Multi-scale problems, high performance computing and hybrid numerical methods - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Multi-scale problems, high performance computing and hybrid numerical methods

Résumé

The turbulent transport of a passive scalar is an important and challenging problem in many applications in fluid mechanics. It involves different range of scales in the fluid and in the scalar and requires important computational resources. In this work we show how hybrid numerical methods, combining Eulerian and Lagrangian schemes, are natural tools to address this multi-scale problem. One in particular shows that in homogeneous turbulence experiments at various Schmidt numbers these methods allow to recover the theoretical predictions of universal scaling at a minimal cost. We also outline hybrid methods can take advantage of heterogeneous platforms combining CPU and GPU processors.
Fichier principal
Vignette du fichier
cottet.pdf (499.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00949669 , version 1 (21-02-2014)
hal-00949669 , version 2 (01-03-2014)

Identifiants

  • HAL Id : hal-00949669 , version 1

Citer

Guillaume Balarac, Georges-Henri Cottet, Jean-Matthieu Etancelin, Jean-Baptiste Lagaert, Franck Pérignon, et al.. Multi-scale problems, high performance computing and hybrid numerical methods. FMI 2013 - Forum "Math-for-Industry" 2013, Nov 2013, Fukuoka, Japan. 11 p. ⟨hal-00949669v1⟩
512 Consultations
368 Téléchargements

Partager

More