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Long-term analysis of phenotypically structured models

Alexander Lorz∗†‡§ Benôıt Perthame∗†‡§

February 3, 2014

Abstract

Phenotypically structured equations arise in population biology to describe the interaction of
species with their environment that brings the nutrients. This interaction usually leads to selection
of the fittest individuals. Models used in this area are highly nonlinear, and the question of long term
behaviour is usually not solved. However, there is a particular class of models for which convergence
to an Evolutionary Stable Distribution is proved, namely when the quasi-static assumption is
made. This means that the environment, and thus the nutrient supply, reacts immediately to the
population dynamics. One possible proof is based on a Total Variation bound for the appropriate
quantity.

We extend this proof to several cases where the nutrient is regenerated with delay. A simple
example is the chemostat with a rendering factor, then our result does not use any smallness
assumption. For a more general setting, we can treat the case with a fast reaction of nutrient
supply to the population dynamics.

Key words: Phenotypically structured equations; Long-term behaviour; Dirac concentration; Chemo-
stat; Competitive Exclusion Principle; Evolutionary Stable Distribution; Fittest trait; Population bi-
ology;

Mathematics Subject Classification: 35B25; 45M05; 49L25; 92C50; 92D15

1 Introduction

In population biology, long-term behaviour for phenotypically structured models is a difficult question
related to interaction with environmental conditions, selection of fittest trait and lack of dissipation
principles. The competitive exclusion principle is a famous general result, and states that, with a
single type of ‘niche’ or substrate, a single trait is selected.
A typical example where this can be proved rigorously, is the chemostat model

∂

∂t
n(t, x) = n

[

−R0 + a(x)η
(

x, S(t)
)]

, x ∈ R
d, t ≥ 0, (1)

d

dt
S(t) +R0S(t) = R0S0 −

∫

nη
(

x, S(t)
)

dx. (2)
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The first equations describes the population density n(t, x) of individuals which at time t have the
trait x. The substrate, whose concentration is denoted by S, is used with a trait-dependent uptake
coefficient η(x, S) and a rendering factor a(x). The renewal of the reactor, with fresh nutrient S0,
occurs with the rate R0.

The simplest situation is when there is a unique Evolutionary Stable Distribution (ESD in short, a
term coined in [10]) which concentrates in a single Dirac mass. That means there is a unique trait x̄,
associated with a nutrient concentration S̄ > 0, characterized by

max
x

a(x)η(x, S̄) = R0 = a(x̄)η(x̄, S̄). (3)

The first equality allows to compute a unique S̄, assuming η is increasing with S. And the second
equality gives x̄.

Then, it is known when a ≡ 1, see [13], that the competitive exclusion principle can be expressed as

n(t, x) −→
t→∞

ρ̄δ(x− x̄), (4)

and we extend this result here.

However, we do not know general assumptions on ηn, ηS which would lead to a similar result for
the more general chemostat model

∂

∂t
n = n

(

−R0 + ηn(x, S)
)

,

d

dt
S +R0S = R0S0 − S

∫

nηS(x, S) dx.

A general method is to use a Lyapunov functional (entropy) but this requires a particular structure
on the system, [10, 4, 12].

The laws for nutrient delivery and consumption may differ for other models [16, 15], but similar
questions still arise. A ‘generic’ mathematical model, which contains (1)–(2) as a particular case, can
be written as

∂tn(t, x) = nR
(

x, S(t)
)

, x ∈ R
d, t ≥ 0, (5)

β
d

dt
S(t) = Q

(

S(t), ρ(t)
)

, (6)

ρ(t) :=

∫

n(t, x) dx. (7)

Here R(x, S) denotes a generic trait-dependent birth-death rate, S is still the nutrient concentration
and ρ(t) a measure of the pressure exerted by the total population for nutrient consumption with rate
Q. The parameter β, which obviously could be included in Q is used here for a simple mathematical
purpose. It gives a time scale which, in the limit β = 0, just gives 0 = Q

(

S(t), ρ(t)
)

. Under suitable
assumptions, this equation can be inverted in S = q(ρ). In this case, the long term selection of the
ESD, (4), is known to hold [2, 11, 1].

