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Reconstruction of algebraic-exponential data from moments

Jean-Bernard Lasserre∗ Mihai Putinar†

January 27, 2014

Abstract

Let G be a bounded open subset of Euclidean space with real algebraic boundary
Γ. Under the assumption that the degree d of Γ is given, and the power moments
of the Lebesgue measure on G are known up to order 3d, we describe an algorithmic
procedure for obtaining a polynomial vanishing on Γ. The particular case of semi-
algebraic sets defined by a single polynomial inequality raises an intriguing question
related to the finite determinateness of the full moment sequence. The more general
case of a measure with density equal to the exponential of a polynomial is treated
in parallel. Our approach relies on Stokes theorem and simple Hankel-type matrix
identities.
Keywords: moment problem; semi-algebraic set; finite determinateness

.

1 Introduction

The present paper is concerned with the exact recovery of a semi-algebraic set G in Eu-
clidean space from power moments of the Lebesgue measure with an exponential of a poly-
nomial as a density. Regarded as a rather specialized inverse problem the reconstruction
algorithm proposed below is a part of current studies in geometric tomography, computer-
ized tomography, and in particular shape recognition and shape recovery. We derive with
minimal technical means a series of simple observations about the exact reconstruction from
moments of various algebraic/exponential data. The matrix analysis framework we propose
below is an extension of sums of squares and semi-definite programing techniques recently
developed in polynomial optimization [12].

Reconstruction algorithms of particular shapes abound: polyhedra [4, 9], planar quadra-
ture domains [20, 6], convex bodies [8], sublevel sets of homogeneous polynomials [13]. It
is not our aim to comment or compare them, nor to dwell into the long and glorious past
of the inversion of algebraic integral transforms [1, 19, 17]. Central to all these studies is
the structure of moments of algebraic data, again a rich and very ramified topics with old
roots [11, 10] and current contributions [14, 15].
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The contents is the following. We first consider the case of bounded open set G ⊂ R
n

with algebraic boundary ∂G. If the degree d of ∂G and moments (up to order 3d) of the
Lebesgue measure on G are known then the vector of coefficients g of a polynomial g of
degree d that vanishes on ∂G is uniquely determined (up to a constant) as the generator
of the one-dimensional kernel of a certain moment-like matrix whose entries are obtained
from moments of the Lebesgue measure on G. That is, only finitely many such moments
(up to order 3d) are needed and computing g reduces to a simple linear algebra procedure.
Moreover, in case when G is convex only moments up to order 2d suffice.

An important consequence concerns the case of a sublevel set G = {x : g(x) ≤ 0 }
of a polynomial g ∈ R[x]d. Indeed the moments of the Lebesgue measure on G can all
be deduced from those up to order 3d (and 2d if G is convex)! That is, exactly as in
the classical situation of a degenerated moment problem on the line, we single out a finite
determinateness property of moment sequences attached to algebraic/exponential data. The
analogy to the well understood moment rigidity of the Gaussian distribution is striking,
although the constructive aspects of this finite determinateness remain too theoretical in
general. To be more precise, we show that for a given polynomial p the moment sequence

∫

g(x)<1
xα exp(p(x)) dx, α ∈ N

n,

is determined by its finite initial segment |α| < N , with N depending only on the degrees
of g and p. And similarly, under the necessary integrability assumption, the full sequence
of moments ∫

Rn

xα exp(q(x)) dx, α ∈ N
n,

is determined by its initial finite section |α| < N , where N depends only on the degree of
the unknown polynomial q.

Finally, when the boundary ∂G is not algebraic, we describe a simple heuristic procedure
to compute a polynomial g whose level set {x : g(x) = 0} approximates ∂G, and the higher
the degree of g, the better is the approximation. An illustrative simple case of a real
analytic boundary shows how this procedure can be very efficient. The error estimates
for this approximation procedure will be discussed in a separate article. In particular, a
comparison with the complex orthogonal polynomial reconstruction method is in order [5],
as well as a parallel to the ubiquitous Prony method [18].

