Detection of linear trends in multisensor time series in the presence of autocorrelated noise: Application to the chlorophyll-a SeaWiFS and MERIS data sets and extrapolation to the incoming Sentinel 3-OLCI mission - Archive ouverte HAL
Article Dans Une Revue Journal of Geophysical Research Année : 2013

Detection of linear trends in multisensor time series in the presence of autocorrelated noise: Application to the chlorophyll-a SeaWiFS and MERIS data sets and extrapolation to the incoming Sentinel 3-OLCI mission

Résumé

The detection of long-term trends in geophysical time series is a key issue in climate change studies. This detection is affected by many factors: the size of the trend to be detected, the length of the available data sets, and the noise properties. Although the noise autocorrelation observed in geophysical time series does not bias the trend estimate, it affects the estimation of its uncertainty and consequently the ability to detect, or not, a significant trend. Ignoring the noise autocorrelation level typically leads to an overdetection of significant trends. Satellite time series have been providing remote observations of the sea surface for several decades. Due to satellite lifetime, usually between 5 and 10 years, these time series do not cover the same period and are acquired by different sensors with different characteristics. These differences lead to unknown level shifts (biases) between the data sets, which affect the trend detection. In this work, we develop a generic framework to detect and evaluate linear trends and level shifts in multisensor time series of satellite chlorophyll-a concentrations, as provided by the Medium Resolution Imaging Spectrometer Instrument (MERIS) and sea-viewing wide field-of-view sensor (SeaWiFS) ocean-color missions. We also discuss the optimization of the observation networks, in terms of needed time overlap between successive time series in order to reduce the uncertainty on the detection of long-term trends. For the incoming Sentinel 3-Ocean and Land Color Instrument (3-OLCI) mission that should be launched at the end of 2014, we propose a global map of the duration of this future time series necessary to actually enhance the trend detection performed with the joint SeaWiFS-MERIS analysis.
Fichier principal
Vignette du fichier
jgrc.20264.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00949801 , version 1 (09-04-2021)

Identifiants

Citer

Bertrand Saulquin, Ronan Fablet, Antoine Mangin, Grégoire Mercier, David Antoine, et al.. Detection of linear trends in multisensor time series in the presence of autocorrelated noise: Application to the chlorophyll-a SeaWiFS and MERIS data sets and extrapolation to the incoming Sentinel 3-OLCI mission. Journal of Geophysical Research, 2013, 118 (8), pp.3752 - 3763. ⟨10.1002/jgrc.20264⟩. ⟨hal-00949801⟩
139 Consultations
67 Téléchargements

Altmetric

Partager

More