

]
.
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Set D
∞ = ∩m,pDm,p. One can then extend the definition of Dm to D

m,p. When m = 1,
one simply write D instead of D1. As a consequence of the hypercontractivity property of
the Ornstein-Uhlenbeck semigroup (see, e.g., [13, Theorem 2.7.2]), all the ‖ · ‖m,p-norms are
equivalent in any finite sum of Wiener chaoses.

Finally, let us recall that the Malliavin derivative D satisfies the following chain rule: if
ϕ : Rn → R is in C1

b (that is, belongs to the set of continuously differentiable functions with
a bounded derivative) and if {Fi}i=1,...,n is a vector of elements of D1,2, then ϕ(F1, . . . , Fn) ∈
D

1,2 and

Dϕ(F1, . . . , Fn) =

n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi. (10)

2.3. Convergence of densities. Suppose that F is a random variable in D
∞ such that

E[‖DF‖−p] <∞ for all p ≥ 1. Then, we know that F has an infinitely differentiable density
and there are explicit formulas for the density and its derivatives (see [17, Proposition 2.1.5]).
Using this result, we can establish the following criteria for convergence of densities for
random variables in a finite sum of Wiener chaos.

Proposition 2.6. Let {Fn;n ∈ N} be a sequence of random variables belonging to a finite
sum of Wiener chaos ⊕M

k=1Hk, which converges in law to a nonzero random variable F∞.
Suppose that, for all p ≥ 1

sup
n

E[‖DFn‖−p] <∞. (11)

Then, for all m ≥ 0 the derivative p
(m)
n of the density of Fn, converges uniformly and in in

Lp(R) for all p ≥ 1 to the corresponding derivative of the density of F∞.

Proof. First notice that by condition (11), the random variable Fn has an infinitely differen-
tiable density pn, whose derivatives can be expressed by

p(m)
n (x) = E

[
1{F>x}G

(m)
n

]
, (12)

where the random variables G
(m)
n are defined recursively by G

(0)
n = δ

(
DFn

‖DFn‖2H

)
and

G(m)
n = −δ

(
G

(m−1)
n DFn
‖DFn‖2H

)
,

for any m ≥ 1. From this formula it follows that the derivatives p
(m)
n are uniformly bounded

and also uniformly bounded in Lp(R) for all p ≥ 1. Indeed, by [16, Lemma 2.4] we have
supnE[|Fn|r] < ∞ for all r ≥ 1. This uniform bound on the moments, together with the
equivalence of the ‖ · ‖m,p norms in any finite sum of Wiener chaoses and condition (11)

imply that supn ‖G(m)
n ‖Lp(Ω) = cm,p <∞ for all m ≥ 0. Then, we can write from (12)

sup
n

sup
x
p(m)
n (x) ≤ sup

n
E
[
|G(m)

n |
]
= cm,1 <∞,

and, using the fact that E[G
(m)
n ] = 0, we get:

sup
n
p(m)
n (x) ≤ sup

n

(
P(|Fn| > |x|)E

[
|G(m)

n |2
]) 1

2

≤ cm,2 sup
n

√
P(|Fn| > |x|) ≤ cm,2 sup

n
E[|Fn|q]

1
2 |x|− q

2 ≤ c|x|− q
2 ,
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for all q ≥ 1 and for some constant c depending on q and m.

By the results of [16], the densities pn converge in L1(R) to the density p∞ of F∞. The
boundedness in Lp(R) and the uniform bound of pn imply that this convergence holds in
Lp(R) for any p ≥ 1. From a compactness argument we can deduce the convergence of all
the derivatives in Lp(R) for any p ≥ 1. Finally, the uniform convergence is also easy to
establish. �

2.4. A key lemma. Our future computations will heavily rely on an efficient way to com-
pute conditional expectations. Towards this aim, we state here some general results. Let us
start with a decomposition for Hermite polynomials:

Lemma 2.7. For any q ≥ 1, let Hq be the polynomial defined by relation (9). Consider
y, z ∈ R and two real parameters a, b with a2 + b2 = 1. Then the following relation holds
true:

Hq(ay + bz) =

q∑

ℓ=0

(
q

ℓ

)
aq−ℓbℓHq−ℓ(y)Hℓ(z). (13)