Guided by simplicity, clarity of exposition and accessibility to non-experts, our article
remains at an elementary level, with precise references to the technical aspects of real alge-
braic geometry or geometric integration theory needed in the proofs.

Acknowledgements. The first author was partially supported by a grant from the PGMO
program of the Fondation Mathématique Jacques Hadamard (FMJH) and the second author
was partially supported by a Nanyang Technological University grant. Both authors are
grateful to the Institute of Mathematical Sciences, Singapore for offering an inspiring climate
of research during the special November 2013-January 2014 program devoted to Moment
Problems.
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2 Main result

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn) and let R[x]d be the
vector space of polynomials of degree at most d (whose dimension is s(d) :=

(n+d
n

)
). For

every d ∈ N, let Nn
d := {α ∈ N

n : |α| (=
∑

i αi) = d}, and let vd(x) = (xα), α ∈ N
n, be the

vector of monomials of the canonical basis (xα) of R[x]d. A polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑

α∈Nn

fα x
α,

for some vector of coefficients f = (fα) ∈ R
s(d).

A real-valued polynomial g : Rn → R is homogeneous of degree d (d ∈ N) if g(λx) =
λdg(x) for all λ and all x ∈ R.

For an arbitrary polynomial g ∈ R[x]d, write

g(x) =

d∑

k=0

gk(x), ∀x ∈ R
n,

where for each k ≤ d, gk is homogeneous of degree k.

2.1 General framework

Lemma 2.1. Let G be a bounded open subset of Rn and let g be a polynomial satisfying
g(x) = 1 for all x ∈ ∂G. Then for every α ∈ N

n:

∫

G

xα (1− g(x)) dx =

d∑

k=1

k

n+ |α|

∫

G

xα gk(x)dx. (2.1)

Proof. If the boundary of G were smooth an application of Stokes theorem would imply
the identity in the statement. Indeed, denote by ~nx be the outward pointing normal to G

at the point x ∈ ∂G. With the vector field X = x and function f = xα(1 − g), Stokes’
formula yields: ∫

G

Div(X)f dx+

∫

G

X · f dx =

∫

∂G
〈X,~nx〉 fdσ, (2.2)

where σ is the surface area measure on ∂G. Therefore (2.1) follows because f vanishes on
∂G, Div(X) = n, and

X · f = |α|f − xα〈x,∇g(x)〉 = |α|f − xα
d∑

k=1

kgk(x).

In the presence of singularities of ∂G, Whitney’s generalization of Stokes theorem [22]
Theorem 14A applies, leading to the same conclusion.

Next, given a bounded open set G ⊂ R
n, let y = (yα), α ∈ N

n, be the vector of moments
of the restriction of the Lebesgue measure to G:

yα =

∫

G

xα dx, ∀α ∈ N
n,
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and let yk = (yα), α ∈ N
n
k , be the finite vector in R

s(d) of moments up to order k. We define
a renormalised moment matrix Md

k(y), k, d ∈ N, as follows:

- s(d) (=
(n+d

n

)
) columns indexed by β ∈ N

n
d ,

- rows indexed by α ∈ N
n
k , and with entries:

Md
k(y)(α, β) :=

n+ |α|+ |β|

n+ |α|
yα+β, α ∈ N

n
k , β ∈ N

n
d . (2.3)

Our aim is to reverse the statement of the above Lemma and recover from finitely many
moments a defining function of an open set whose boundary is contained in the real zero
set of a polynomial. Questions of uniqueness, choice of the coordinate system, irreducibility
naturally arise, and we will address them in subsequent corollaries of the following theorem.
First we consider the generic case of a distinguished point x = 0 not belonging to the Zariski
closure of the boundary.

Assume that G is an open subset of Rn, so that G = intG (that is G does not contain
”slits”) and the boundary ∂G is real algebraic. The dimension of ∂G is then n− 1, so that
the ideal associated to it is principal (see for instance Theorem 4.5.1 in [2]). In particular,
there exists a polynomial g, vanishing of the first order on every smooth component of
∂G, with the property that every other polynomial vanishing on ∂G is a multiple of g, in
standard algebraic notation

I(∂G) = (g).