Our aim is to prove the same convergence result to an ESD, (4), when β is small. Section 3 is
devoted to prove the result and a precise statement is given in the Theorem 3.1. In order to make the
proof more intuitive, we begin with the simpler case of the chemostat system (1)–(2); this is developed
in Section 2.
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2 The chemostat with rendering factor

The model of the chemostat with a rendering factor is defined by the system (1)–(2). We complete it
with initial data n0(x), S0 that satisfy

0 < S0 ≤ S0, n0(x) > 0 ∀x ∈ R
d, n0 ∈ L1(Rd). (8)

We recall that the notation

ρ(t) =

∫

Rd

n(t, x)dx.

In order to analyze the long term behaviour, we need assumptions on the problem parameters and
coefficients. Namely, we need to ensure first non-extinction which follows from the assumptions

η(x, S0) > R0, η(x, 0) = 0, ∀x ∈ R
d. (9)

Next, it is intuitive to assume that, the more nutrient available, the higher the growth rate

0 < Kη ≤ ηS(x, S) ≤ Kη, ∀x ∈ R
d, ∀S ∈ (0, S0). (10)

For the rendering factor, based on a biological interpretation, it is usually assumed that a(x) ≤ 1 but
here we only use that for some constants am, aM > 0

0 < am < a(x) ≤ aM . (11)

Then, we have the following generalization of the case a ≡ 1 which is treated in [13].

Theorem 2.1 With assumptions (8)–(11), there are constants ρm, ρM , such that

0 < ρm < ρ(t) ≤ ρM , 0 < S(t) ≤ S0.

Assuming also (3), as t → ∞,

S(t) → S̄, ρ(t) → ρ̄ > 0, n(t, x) ⇀ ρ̄δ(x − x̄).

Proof. 1st Step. A conserved quantity. For future use, we define

u(t) =

∫

n(t, x)

a(x)
dx+ S(t)− S0, J :=

d

dt

∫

n(t, x)

a(x)
dx. (12)

Dividing equation (1) by a, integrating and adding equation (2), we obtain

d

dt
u(t) +R0u(t) = 0.

It follows that

u(t) = u(0)e−R0t,
d

dt
u(t) = −R0u(0)e

−R0t = J +
dS

dt
. (13)

The a priori bounds follow easily. Because n > 0, we find S ≤ S0 and because η(x, 0) = 0 from
assumption (9), we find S > 0. For an upper bound on ρ, we use that u(t) is bounded and assumption
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(11). We find
ρ(t)

aM
≤

∫

n(t, x)

a(x)
dx ≤ maxu(t) + S0.

The lower bound ρm can be derived in the same way, using am.

2nd Step. BV Estimates of
∫ n(t,x)

a(x) dx. Then, we can apply the argument in [13] which we recall now.

Using the definition of J in (12), we have, using (13),

d

dt
J =

∫

n

a

(

−R0 + a(x)η(x, S(t))
)2

dx+
dS

dt

∫

nηS(x, S(t)) dx

≥ dS

dt

∫

nηS(x, S(t)) dx

=
(

−R0u(0)e
−R0t − J

)

∫

nηS dx.

We define the negative part of J by J− = max(0,−J). Then, we obtain

d

dt
J− + J−

∫

nηS dx ≤ R0|u(0)|ρMKηe
−R0t,

d

dt
J− + ρmKηJ− ≤ R0|u(0)|ρMKηe

−R0t.

This proves that J−(t) ≤ J−(0)e
−νt with ν = min(R0, ρmKη). Therefore J− ∈ L1(0,∞), and because J

is bounded, we obtain that J ∈ L1(0,∞). Therefore, J has bounded variations and limt→∞

∫ n(t,x)
a(x) dx

exists. Because u(t) converges to 0, we conclude that S(t) has a limit

S(t) −→
t→∞

S∞.

3rd Step. The limits. At this stage we can identify S∞. This is done with the usual arguments in the
field [8, 6]. From the equation (1), and the bounds on ρ, we immediately conclude that the growth
rate should vanish on the long term, that is written maxx[R0 − a(x)η(x, S∞)] = 0. By monotony in
S of η, this tells us that S∞ = S and that n(t, x) concentrates as a Dirac mass at the point x̄ where
this maximum is achieved. This identifies completely the limits. From the limit of S(t) and u(t),

we know that
∫ n(t,x)

a(x) dx converges to S0 − S. And from the concentration at x̄, we conclude that

ρ(t) =
∫

n(t, x)dx converges to a(x̄)(S0 − S).