Proof. By the definition of the Hermite polynomials, we have

eaty−
(at)2

2 =

∞∑

i=0

(at)iHi(y), and etbz−
(bt)2

2 =

∞∑

j=0

(bt)j Hj(z). (14)

In the same way, we also obtain:

et(ay+bz)−t
2/2 =

∞∑

q=0

tqHq(ay + bz). (15)

Since a2 + b2 = 1, we obviously have eaty−
(at)2

2 etbz−
(bt)2

2 = et(ay+bz)−t
2/2. Thus, multiplying

the right hand sides of (14) we recover the right hand side of (15), namely:

∞∑

q=0

tqHq(ay + bz) =

∞∑

i=0

(at)iHi(y)

∞∑

j=0

(bt)jHj(z),

which easily yields the desired identity (13). �

With this preliminary result in hand, we are ready to state our result on conditional
expectations:

Proposition 2.8. Let Y and Z be two centered Gaussian random variables such that Y
is measurable with respect to a σ-algebra G ⊂ F and Z is independent of G. Assume that
E[Y 2] = E[Z2] = 1. Then for any q ≥ 1, and real parameters a, b such that a2 + b2 = 1, we
have:

E[Hq(aY + bZ)|G] = aqHq(Y ). (16)

Proof. Apply identity (13) in order to decompose Hq(aY + bZ). Then identity (16) fol-
lows easily from the fact that Y is G-measurable, Z is independent from G and Hermite
polynomials have 0 mean under a centered Gaussian measure except for H0 ≡ 1. �
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2.5. Carbery-Wright inequality. In the proof of Theorem 1.5, we will make use of the
following inequality due to Carbery and Wright [5, Theorem 8], which is recalled here for
convenience:

Proposition 2.9. Let X = (X1, . . . , Xn) be a Gaussian random vector in R
n and Q : Rn →

R a polynomial of degree at most m. Then there is a universal constant c > 0 such that:

E[|Q(X1, . . . , Xn)|]
1
m P(|Q(X1, . . . , Xn)| ≤ x) ≤ cmx

1
m , for all x > 0. (17)

3. Proof of Theorem 1.5

In this section, we will prove our main result, which amounts to show the inequality (4).
This will be done into several steps.

Step 1: Computation of the Malliavin norm. Recall that V d,q
n is defined by relation (2), and

set for the moment f =
∑q

j=d aj Hj. Invoking relation (10), plus the fact that Dwj = εj

with the notation of Section 2.2.1, we get:

DV d,q
n =

1√
n

n−1∑

k=0

f ′(Xk)

(
∑

j≥0

ψj ε
k−j

)
=

1√
n

n−1∑

l=−∞

(
n−1∑

k=l+

ψk−l f
′(Xk)

)
εl , (18)

where l+ = max{l, 0}. Invoking Proposition 2.3, item (iii), it is thus readily checked that:

〈
DV d,q

n , DV d,q
n

〉
H
=

1

n

n−1∑

k1,k2=0

f ′(Xk1)ρ(k1 − k2)f
′(Xk2),

where we recall that ρ is the covariance function of the Gaussian stationary sequence
{Xk; k ≥ 0}. This is consistent with the expression found in [13, Chapter 5]. However,
in order to write the above expression as sum of some squares, we will start directly from
expression (18). Since {εl; l ∈ Z} is an orthonormal basis of ℓ2(Z) we obtain:

〈
DV d,q

n , DV d,q
n

〉
H
=

1

n

n−1∑

ℓ=−∞

(
n−1∑

k=ℓ+

ψk−ℓ f
′(Xk)

)2

.

Rearranging terms (namely, change k − ℓ to k and then n− ℓ− 1 to m), we end up with:

〈
DV d,q

n , DV d,q
n

〉
H

≥ 1

n

n−1∑

ℓ=0

(
n−ℓ−1∑

k=0

f ′(Xℓ+k)ψk

)2

=
1

n

n−1∑

m=0

(
m∑

k=0

f ′(Xn−1−(m−k))ψk

)2

≡ An.