We define the degree of ∂G as the degree of the generator g of the ideal I(∂G).
Note however that the polynomial g may vanish at internal points of G, and it may

even change sign there. A simple example supporting this assertion can be obtained from
the sector of a disk of large inner angle:

G = {x ∈ R
2 : x21 + x22 < 1} \ {x ∈ R

2 : 0 ≤ |x2| ≤ x1}.

The defining function of ∂G is g(x) = (1− x21 − x22)(x1 − x2)(x1 + x2), which changes sign
inside G.

Theorem 2.2. Let G ⊂ R
n be a bounded open set with real algebraic boundary. Assume

that G = intG, the boundary ∂G has degree d and the point x = 0 does not belong to the
zero set of the ideal I(∂G).

Let Md
2d(y)(α, β) be the kernel defined in (2.3) associated with the moments of G. Then

the linear system

Md
2d(y)

[
−1
g

]
= 0. (2.4)

admits a unique solution g ∈ R
s(d)−1, and the polynomial g with coefficients (0,g) satisfies

(x ∈ ∂G) ⇒ (g(x) = 1).

Proof. Again, if the boundary of G were smooth, we could simply remark that (2.4) is just
a rephrasing of (2.1) (for all α ∈ N

n
2d) in terms of the vector g and the matrix Md

2d(y).
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We start by noticing that the algebraic boundary ∂G admits a semi-algebraic triangu-
lation (see [2] Sections 9.2-3). Denote

∂G = Z ∪ Z ′,

where Z is a finite union of smooth (n− 1)-submanifolds of Rn, leaving G on one side, and
Z ′ is the union of the lower dimensional strata, so that Z ′ has vanishing (n − 1)-measure.
In this case a generalization of Stokes Theorem is valid, for smooth differential forms (see
[22] Theorem 14A, of [7]).

According to the above theorem, the system (2.4) is compatible; indeed by assumption
there is a polynomial, say g∗ ∈ R[x]d, vanishing on ∂G (hence on Z) and with coefficient
vector of the form (−1,g∗) ∈ R

s(d), since g∗(0) 6= 0. Therefore (−1,g∗)T is a solution of
(2.4).

Next, let (−1,g) denote an arbitrary solution of (2.4) and let g ∈ R[x]d be the polynomial
having (0,g) as vector of coefficients (hence vanishing at x = 0). Then we infer by Stokes
Theorem: ∫

Z
〈X,~nx〉 (1− g)xαdσ = 0, ∀α ∈ N

n
2d. (2.5)

Assume that the function 〈X,~nx〉 vanishes on a set S ⊂ Z of non-null σ measure. Then,
there exists a polynomial h(x) which vanishes on a connected component Z1 of Z, so that
∇h is not identically zero on Z1. The polynomial function x 7→ 〈∇h(x),x〉 vanishes on S,
as ∇h(x) is colinear with the normal vector ~nx at x on the hypersurface Z1. Since S has
non-null σ-measure, we infer that 〈∇h(x),x〉 is identically equal to zero on Z1. In virtue of
Hilbert’s Nullestellensatz (applied to the complexified ring of polynomials), we have

〈∇h(x),x〉 = θ(x)h(x)

where θ is a complex polynomial. Indeed, fix a smooth point a of Z1 and remark that the
ideal generated by h in the local ring Oa is prime. By counting degrees, we find that

〈∇h(x),x〉 = λh(x)

where λ is a real constant. Consequently h(0) = 0, a contradiction.
As a matter of fact, the above argument implies that any polynomial q vanishing on Z1

is a multiple of h, hence q(0) = 0. This contradicts the hypothesis that Z1 and the point 0
can be separated by a polynomial function.

From now on we consider h to be a polynomial of degree equal to d, which vanishes of
the first order on Z (that is has non identically zero gradient on Z) and hence generates
the ideal associated to ∂G. In addition, by possibly enlarging the null set Z ′, the gradient
of h can be assume to be different than zero along Z.

