
HAL Id: hal-00949669
https://hal.science/hal-00949669v1

Submitted on 21 Feb 2014 (v1), last revised 1 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale problems, high performance computing and
hybrid numerical methods

Guillaume Balarac, Georges-Henri Cottet, Jean-Matthieu Etancelin,
Jean-Baptiste Lagaert, Franck Pérignon, Christophe Picard

To cite this version:
Guillaume Balarac, Georges-Henri Cottet, Jean-Matthieu Etancelin, Jean-Baptiste Lagaert, Franck
Pérignon, et al.. Multi-scale problems, high performance computing and hybrid numerical methods.
FMI 2013 - Forum ”Math-for-Industry” 2013, Nov 2013, Fukuoka, Japan. 11 p. �hal-00949669v1�

https://hal.science/hal-00949669v1
https://hal.archives-ouvertes.fr


Multi-scale problems, high performance

computing and hybrid numerical methods

G. Balarac, G.-H. Cottet, J.-M. Etancelin, J.-B. Lagaert, F. Perignon and C. Picard

Abstract The turbulent transport of a passive scalar is an important and challeng-

ing problem in many applications in fluid mechanics. It involves different range

of scales in the fluid and in the scalar and requires important computational re-

sources. In this work we show how hybrid numerical methods, combining Eulerian

and Lagrangian schemes, are natural tools to address this mutli-scale problem. One

in particular shows that in homogeneous turbulence experiments at various Schmidt

numbers these methods allow to recover the theoretical predictions of universal scal-

ing at a minimal cost. We also outline how hybrid methods can take advantage of

heterogeneous platforms combining CPU and GPU processors.

1 Introduction

Numerical simulations have become a routine tool to develop, prototype and/or val-

idate products and processes in industry. Applications encompass virtually all sec-

tors of activity from Aeronautics, Automotive industry and Oil exploration to Cir-

cuit design, Biomechanics and Animations studios, to name a few. With the need

to perform more and more realistic simulations and the advent of supercomputers,

available in national or regional centers, the field of High Performance Computing

(HPC) is not anymore restricted to academia and scientific grand challenges but

starts to reach SMEs.

HPC requires easy and flexible access to HPC facilities, obviously, and to master

the appropriate programming language, but also to question the numerical meth-
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ods and algorithms that are used in the simulations. These methods and algorithms

should be adapted both to the physics of the problems to solve and to the architecture

of the simulation platforms. Moreover since these platforms are often of an hybrid

nature, that is combine different type of processors, typically CPU and GPU proces-

sors, one may also wish to develop or use methods which couple different types of

algorithms that can be optimally distributed to different types of processors.

This is particularly desirable if the problem to solve is multi-level by nature.

In that case the different scales that are to be represented can also be resolved on

different types of processors. This is hybrid computing. In some sense the nature of

the problem and of the hardware inspires the type of mathematical and numerical

models that should be used for optimal efficiency.

The purpose of this paper is to describe ongoing work in our group towards hy-

brid computing for applications in turbulent transport of passive scalar. In the next

section we briefly describe the physical context of this work. In section 3 we de-

scribe a hybrid method coupling a semi-Lagrangian method for the scalar transport

and a spectral method for incompressible flows and we show some results obtained

with this method. Section 4 is devoted to the implementation of scalar transport on

GPU processors.

2 Universal scaling in turbulent transport

The prediction of the dynamics of a scalar advected by a turbulent flow is an im-

portant challenge in many applications. Some of these applications are illustrated

in Figures 1 to 3. Figure 1 shows the dynamics of a pollutant ejected by a sewer

in the Los Angeles bay at two different times. Figure 2 shows the atomization of

a jet. In that case the transported quantity is the interface water-air interface [1].

Figure 3 shows a similar experiment but in the context of combustion. In this case

the transported quantities are concentrations of chemical species [2]. All these il-

lustrations share a common feature, namely that very small scales spontaneously

appear and need to be captured if accurate predictions are needed for the location of

the pollutant, the size of the droplets or the combustion efficiency, respectively, are

sought.