As a last preliminary step we resort to the fact that X = {Xk; k ∈ N ∪ {0}} is a Gaussian
stationary sequence, which allows to assert that An is identical in law to Bn with

Bn :=
1

n

n−1∑

m=0

(
m∑

k=0

f ′(Xm−k)ψk

)2

=
1

n

n−1∑

m=0

(
m∑

k=0

f ′(Xk)ψm−k

)2

.

We will now bound the negative moments of Bn.

Step 2: Block decomposition. We now wish to apply the Carbery-Wright inequality (17) in
order to get bounds for negative moments of Bn. However, relation (17) only applies to
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moments of small order, and this is why we proceed to a decomposition of Bn into smaller
blocks.

Fix thus an integer N ≥ 1 and let M = [n/N ] be the integer part of n/N . Then n ≥ NM
and as a consequence,

Bn =
1

n

n−1∑

m=0

(
m∑

k=0

f ′(Xk)ψm−k

)2

≥ 1

n

N−1∑

i=0

(i+1)M−1∑

m=iM

(
m∑

k=0

f ′(Xk)ψm−k

)2

.

For i = 0, . . . , N − 1, define

Bi
n =

1

n

(i+1)M−1∑

m=iM

(
m∑

k=0

f ′(Xk)ψm−k

)2

so that Bn ≥
N−1∑

i=0

Bi
n. Then it is readily checked that:

(Bn)
− p

2 ≤
N−1∏

i=0

(Bi
n)

− p
2N . (19)

Recall once again the representation of the sequence X in (7), and denote by Fk the filtration
generated by {wℓ : ℓ < k}. Then starting from (19) we obtain:

E
[
(Bn)

− p
2

]
≤ E

[
N−1∏

i=0

(Bi
n)

− p
2N

]
= E

[
E
[
(BN−1

n )−
p

2N |F(N−1)M

] N−2∏

i=0

(Bi
n)

− p
2N

]
. (20)

Step 3: Application of Carbery-Wright. Let us go back to the particular situation of f =∑q
j=d aj Hj, which means in particular that f ′ =

∑q
j=d j aj Hj−1. We are now in a position

to apply a conditional version of inequality (17) to the block (BN−1
n )−

p
2N in (20). First, we

notice

E
[
(BN−1

n )−
p

2N |F(N−1)M

]
≤ 1 +

p

2N

∫ 1

0

P
(
BN−1
n ≤ x| F(N−1)M

)
x−

p
2N

−1dx . (21)

Since BN−1
n is a polynomial of order m = 2(q − 1), Carbery-Wright’s inequality (17) yields:

P
(
BN−1
n ≤ x|F(N−1)M

)
≤ c x

1
2(q−1)

[
E
(
BN−1
n |F(N−1)M

)] 1
2(q−1)

. (22)

Step 4: Estimates for the conditional expectation. We now estimate the conditional expec-
tation E[BN−1

n |F(N−1)M ]. We have:

E
[
BN−1
n |F(N−1)M

]
=

1

n

NM−1∑

m=(N−1)M

E




(

m∑

k=0

f ′(Xk)ψm−k

)2 ∣∣∣F(N−1)M





≥ 1

n

NM−1∑

m=(N−1)M

Am, (23)
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where we have set

Am = Var

( m∑

k=(N−1)M

f ′(Xk)ψm−k

∣∣∣F(N−1)M

)
.

Furthermore, notice that

f ′(Xk) = f ′

(
k∑

ℓ=−∞
ψk−i wi

)
= f ′(Yk + Zk),

where Yk =
∑(N−1)M−1

i=−∞ ψk−i wi is F(N−1)M -measurable and Zk =
∑k

i=(N−1)M ψk−i wi is inde-

pendent of F(N−1)M . Recalling that f ′ =
∑q

j=d j aj Hj−1, we can thus resort to Lemmas 2.7
and 2.8. This gives:

Hq−1(Xk)− E[Hq−1(Xk)|F(N−1)M ] =

q∑

j=d

j−1∑

ℓ=1

j2aj

(
j − 1

ℓ

)
σj−1−ℓ
Yk

Hj−1−ℓ(Ỹk)σ
ℓ
Zk
Hℓ(Z̃k),

where σYk = [Var(Yk)]
1/2, σZk

= [Var(Zk)]
1/2, Ỹk = Yk/σYk and Z̃k = Zk/σZk

. Therefore,

Am = E






m∑

k=(N−1)M

q∑

j=d

j−1∑

ℓ=1

aj,ℓ,kHj−1−ℓ(Ỹk)Hℓ(Z̃k)ψm−k




2 ∣∣∣F(N−1)M




= E






q−1∑

ℓ=1

m∑

k=(N−1)M

q∑

j=(ℓ+1)∨d
aj,ℓ,kHj−1−ℓ(Ỹk)Hℓ(Z̃k)ψm−k




2 ∣∣∣F(N−1)M


 ,

where we have set aj,ℓ,k = j2aj
(
j−1
ℓ

)
σj−1−ℓ
Yk

σℓZk
.

