A combinatorial definition of the Theta-invariant from Heegaard diagrams
Résumé
The invariant $\Theta$ is an invariant of rational homology 3-spheres $M$ equipped with a combing $X$ over the complement of a point. It is related to the Casson-Walker invariant $\lambda$ by the formula $\Theta(M,X)=6\lambda(M)+p_1(X)/4$, where $p_1$ is an invariant of combings that is simply related to a Gompf invariant. In [arXiv:1209.3219], we proved a combinatorial formula for the $\Theta$-invariant in terms of Heegaard diagrams, equipped with decorations that define combings, from the definition of $\Theta$ as an algebraic intersection in a configuration space. In this article, we prove that this formula defines an invariant of pairs $(M,X)$ without referring to configuration spaces, and we prove that this invariant is the sum of $6 \lambda(M)$ and $p_1(X)/4$ for integral homology spheres, by proving surgery formulae both for the combinatorial invariant and for $p_1$.
Mots clés
intégrales d'espaces de configurations
Heegaard splittings
combings
homology spheres
finite type invariants of 3-manifolds
invariant de Casson-Walker
scindements de Heegaard
Theta invariant
Heegaard diagrams
Gompf invariant
perturbative expansion of Chern-Simons theory
invariant Theta
diagrammes de Heegaard
Casson-Walker invariant
configuration space integrals
invariants de type fini des variétés de dimension 3
sphères d'homologie
développement perturbatif de la théorie de Chern-Simons
Domaines
Topologie géométrique [math.GT]Origine | Fichiers produits par l'(les) auteur(s) |
---|