The production of small scales in an advected scalar indeed reflects some fun-

damental turbulence properties and is driven by the value of the Schmidt number,

Sc, the ratio between the viscosity of the fluid and the diffusivity of the scalar. if

Sc > 1, the so-called Batchelor scale ηB which measures the size of the smallest

scalar fluctuations is smaller than the smallest length scales of the turbulent flow

(the Kolmogorov scale ηK). These scales are related by ηB = ηK/
√

Sc. More pre-

cisely, for Sc > 1, Batchelor [3] reports that the classical Corrsin-Obukhov cascade

associated with a k−5/3 law (where k is the wave number) for the scalar variance

spectrum [4, 5] is followed by a viscous-convective range with a k−1 power law.

This viscous-convective range is followed by the dissipation range, where various

theoretical scalings have been proposed for the spectrum [3, 6]. A direct conse-
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quence of this fact is that, for Sc > 1, in numerical simulations the scalar is more

demanding, in terms of grid resolution, than the flow itself. It is therefore natural

to envision numerical approaches which use different grid resolutions for the scalar

and the momentum.

Fig. 1 Transport of a pollutant in the bay of Los Angeles at two different times. Courtesy of E.

Blayo (Université Joseph Fourier, Grenoble)

Fig. 2 Atomization of a jet (Courtesy of S. Zaleski, Université Pierre et Marie Curie, Paris).

3 Hybrid particle-spectral method

We consider in the following scalar equation
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Fig. 3 Reacting jet . Courtesy of L. Vervisch, INSA Rouen.

∂θ

∂ t
+u ·∇θ = ∇ · (κ∇θ) (1)

coupled with the incompressible Navier-Stokes equation

∂u

∂ t
+u ·∇u = ∇ · (ν∇u)−∇p , ∇ ·u = 0, (2)

in a periodic box. κ is the molecular scalar diffusivity, ν the flow viscosity and u

the flow velocity field. Using different grid resolutions for the scalar and the flow

has already been considered for instance in [7, 8]. In the latter reference a compact

finite-difference method was used for the scalar and a pseudo-spectral method for

the flow. A significant speed-up over a pure spectral solver with high resolution for

both the momentum and the scalar was obtained. Our choice here is to combine a

particle method for the scalar and a spectral method for the flow.

Our motivation to choose a particle method for the scalar advection comes form

the fact that, for large Schmidt numbers, the scalar dynamics is essentially driven
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by advection, a regime for which Lagrangian or semi-Lagrangian methods are well

suited. Moreover in such method, the stability limits for the time-step are governed

by the amount of strain in the flow, and not by the grid size. In the present context

where high resolutions of the scalar are desired, this is definitely a feature that is

expected lead to an important speed up.

More precisely, the method we use for the scalar is a semi-Lagrangian (or

remeshed) particle method, where at every time step particles carrying the scalar

values are moved along the streamlines of the velocity then remeshed on a regular

cartesian grid. Remeshing particles on a regular grid is a way to guarantee the accu-

racy of particle methods. This approach has been systematically used and validated

in a number of simulation of vortex flows [9, 10, 11, 12, 13] or in combination with

level set methods for interface capturing [14, 15, 16]. Remeshing particles at every

time-step also allows to easily couple the method to grid based methods, in particu-

lar when velocity values are computed on a grid. These methods can be summarized

by the following formula

θ n+1
i = ∑

j

θ n
j Γ

(

xn+1
j − xi

∆xθ

)

. (3)

where θ n
j denotes the value of the scalar at the grid point x j and at time tn = n∆ tθ ,

xn+1
j is the location after one advection step of the particle initialized at time tn on the

grid point x j, and ∆xθ and ∆ tθ denote the grid size and the time-step. In the above

formula Γ is an interpolating kernel, the smoothness and the moment properties of

which govern the spatial overall accuracy of the method [17]. In this work we chose

the following kernel second order kernel

Γ (x) =























1
12
(1−|x|)

(

25|x|4 −38|x|3 −3|x|2 +12|x|+12
)

if 0 ≤ |x|< 1

1
24
(|x|−1)(|x|−2)

(

25|x|3 −114|x|2 +153|x|−48
)

if 1 ≤ |x|< 2

1
24
(3−|x|)3 (5|x|−8)(|x|−2) if 2 ≤ |x|< 3

0 if 3 ≤ |x|.