Writing ~nx as ∇h(x)/‖∇h(x)‖, (2.5) now reads

0 =

∫

Z
〈X,~nx〉 (1− g)xαdσ = 0, ∀α ∈ N

n
2d

=

∫

Z
〈X,∇h(x)〉 (1 − g)xα 1

‖∇h(x)‖
dσ

︸ ︷︷ ︸
dσ′

, ∀α ∈ N
n
2d. (2.6)
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With X(x) = x notice that 〈X(x),∇h(x)〉 is a polynomial of degree at most d, and as α in
(2.6) runs all over Nn

2d we obtain:

∫

Z
[〈x,∇h(x)〉 (1 − g(x))]2 dσ′ = 0,

which in turns implies

[〈x,∇h(x)〉 (1 − g(x))]2 = 0, σ′-a.e. in Z.

As 〈x,∇h(x)〉 6= 0 for all x ∈ Z, we find that g = 1 on Z and by continuity on ∂G, in view
of the assumption G = intG.

To complete the poof we now address the uniqueness issue: Assume that (2.4) has two
distinct solutions g1,g2 ∈ Rs(d)−1. Then

Md
2d(y)

[
0

g1 − g2

]
= 0.

Let g ∈ R[x]d be the polynomial with coefficient vector g1 −g2 so that g(0) = 0. In view of
the assumption 0 /∈ {x : h(x) = 0} we find g1 = g2.

Observe that the matrix Md
2d(y) contains all moments up to order 3d and so Theorem

2.2 states that it suffices to consider moments up to order 3d to recover exactly a polynomial
g ∈ R[x]d that is constant on the boundary of ∂G. But of course one may sometimes recover
g with less moments as exemplified in Example 2 where we only need moments up to order
2d (using Md

d(y) instead of Md
2d(y)).

Corollary 2.3. Let k ≤ 2d. Under the assumptions of Theorem 2.2, if

Md
k(y)

[
−1
g

]
= 0, (2.7)

has a unique solution, then g also solves (2.4).

Proof. Let g be the solution of (2.4), so that g also solves the system (2.7). Since (2.7) has
a unique solution by assumption, the above theorem completes the proof.

Corollary 2.3 states that we only need consider moments up to order k + d whenever
(2.7) has a unique solution.

2.2 Convex supports

Corollary 2.4. Let G ⊂ R
n be a convex bounded open set with real algebraic boundary and

0 ∈ G. Assume that G = intG and that a polynomial of degree at most d vanishes on ∂G
(and not at 0). Then the system

Md
d(y)

[
−1
g

]
= 0,

as a solution (1,g) ∈ R
s(d) and the associated polynomial 1 − g vanishes on the boundary

∂G.
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Proof. Proceeding as in the proof of Theorem 2.2, we know that there exists a solution g∗

to Md
d(y)(−1,g)T = 0. So let g be an arbitrary solution of Md

d(y)(−1,g)T = 0. Then again
we infer by Stokes Theorem:

∫

Z
〈X,~nx〉 (1 − g)xαdσ = 0, ∀α ∈ N

n
d . (2.8)

But then multiplying each side of (2.8) with −gα if α 6= 0 and with 1 if α = 0, and summing
up, yields: ∫

Z
〈X,~nx〉 (1 − g)2 dσ = 0.

Recall that X(x) = x and as G is convex then 〈x, ~nx〉 ≥ 0 for all x ∈ Z. Again we may
assume that 〈X,~nx〉 = 0 on Z only on a set of zero σ measure. Therefore g(x) = 1 for
σ-almost all x ∈ Z and by continuity for all x ∈ Z, and so for all x ∈ ∂G as G = intG.

It is important to remark that, in the convex case, the mere knowledge of the moments
up to a certain degree allows us to choose an interior point of the respective set. For
instance, the gravity centre x∗ = (yα/y0)|α|=1 belongs to the interior of any non-empty,
open and bounded convex set G.

