The cyclic ground state structure of the HF trimer revealed by far infrared jet-cooled Fourier transform spectroscopy.
Résumé
The rovibrationally resolved Fourier transform (FT) far infrared (FIR) spectra of two intermolecular librations of (HF)3, namely the in-plane ν6 and out-of-plane ν4 bending fundamentals centered, respectively, at about 494 cm-1 and 602 cm-1, have been recorded for the first time under jet-cooled conditions using the supersonic jet of the Jet-AILES apparatus. The simultaneous rotational analysis of 245 infrared transitions belonging to both bands enabled us to determine the ground state (GS), ν6 and ν4 rotational and centrifugal distortion constants. These results provided definite experimental answers to the structure of such a weakly bound trimer: firstly the vibrationally averaged planarity of cyclic (HF)3, also supported by the very small value of the inertia defect obtained in the GS, secondly the slight weakening of the hydrogen bond in the intermolecular excited states evidenced from the center of mass separations of the HF constituents determined in the ground, ν6 = 1 and ν4 = 1 states of (HF)3 as well as the decrease of the fitted rotational constants upon excitation. Finally, lower bounds of about 2 ns on ν6 and ν4 state lifetimes could be derived from the deconvolution of experimental linewidths. Such long lifetimes highlight the interest in probing low frequency intermolecular motions of molecular complexes to get rid of constraints related to the vibrational dynamics of coupled anharmonic vibrations at higher energy, resulting in loss of rotational information.
Fichier principal
The_cyclic_ground_state_structure_of_HF_trimer_accepted.pdf (1011.06 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...