Long-term analysis of phenotypically structured models
Résumé
Phenotypically structured equations arise in population biology to describe the interaction of species with their environment that brings the nutrients. This interaction usually leads to selection of the fittest individuals. Models used in this area are highly nonlinear, and the question of long term behaviour is usually not solved. However, there is a particular class of models for which convergence to an Evolutionary Stable Distribution is proved, namely when the quasi-static assumption is made. This means that the environment, and thus the nutrient supply, reacts immediately to the population dynamics. One possible proof is based on a Total Variation bound for the appropriate quantity. We extend this proof to several cases where the nutrient is regenerated with delay. A simple example is the chemostat with a rendering factor, then our result does not use any smallness assumption. For a more general setting, we can treat the case with a fast reaction of nutrient supply to the population dynamics.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...