2.3 The singular case

The unfortunate situation when x = 0 lies on the Zariski closure of ∂G can be resolved in
many ways; for instance by changing the origin of coordinates, or by changing the vector
field X(x) = x appearing in the proof of the main result above. As for instance:

X(x) = (λ1x1, λ2x2, . . . , λnxn)

with independent parameters λj belonging to {0, 1}. In this case the explicit linear system
is less symmetrical but still elementary:

∫

G

f dx+

∫

G

xj
∂f

∂xj
dx = 0, 1 ≤ j ≤ n, (2.9)

where f = xα(1 − g) as in the proof of Theorem 2.2. To translate (2.9) at the level of

moments we need introduce the following matrices (Mjd
2d(y)), j = 1, . . . , n, whose rows are

indexed by α ∈ N
n
2d and columns are indexed by β ∈ N

n
d . Their respective entries read:

M
jd
2d(y)(α, β) =

1 + αj + βj
1 + αj

yα+β−ej , α ∈ N
n
2d, β ∈ N

n
d (2.10)

for every j = 1, . . . , n (where ej = (δij) ∈ N). Then (2.9) reads

M
jd
2d(y)(α, β)

[
−1
g

]
= 0, j = 1, . . . , n. (2.11)

Hence if g ∈ R[x]d has a coefficient vector (0,g) ∈ R
s(d) such that g solves (2.11) then

∫

Z
xj 〈ej , ~nx〉 (1 − g)xαdσ = 0, ∀α ∈ N

n
2d, j = 1, . . . , n.

7



2.4 Exponentials of polynomials as densities

So far we have considered only the moment sequence of the Lebesgue measure on G. With-
out much change we can adapt the preceding calculations to the more general case where
the reference measure is dµ := exp(p(x))dx for some polynomial p ∈ R[x]t.

Indeed, with X(x) = x and f = xα(1− g) exp(p) Stokes’s formula (2.2) now reads

(n+ |α|)

∫

G

xα(1− g) exp(p)dx︸ ︷︷ ︸
dµ

+

∫

G

〈x,∇p(x)〉xα(1− g) exp(p) dx︸ ︷︷ ︸
dµ

(2.12)

−

∫

G

〈x,∇g(x)〉xα exp(p) dx︸ ︷︷ ︸
dµ

=

∫

∂G
〈x, ~nx〉f dσ = 0,

whenever g vanishes on ∂G. So let y = (yα), α ∈ N
n, with:

yα :=

∫
xα dµ =

∫

G

xα exp(p(x)) dx, α ∈ N
n.

Then for each α ∈ N
n, (2.12) translates again into a certain linear combination of moments

yβ must be zero. Therefore one may again build up a matrix M̂d
k(y) such that (2.12) for

all α ∈ N
n
k reads:

M̂d
k(y)

[
−1
g

]
= 0. (2.13)

The difference is that now this matrix M̂d
k(y) contains moments up to order k + d+ t.

Theorem 2.2 remains valid if we replace Md
2d(y) with M̂d

2d(y).

2.5 Non algebraic boundary

Theorem 2.2 suggests a simple strategy to approximately recover the boundary ∂G when
the latter is not algebraic. By still considering the same moment-like matrix Md

d(y) one may
compute the polynomial g ∈ R[x]d with coefficient vector (−1,g) ∈ R

s(d) such that (−1,g)
is the right-eigenvector of the matrix Md

d(y) corresponding to the eigenvalue with smallest
absolute value (if they are all real), or alternatively, the singular vector corresponding to
the smallest singular value. We illustrate this strategy on the following simple example.