The Theorem 2.1 is proved.

3 The general setting

In the general setting of the system (5)–(7), the same proof does not apply per se. This is because we
do not dispose of a quantity, as u(t) in the previous proof, which is easy to control and brings us back
to the quasi-steady state where S is a function of ρ. For this reason, we need a smallness condition
which is well expressed in terms of β. With this condition, we can build a quantity which belongs to
BV (0,∞), as J(t) in the previous proof.
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3.1 Assumptions and main result

We complete the system (5)–(7) with initial conditions S0, n0, which are compatible with some
invariant region of interest

Sm < S0 < S0, n0(x) > 0, ∀x ∈ R
d, n0 ∈ L1(Rd), (14)

(see the definition of Sm and S0 in the assumptions below, this assumption for S0 is made to simplify
the statements and can be seen as a generalization of those for the chemostat in Section 2).

Next, for the Lipschitz continuous functions R and Q, we assume that there are constants S0 > 0,
KQ > 0... such that

Q(0, ρ) > 0, Q(S0, ρ) ≤ 0, ∀ρ ≥ 0, QS(S, ρ) ≤ −KQ, Qρ(S, ρ) ≤ −KQ, (15)

0 < K1 ≤ RS(x, S) ≤ K1, (16)

sup
0≤S≤S0

‖R(·, S)‖W 2,∞(Rd) ≤ K2. (17)

Note that from assumption (15), we directly obtain the bounds

n(t, x) > 0, 0 < S(t) ≤ S0. (18)

With these assumptions, the smallness condition on β can be written as

min
0 ≤ ρ ≤ ρM ,

Sm ≤ S ≤ S0

|QS |
|Qρ|

≥ 4β max
0 ≤ ρ ≤ ρM ,

Sm ≤ S ≤ S0

K1ρM

|QS |
(19)

(see the definition of ρM , Sm below, which only depends on the assumptions above).

Theorem 3.1 With assumptions (14)–(17), there is a constant ρM such that

ρ(t) ≤ ρM , and Sm ≤ S(t),

where the value Sm < S0 is defined by Q(Sm, ρM ) = 0 and this exists thanks to the assumption (15).

Assuming also (19), ρ2(t) has bounded total variation. Consequently, there are limits 0 ≤ ρ ≤ ρM ,

Sm ≤ S ≤ S0

S(t)−→S̄, ρ(t)−→ρ̄, as t → ∞,

and

Q(ρ̄, S̄) = 0, R(x, S̄) ≤ 0 ∀x ∈ R
d.

As for the chemostat, the solution can go extinct, that means ρ = 0. When ρ > 0, from the usual
methodology developed in [8, 2, 6], we can also conclude that

0 = max
x

R(x, S̄).

And, the population density n(t) concentrates on the maximum points of R(·, S̄). For instance, with
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the additional assumption that there is a single x̄ ∈ R
d such that

R(x̄, S̄) = 0 = max
x

R(x, S̄), (20)

we have, in the sense of measures,
n(t, x) −→ ρ̄δ(x− x̄),

that is a monomorphic population in the language of adaptive dynamics [7, 5, 9].

The end of this section is devoted to prove Theorem 3.1. This requires to adapt the method
introduced in [13, 2, 14] which is to prove that ρ(t) has a bounded Total Variation. This method
works well in the quasi-static case, that is β = 0. The adaptation is not as direct as one could think
in view of Section 2.

3.2 An upper bound for ρ

This step is not as simple as usual. Integrating the equation (5) with respect to x, yields that

d

dt
ρ ≤ ρ(K2 +K1S),

d

dt
ln ρ ≤ K2 +K1S0.

Because, from our assumptions on Q, there are constants such that Q(S, ρ) ≤ −K3ρ + K4, adding
equation (6) we obtain the inequality

d

dt
(ln ρ+ βS) ≤ K2 +K1S0 +K4 −K3ρ ≤ K2 +K1S0 +K4 −

K3

eβS0

eln ρ+βS .

