A mathematical perspective on density functional perturbation theory - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2014

A mathematical perspective on density functional perturbation theory

Résumé

This article is concerned with the mathematical analysis of the perturbation method for extended Kohn-Sham models, in which fractional occupation numbers are allowed. All our results are established in the framework of the reduced Hartree-Fock (rHF) model, but our approach can be used to study other kinds of extended Kohn-Sham models, under some assumptions on the mathematical structure of the exchange- correlation functional. The classical results of Density Functional Perturbation Theory in the non-degenerate case (that is when the Fermi level is not a degenerate eigenvalue of the mean-field Hamiltonian) are formalized, and a proof of Wigner’s (2n + 1) rule is provided. We then focus on the situation when the Fermi level is a degenerate eigenvalue of the rHF Hamiltonian, which had not been considered so far.
Fichier principal
Vignette du fichier
Cances_Mourad_revised_source.pdf (546.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00952732 , version 1 (06-05-2014)
hal-00952732 , version 2 (01-04-2017)

Identifiants

Citer

Eric Cancès, Nahia Mourad. A mathematical perspective on density functional perturbation theory. Nonlinearity, 2014, 27 (9), pp.1999-2033. ⟨10.1088/0951-7715/27/9/1999⟩. ⟨hal-00952732v2⟩
339 Consultations
512 Téléchargements

Altmetric

Partager

More