Example 1. Let G = {x ∈ R
2 : x1 ≥ 0; x2 ≥ 1; x2 ≤ exp(−x1 + 1) }. After the change of

coordinate u1 = x1 − 1;u2 = x2, G = {u ∈ R
2 : u1 ≥ −1; u2 ≥ 1; u2 ≤ exp(−u1) } and the

origin is not on the boundary ∂G. The shape of G is displayed in Figure 1. With d = 4 the
all real eigenvalues of M4

4(y) are:

(2.554403541590561, 0.029721326859401, 0.004701287525356, −0.001205165323011,

0.000501376438286, 0.000034728492891, −0.000014265137533, 0.000004783118091,

0.000000553859294, −0.000000246021037, 0.000000011479566, 0.000000004666064,

−0.000000001994621, 0.000000000000000, 0.000000000003563)
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x
1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.5

2

2.5

3

Figure 1: Shape of G = {x : x1 ≥ −1; x2 ≥ 1; x2 ≤ exp(−x1)}

which shows that one eigenvalue is almost equal to zero (up to Matlab eight digits numer-
ical precision). By computing its corresponding right-eigenvector we obtain the following
polynomial

u 7→ g(u) = 2.554403541590561 + 0.029721326859401u1 + 0.004701287525356u2

−0.001205165323011u21 + 0.000501376438286u1u2 + 0.000034728492891u2
2

−0.000014265137533u31 + 0.000004783118091u21u2 + 0.000000553859294u1u
2
2

−0.000000246021037u32 + 0.000000011479566u41 + 0.000000004666064u31u2

−0.000000001994621u21u
2
2 + 0.000000000003563u42

and one may see in Figure 2 that the compact connected component of the sublevel set
{x : g(x) ≤ 0} practically coincides with G! With d = 3 one obtains the sublevel set
displayed in Figure 3 whose compact connected component still gives another (but rough)
approximation of G.

3 Finite determinateness

An intriguing conclusion emerges from Theorem 2.2: the moments of a bounded semi-
algebraic set defined by a single polynomial inequality are finitely determined. Specifically,
the moments of low degree determine the rest of moments. Except the 1D case (n = 1) and
a few well studied classes of domains (polyhedra, quadrature domains in 2D, sublevels of
homogeneous polynomials) or weights (Gaussian) the constructive aspects of this determi-
nateness remain unknown.
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Figure 2: Shape G′ = {x : g(x) ≤ 0} with d = 4

x
1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

1

1.5

2

2.5

3

Figure 3: Shape G′ = {x : g(x) ≤ 0} with d = 3

3.1 Bounded support

When speaking about finite determinateness, Theorem 2.2 has a relevant implication to
probability theory. Henceforth we restrict our attention to the particular case when the
underlying set G is described by a single polynomial inequality.

Theorem 3.1. Let g be a polynomial of degree d, so that the set

G = {x ∈ R
n : g(x) < 1}

is bounded and g(0) 6= 1.
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Then the infinite sequence of moments y = (yα), α ∈ N
n, of the Lebesgue measure

restricted to G, is determined by its initial section (yα), α ∈ N
n
3d.

Similarly, all moments y = (yα), α ∈ N
n, of the measure dµ = exp(p(x))dx on G with

p ∈ R[x]t, are determined by the finite subset (yα), α ∈ N
n
3d+t.

Proof. Let y∗ = (yα), α ∈ N
n
3d, be the vector of moments of the Lebesgue measure on

G, and let 1 − g ∈ R[x]d be the polynomial in Theorem 3.1 with vector of coefficients
(1,−g) ∈ R

s(d). Then by Theorem 2.2, g solves (2.5) which implies that each entry of g is
a function of y∗ and so we may and will write g = (gα(y

∗)), α ∈ N
n
d . But then for every

β ∈ N
n,

yβ =

∫

G

xβ dx =

∫

{x:

∑

α∈Nn
d

gα(y
∗)xα ≤ 1}

xβ dx =: fβ(y
∗),

is a function of y∗. Same arguments apply for the second statement with dµ = exp(p(x))dx.

In other words, let G be as in Theorem 3.1 and suppose that one knows the vector y∗

of moments up to order 3d for the Lebesque measure on G. Then one can construct the
polynomial g ∈ R[x]d in Theorem 2.2. All other moments yβ, |β| > 3d, are obtained by
integrating xβ on G which is clearly a function of y∗.