Therefore, for C2 the root in ln ρ+ βS of the right hand side, we have the bound

ln ρ ≤ ln ρ+ βS ≤ max(ln ρ0 + βS0, C2).

This directly gives an upper bound ρM for ρ(t).

From this upper bound, we obtain the lower bound on S(t) because

β
d

dt
S(t) = Q

(

S(t), ρ(t)
)

≥ Q
(

S(t), ρM
)

and it is enough to use again (15) and the condition on the initial data (14).

3.3 BV estimates

Our next goal is to find a quantity which converges as t → ∞. This step is crucial and we introduce
a new idea which allows us to conclude.

1st step. Equations on J := Ṡ and P := ρ̇. With these definitions, from equations (5) and (6), we can
write

P =

∫

nRdx, βJ = Q. (21)
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With the definitions

0 < K1ρ(t) ≤ α(t) :=

∫

nRS dx ≤ K1ρM , γ(t) :=

∫

nR2 dx, (22)

differentiating both equations on n and S, we obtain

Ṗ = J

∫

nRS dx+

∫

ntRdx = α(t)J + γ(t), (23)

βJ̇ = QSJ +QρP. (24)

2nd step. Bound on a linear combination of P and J . Now we consider a linear combination of P and
J , where µ(t) is a function to be determined later. We write

d

dt
(P + βµJ) = αJ + βµ̇J + µ(QSJ +QρP ) + γ

= µQρ(P + βµJ) + (βµ̇− βQρµ
2 + µQS + α)J + γ. (25)

We choose a function µ(t) such that the second parenthesis in the above equation is zero. In other
words, µ(t) solves the differential equation

βµ̇ = −β|Qρ|µ2 + µ|QS | − α. (26)

Because the solution might blow-up to −∞ in finite time, we first check that we can find a solution
µ(t) > 0 of (26) for all times. To do so, we notice that the zeroes of −β|Qρ|µ2 + µ|QS | − α are

µ±(t) :=
1

2β|Qρ|
(

|QS | ±
√

Q2
S − 4αβ|Qρ|

)

.

With assumptions (15) and (19), both zeros are real positive.

We are going to find two constants 0 < µm < µM such that, choosing initially µm < µ(0) < µM ,
then we have for all times

0 < µm ≤ µ(t) ≤ µM :=
1

β
max

ρm ≤ ρ ≤ ρM ,

Sm ≤ S ≤ S0

|QS |
|Qρ|

, (27)

and µm defined by the condition

max
t

µ−(t) ≤ µm := min
t

µ+(t). (28)

We first show how to enforce the inequality (28). We use that, for 0 ≤ x ≤ 1, the concavity inequality
holds:

√
1− x ≥ 1− x, and compute

µ−(t) ≤ 2
α(t)

|QS |
≤ 2

K1ρM

|QS|
,
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µ+(t) ≥
|QS |
β|Qρ|

(

1− 2
αβ|Qρ|
|QS |2

)

≥ |QS |
β|Qρ|

− 2
K1ρM

|QS |
.

The condition (19) is enough to obtain the inequality (28).

The lower bound in (27), is because the condition (28) imposes µm ∈ (µ−(t), µ+(t)) and thus
β|Qρ|µ2

m + µm|QS | − α ≥ 0 for all t ≥ 0.

For the upper bound in (27), we use the inequality
√
1− x ≤ 1− x

2 and we obtain

µ+ <
|QS|

2β|Qρ|

(

2− 2αβ
|Qρ|
|QS |2

)

≤ |QS|
β|Qρ|

≤ µM .

With this choice of µ(t) and coming back to equation (25), we arrive to

d

dt
(P + βµJ) ≥ −µ |Qρ| (P + βµJ),

and we conclude that

(

P (t) + βµ(t)J(t)
)

−
≤

(

P (0) + βµ(0)J(0)
)

−
e−KQµmt, ∀t ≥ 0. (29)

3rd step. L1-bound on P . From the above inequality, we wish to prove that P (t) is integrable on the
half-line. Adding α P

βµ
to (23), we find the ODE

d

dt
P + α

P

βµ
= α

(

J +
P

βµ

)

+ γ ≥ −α

(

J +
P

βµ

)

−

.