The scalar time-step is given by ∆ tθ =(|∇u|max)
−1. As already mentioned this value

does not depend on the scalar grid size.

For the momentum equation we use a classical pseudo-spectral method, with the

3/2 rule to de-alias inertial terms and a second-order Runge-Kutta scheme is used

both for the time-stepping of the spectral method and to advect particles. Precise

descriptions of the methods and of the experimental set up are given in [18, 17].

Figure 4 shows a comparison of the scalar spectra obtained by the present cou-

pling method and pure spectral method in an experiment of decaying homogeneous

turbulence. In the hybrid method two different resolutions where used for the scalar.

This experiment shows that, provided the particle method is used with slightly more

grid points than needed by the spectral method, the scalar values are well recovered

all the way to the dissipation scale. In this Direct Numerical Simulation, the Schmidt
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number was equal to 50 and the momentum equation was solved with 256 modes in

each direction.
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Fig. 4 Spectra of the scalar variance Eθ (k, t) at two two different times for Sc = 50. Right picture

is a zoom of left picture on the smallest scales.

To evaluate the efficiency of the hybrid method, we show in Table 1 CPU times

for the full spectral method and the hybrid method for Sc = 50. All runs corre-

spond to fully resolved simulations for the Navier-Stokes equations. One can see

that, because it can use much larger time-steps, the hybrid method, even when it

uses slightly more points to accurately resolve the finest scales, leads to significant

savings over the pure spectral method. Additional validation and diagnostics are

give in [18].

The computational efficiency of the hybrid method allows to address more chal-

lenging cases and to investigate in a systematic fashion the universal scaling laws in

the case of forced homogeneous turbulence. Table 2 summarizes the simulation set

up corresponding to two values of the Reynolds number and several Schmidt num-

bers. For the highest Schmidt number, Sc = 128, the simulation used 30643 compu-

tational elements for the scalar equation, on a IBM Blue Gene supercomputer. The

ratio between the time-step used in the present simulation and that which would

have been required in a comparable spectral simulation is almost equal to 100. Fig-

ure 5 shows the compensated spectra of the scalar for a Reynolds number based on
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Method Nu Nθ ∆ tu (×10−4) ∆ tθ (×10−4) total CPU time

Spectral 10243 10243 2.5 2.5 43 590s

Spectral 2563 10243 2.5 2.5 16 671s

Hybrid 2563 10243 10 100 1 139s

Hybrid 2563 12803 10 100 1 328s

Table 1 Numerical efficiency of the different methods on a decaying turbulence experiment- Runs

are performed on 2048 cores of a Blue Gene Q. Nu,Nθ denotes the spatial resolution for velocity

and scalar and ∆ tu,∆ tθ are the numerical time steps for momentum and scalar equations. CPU

times correspond to the simulation time t = 6.

the Taylor mico-scale Rλ [19] equal to 130. These spectra do exhibit a k−1 decay on

a range which increases with the Schmidt number. Beyond this viscous-convective

range, the spectra follow an exponential decay coinciding with the scaling law pro-

posed by Kraichnan [6].

Rλ Nu ∆ tu Sc Nθ ∆ tθ ∆ tθ
spec

130 2563 1.2e−2

0.7 5123

8.6e−2

6e−3

4 10243 3e−3

8 10243 3e−3

16 15363 2e−3

32 15363 2e−3

64 20483 1.5e−3

128 30643 1e−3

210 5123 3e−3 0.7 7703

2e−2 2e−3

4 10243 1.5e−3

Table 2 Setup of simulations performed in forced homogeneous turbulence. ∆ tu is the time step

used to solve the Navier-Stokes equation with a pseudo-spectral solver. ∆ tθ is the time step used

to solve the scalar transport equation with the particle method. ∆ tθ
spec is the time step which would

be needed if a pseudo-spectral method was used for the same number of scalar grid points [18]

Figure 6 shows vorticity and scalar contours in a cross section of the computa-

tional box for the simulation corresponding Rλ ≈ 130 and Sc = 128. It illustrates

the scale separation between the flow and the scalar for these parameters. The ex-

tension of the hybrid method to the coupling of particle methods with finite-volume

methods to address engineering configurations is under way.