Remark 3.2. The above determinateness phenomenon is similar to the Gaussian case
where G = {x : g(x) ≤ 1} and g = xTΣx for some positive definite matrix Σ ≻ 0. Indeed,

∫

G

xβ dx = θβ

∫

Rn

exp(−xTΣx) dx,

for some constant θβ that depends only on the dimension n and |β|. But then

∫

G

xβ dx = θβ

∫

Rn

xβ exp(−xTΣx) dx, β ∈ N
n,

= θβ

∫

Rn

xβ exp(−xT∆(y∗)−1 x) dx, β ∈ N
n,

= fβ(y
∗), β ∈ N

n,

where

∆(y∗) :=

∫

Rn

xxT exp(−xTΣx)dx,

i.e., up to scaling, ∆(y∗) is the covariance matrix Σ−1 (i.e. matrix of moments or order
2).

3.2 Exponential weights as densities

Recall that a function f : Rn → R is said to be quasi-homogeneous if there exists u ∈ Qn

such that f(λu1x1, . . . , λ
unxn) = λf(x) for all x ∈ R

n, and all λ > 0; then f is also said to
be u-quasi-homogeneous or quasi-homogeneous of type u.

11



Consider the convex cone

C := { g ∈ R[x]d :

∫

Rn

exp(−g(x)) dx < ∞},

and let µg be the Borel measure on R
n with density x 7→ exp(−g(x))dx for some polynomial

g ∈ C. As usual write

x 7→ g(x) =
∑

α∈Nn
d

gα x
α =

d∑

k=0

gk(x),

where each gk ∈ R[x]k is homogeneous of degree k. Let (g0,g) = (gα), α ∈ N
n
d , be the

vector of coefficients of g ∈ R[x]d, and let yα(·) : C → R be the function

g 7→ yα(g) :=

∫

Rn

xα dµg =

∫

Rn

xα exp(−g(x)) dx < ∞, α ∈ N
n. (3.1)

Lemma 3.3. For every α ∈ N
n, fixed, the function g 7→ yα(g) is u-quasi homogeneous

where u ∈ Qs(d) and uβ = −|β|/(n + |α|) for all β ∈ N
n
d . In addition:

∂yα(g)

∂gβ
= −

∫

Rn

xα+β dµg. (3.2)

Proof. Let u = (uβ), β ∈ N
n
d , with uβ = −|β|/(n + |α|). Then with λ ∈ R

yα((λ
uβgβ)) =

∫

Rn

xα exp(−
∑

β

gβλ
uβxβ) dx

=

∫

Rn

xα exp(−
∑

β

gβ(λ
−1/(n+|α|)x)β) dx

= λ

∫

Rn

xα exp(−g(x)) dx = λ yα(g).

Finally, (3.2) follows from derivation under the integral sign which is justified because of
the exponential weight.

We are now able to state the main result of this section.

Theorem 3.4. Let µg be as in (3.1) with g ∈ C. Then for each α ∈ N
n,

(n+ |α|)

∫

Rn

xα dµ =

d∑

k=1

k

∫

Rn

xαgk(x) dµ, (3.3)

or, equivalently:

(n+ |α|) yα(g) =

d∑

k=1

k
∑

|β|=k

gβ yα+β(g). (3.4)

12



Proof. As g 7→ yα(g) is u-quasi homogeneous, Euler’s identity for quasi homogeneous func-
tions yields

yα(g) =
∑

β∈Nn
d

uβ gβ
∂yα(g)

∂gβ

=
∑

β∈Nn
d

|β|

n+ |α|
gβ

∫

Rn

xα+β exp(−g(x)) dx

=

d∑

k=0

k

n+ |α|

∫

Rn

xα gk(x) exp(−g(x)) dx

which is the desired result.

As a corollary we obtain the reconstruction of g ∈ R[x]d from knowledge of finitely
moments yd = (yα), α ∈ N

n
d , of µg. Let Md(y) be the usual s(d)× s(d) moment matrix of

order d associated with µg, i.e.,

Md(y)(α, β) = yα+β, α, β ∈ N
n
d .

