Reconstruction of algebraic-exponential data from moments - Archive ouverte HAL
Rapport Année : 2014

Reconstruction of algebraic-exponential data from moments

Résumé

Let $G$ be a bounded open subset of Euclidean space with real algebraic boundary $\Gamma$. Under the assumption that the degree $d$ of $\Gamma$ is given, and the power moments of the Lebesgue measure on $G$ are known up to order $3d$, we describe an algorithmic procedure for obtaining a polynomial vanishing on $\Gamma$. The particular case of semi-algebraic sets defined by a single polynomial inequality raises an intriguing question related to the finite determinateness of the full moment sequence. The more general case of a measure with density equal to the exponential of a polynomial is treated in parallel. Our approach relies on Stokes theorem and simple Hankel-type matrix identities.
Fichier principal
Vignette du fichier
recovery-jems.pdf (172.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00936719 , version 1 (27-01-2014)
hal-00936719 , version 2 (06-02-2014)

Identifiants

Citer

Mihai Putinar, Jean-Bernard Lasserre. Reconstruction of algebraic-exponential data from moments. 2014. ⟨hal-00936719v1⟩
258 Consultations
417 Téléchargements

Altmetric

Partager

More