4 Towards hybrid computing

As already mentioned the multi-scale nature of turbulent transport makes natural

the idea of hybrid computing methodologies where different part of the problems

are distributed to different types of hardware. To be able to implement hybrid algo-

rithms on hybrid architectures, one needs to develop frameworks and libraries with
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Fig. 5 Compensated spectra for the scalar variance at Rλ ≈ 130. The arrow shows the direction

of increasing Schmidt numbers. In the dissipative region, the circles show the law proposed by

Kraichnan and the squares show the law proposed by Batchelor in the dissipative scales. The

vertical axis shows the spectra compensated by the Batchelor law predicting a k−1 decay in the

intermediate scale.

Fig. 6 Cross-section colored by the vorticity magnitude (left, blue regions are for the lowest vor-

ticity values and red regions are for the highest vorticity values) and by the passive scalar (middle,

blue regions are for the lowest scalar values and red regions are for the highest scalar values) for

Rλ ≈ 130 and Sc= 128. The zooms (right) for the vorticity magnitude (top) and the scalar (bottom)

correspond to the white box with a length approximately equal to the Kolmogorov scale.

a high level description which allows to distribute different solvers and grids to dif-

ferent parts of the clusters in a seamless fashion. Both particle advection and particle

remeshing are local operations. This limits the communications between computa-

tional elements and makes semi-Lagrangian particle methods well suited to GPU

implementation. Such an implementation is described in [17] for a linear transport

equation. In order to achieve good portability, the computational frameworks are

written using OpenCL.
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The efficiency of GPU algorithms is very much conditioned by memory access

strategies. To minimize the resulting computational overhead, we use a directional

splitting where particles are pushed and remeshed successively along each direc-

tion. This allows to send a given number of independent particle lines on a single

workgroup. This strategy requires to transpose data after each direction has been

processes. However on modern GPU cards, transpositions can be achieved at a cost

close to that of a simple copy operation. Figure 5 shows the computational cost of

our GPU implementations in double precision arithmetics for different remeshing

kernels, for 2D and 3D experiments using about 16 million points. In these exper-

iments a second order splitting was used to alternate one dimensional particle ad-

vection and remeshing. The number of points in the kernel stencils in each direction

varied from 4 to 8 [17]. These calculations were done on a NVIDIA Tesla K20m.

These performances reached between 20 and 50 % of the peak performance of the

GPU, depending on the size of the stencil and represented a speed up of about 25

over a multi-threaded MPI implementation running on 8 Xeon E5-2640 cores

Hybrid computing would consist of combining the above implementation of

scalar transport at high resolution with flow calculations on CPU processors. Based

on timing obtained in our CPU and GPU implementations, in the case when the full

scalar grid fits on a single GPU, up to resolutions of 5123, a target toy configuration

where computational times on CPU and GPU would be similar, consist of a 1283

flow resolution running on 8 CPUs together with a 5123 scalar resolution running on

the GPU, for an overall computational time of about 1s per iteration. To obtain such

performance it is essential that communications between velocity data processed

on the CPUs and the GPU are processed in an optimal way. This is the object of

ongoing research.

5 Conclusion

Combining high order semi-Lagrangian and Eulerian methods is an efficient strat-

egy to address turbulent transport problems. It allows to describe accurately the

viscous-convective range and dissipation scales of the scalar at a minimal cost. This

is due to the fact that semi-Lagrangian methods are not subject to CFL conditions.

The local nature of particle methods naturally opens the way to hybrid computations

using heterogeneous hardware.
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