A combinatorial definition of the Theta-invariant from Heegaard diagrams - Archive ouverte HAL
Article Dans Une Revue North-Western European Journal of Mathematics Année : 2016

A combinatorial definition of the Theta-invariant from Heegaard diagrams

Christine Lescop

Résumé

The invariant $\Theta$ is an invariant of rational homology 3-spheres $M$ equipped with a combing $X$ over the complement of a point. It is related to the Casson-Walker invariant $\lambda$ by the formula $\Theta(M,X)=6\lambda(M)+p_1(X)/4$, where $p_1$ is an invariant of combings that is simply related to a Gompf invariant. In [arXiv:1209.3219], we proved a combinatorial formula for the $\Theta$-invariant in terms of Heegaard diagrams, equipped with decorations that define combings, from the definition of $\Theta$ as an algebraic intersection in a configuration space. In this article, we prove that this formula defines an invariant of pairs $(M,X)$ without referring to configuration spaces, and we prove that this invariant is the sum of $6 \lambda(M)$ and $p_1(X)/4$ for integral homology spheres, by proving surgery formulae both for the combinatorial invariant and for $p_1$.
Fichier principal
Vignette du fichier
HCcombv2hal.pdf (575.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00944022 , version 1 (10-02-2014)

Identifiants

Citer

Christine Lescop. A combinatorial definition of the Theta-invariant from Heegaard diagrams. North-Western European Journal of Mathematics, 2016, 2, pp.17-81. ⟨hal-00944022⟩
77 Consultations
87 Téléchargements

Altmetric

Partager

More