Radial representation of lower semicontinuous envelope
Résumé
We give an extension to a nonconvex setting of the classical radial representation result for lower semicontinuous envelope of a convex function on the boundary of its effective domain. We introduce the concept of radial uniform upper semicontinuity which plays the role of convexity, and allows to prove a radial representation result for nonconvex functions. An application to the relaxation of multiple integrals with constraints on the gradient is given.
Fichier principal
Anza_Mandallena_Radial_representation_Boll.Uni.Math.Ita._2014.pdf (214.94 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...