Recall that the random variables Ỹk are F(N−1)M -measurable while the random variables

Z̃k are independent of F(N−1)M . By decorrelation properties of Hermite polynomials we thus
get:

Am =

q−1∑

ℓ=1

E








m∑

k=(N−1)M

q∑

j=(ℓ+1)∨d
aj,ℓ,kHj−1−ℓ(Ỹk)Hℓ(Z̃k)ψm−k




2 ∣∣∣F(N−1)M





and we trivially lower bound this quantity by taking the term corresponding to ℓ = q−1. In
this situation the sum

∑q
j=(ℓ+1)∨d is reduced to the term corresponding to j = q, and since

aq,q−1,k = q2aqσ
q−1
Zk

we obtain:

Am ≥ E






m∑

k=(N−1)M

q2 aq σ
q−1
Zk

Hq−1(Z̃k)ψm−k




2 ∣∣∣F(N−1)M




= q4 a2q E








m∑

k=(N−1)M

σq−1
Zk

Hq−1(Z̃k)ψm−k




2

 .
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We now invoke the identity E[Hp(Z̃k1)Hp(Z̃k2)] =
1
p!
(E[Z̃k1Z̃k2])

p in order to obtain

Am ≥ q5 a2q
q!

m∑

k1,k2=(N−1)M

σq−1
Zk1

σq−1
Zk2

E
[
Z̃k1 Z̃k2

]q−1

ψm−k1ψm−k2 .

Furthermore, it is readily checked that:

E
[
Z̃k1 Z̃k2

]
=

1

σZk1
σZk2

k1∧k2∑

i=(N−1)M

ψk1−i ψk2−i,

and thus

Am ≥ q5 a2q
q!

m∑

k1,k2=(N−1)M




k1∧k2∑

i=(N−1)M

ψk1−i ψk2−i



q−1

ψm−k1ψm−k2

=
q5 a2q
q!

m∑

i1,...,iq−1=(N−1)M

m∑

k1,k2=max(i1,...,iq−1)

ψm−k1ψm−k2

q−1∏

j=1

ψk1−ij ψk2−ij

=
q5 a2q
q!

m∑

i1,...,iq−1=(N−1)M




m∑

k=max(i1,...,iq−1)

ψm−k

q−1∏

j=1

ψk−ij




2

.

Here again, this sum of squares is trivially lower bounded by taking the term corresponding
to i1 = · · · = iq−1 = m, which yields:

Am ≥ ca,q,ψ with ca,q,ψ ≡ q5 a2q
q!

ψ2q
0 > 0. (24)

Step 5: Conclusion. In the remainder of the proof the constants ca,q,ψ,N and so can change
from line to line without further mention. Plugging relation (24) into (23) and recalling that
N is a given integer whose exact value will be fixed below, we get:

E
[
BN−1
n |F(N−1)M

]
≥ M ca,q,ψ

n
≥ ca,q,ψ,N > 0,

as long as N stays bounded. We then insert back this inequality into (21) and (22) in order
to get:

P
(
BN−1
n ≤ x|F(N−1)M

)
≤ 1 +

p ca,q,ψ,N
2N

∫ 1

0

x
1

2(q−1)
− p

2N
−1dx = ca,q,ψ,N,p <∞,

where we have chosen N such that p
2N

< 1
2(q−1)

. Iterating this bound into (20), we have thus

obtained:

E
[
(Bn)

− p
2

]
≤ cNa,q,ψ,N,p,

which is a finite quantity. Finally recall from Step 1 that E[(Bn)
− p

2 ] = E[‖DV d,q
n ‖−p

H
], which

finishes the proof.
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