Taking negative parts, we obtain the inequality

d

dt
P− + α

P−

βµ
≤ α

(

J +
P

βµ

)

−

,

and, because P is bounded, for some constant C

∫ ∞

0
α(t)P−(t)dt ≤ C.

With the lower bound on α in (22), we conclude that

K1

∫

ρ

(

d

dt
ρ

)

−

dx =
K1

2

∫
(

d

dt
ρ2
)

−

dx ≤ C

2
.

and because ρ(t) is bounded, we finally find that d
dt
ρ2 is bounded in L1(0,∞), therefore ρ2 has a limit

for t → ∞ and ρ has a limit ρ̄

4th step. Conclusion. Since ρ(t) has a long term limit ρ̄, the stability assumption for Q, more precisely
QS < 0 in (15), shows S(t) also has a limit S̄ and Q(ρ̄, S̄) = 0.

As usual, [8, 2, 6], we can conclude that R(x, S̄) ≤ 0 for all x. Otherwise n(t, x) would have an
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exponential growth for x in an open set, which would imply exponential growth for large times, a
contradiction with the upper bound on ρ(t).

This gives the statements of the Theorem 3.1.

3.4 Numerical considerations

For β large, we could expect that the system could become unstable and that solutions can be periodic.
This is the case for inhibitory integrate-and-fire models, these are pdes describing neural networks,
with strong relaxation properties to a steady state. It is well-known, see [3] for instance, that delays
can generate a spontaneous activity i.e. periodic solutions.

However, we did not observe such a behaviour in numerical simulations we conducted. This is
confirmed by the stability analysis of a simplified equation.

The numerics have been performed in Matlab with parameters as follows. As initial data we use
S(t = 0) = 5 and n(t = 0) = Cmasse

−200(x−0.5)2 where Cmass is chosen such that the initial mass in
the computational domain is equal to 5. We set R := 20(−0.6 + 0.2S − (x − .5)2) and Q(ρ, S) :=
8.5 − (0.5 + ρ)S. The equation is solved by an implicit-explicit finite-difference method on grid
consisting of 1000 points (time step dt = 4 · 10−4). The plot shows oscillations of ρ(t) and I(t).
Moreover, numerically it seems that

∫∞

0 |ρ̇| dt is bounded.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

7

8

Figure 3.1: Dynamics of ρ ( ) and I (−−−−).

Remark 3.2 We can rewrite (23) and (21) as

v̇ = Av + b (30)
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where

v =

(

Q

J

)

, A =

(

0 −α

1 −1

)

, b =

( ∫

nR2 dx

0

)

. (31)

For β small A has real eigenvalues whereas for β large, it has complex eigenvalues. Therefore our

method cannot work for β large. One direction to extend the result would be to work directly on the

system (23)–(21).

4 Perspectives and open questions

We have proved long term convergence to an ESD for a general model of a chemostat where the
nurient delivery does not react immediately to the population dynamics. Our proof extends the proof
based on Total Variation bounds developed in [13, 2, 14] and uses a fast (but not infinite) nutrient
production measured by the small parameter β.

Surprisingly, the proof does not seem to give directly uniform TV bounds for β ≈ 0. It does
not seem to be possible with this approach to prove uniform bounds for the full range β ∈ [0, β0] for
some small β0, which could be a first step to prove uniform convergence of S(t) for t ∈ [0,∞] as β → 0.

There are several related problems which, usually, can be approached with the same method. One
of them is the rare mutations/long term behaviour described by the following extension of (5)–(7)















ε∂tnε(t, x)− ε2∆nε = nεR(x, Sε(t)), x ∈ R
d, t ≥ 0,

εβ d
dt
Sε(t) = Q

(

Sε(t), ρε(t)
)

,

ρε(t) :=
∫

nε(t, x) dx,

which can be treated using the constrained Hamilton-Jacobi approach [8, 13, 2, 14, 11], provided some
strong compactness is proved as e.g. TV bounds which are uniform in ε.

From the modelling side, the TV bounds giving long term behaviour is not known in several examples
of chemostat systems. An example is the quasi-stationary case with general uptake rate and rendering
factor,

{

∂tn = nR(x, S),

S +
∫

η(x, S)n(x) dx = S0.

Acknowledgment. This research was supported by the french ”ANR blanche” project Kibord:
ANR-13-BS01-0004.
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