Notice that Md(y) is non singular as µg has a positive density. Next, let Md(y) be the
s(d)× s(d) matrix with rows and columns indexed by α, β ∈ N

n
d and with entries

Md(y)(α, β) =

{
yα+β, β = 0

|β| yα+β

n+|α| , 0 6= β ∈ N
n
d

, α ∈ N
n
d . (3.5)

Then (3.4) for all α ∈ N
n
d reads

Md(y)

[
−1
g

]
= 0,

or, equivalently, using the moment matrix Md(y),

∆Md(y)D

[
−1
g

]
= ∆0 y

d

where ∆,D and ∆0 are diagonal matrices defined by:

∆(α,α) = 1/(n + |α|); D(α,α) =

{
1, α = 0

|α|, 0 6= α
α ∈ N

n,

∆0(α,α) = 1− 1/(n + |α|), α ∈ N
n
d .

Corollary 3.5. Let µg be the Borel measure in (3.1) where g ∈ R[x]d has coefficient vector
(g0,g) ∈ R

s(d). Then g is the unique solution of the linear system

Md(y)

[
−1
v

]
= 0,

with Md(y) as in (3.5) and

g0 = ln

(∫

Rn

exp(−g̃(x)dx

)
− ln y0,

where g̃ ∈ R[x]d has coefficient vector (0,g).

13



Proof. The above linear system has always the solution v = g because Md(y)(−1,g)T = 0
is just a rephrasing of (3.4) with all α ∈ N

n
d . But this is equivalent to

∆Md(y)D︸ ︷︷ ︸
Θ(y)

[
−1
v

]
= ∆0 y

d.

As already noticed, the matrix Θ(y) is invertible because Md(y) is the moment matrix of
dµg which has a positive density. And so

(−1,v)T = (−1,g)T = Θ(y)−1∆0 y
d.

To obtain the constant coefficient g0, observe that

y0 =

∫

Rn

exp(−g(x)) dx = exp(−g0)

∫

Rn

exp(−g̃(x)) dx,

which yields the final statement.

So again and as in the bounded case, one may recover the polynomial g ∈ R[x]d this
time from the knowledge of finitely many moments y = (yα), α ∈ N

n
2d (up to order 2d).

This also implies that all other moments yα with |α| > 2d are functions of those up to order
2d.

4 Examples

We illustrate the results above with a few low degree and low dimensional examples.

Example 2. Let us consider the two-dimensional example of the annulus

G := {x ∈ R
2 : 1− x21 − x22 ≥ 0; x21 + x22 − s ≥ 0 }, 0 < s < 1.

That is, G is the set of points between the two circles {x : 1−‖x‖2 = 0} and {x : s−‖x‖2 =
0} displayed in Figure 4. With s := 2/3 and up to a constant, the moment matrix reads:



1.0000 0 0 0.2500 0 0.2500 0 0 0 0 0.125 0 0.0417 0 0.1250

0 0.2500 0 0 0 0 0.1250 0 0.0417 0 0 0 0 0 0

0 0 0.2500 0 0 0 0 0.0417 0 0.1250 0 0 0 0 0

0.2500 0 0 0.1250 0 0.0417 0 0 0 0 0.0781 0 0.0156 0 0.0156

0 0 0 0 0.0417 0 0 0 0 0 0 0.0156 0 0.0156 0

0.2500 0 0 0.0417 0 0.1250 0 0 0 0 0.0156 0 0.0156 0 0.0781

0 0.1250 0 0 0 0 0.0781 0 0.0156 0 0 0 0 0 0

0 0 0.0417 0 0 0 0 0.0156 0 0.0156 0 0 0 0 0

0 0.0417 0 0 0 0 0.0156 0 0.0156 0 0 0 0 0 0

0 0 0.1250 0 0 0 0 0.0156 0 0.0781 0 0 0 0 0

0.1250 0 0 0.0781 0 0.0156 0 0 0 0 0.0547 0 0.0078 0 0.0047

0 0 0 0 0.0156 0 0 0 0 0 0 0.0078 0 0.0047 0

0.0417 0 0 0.0156 0 0.0156 0 0 0 0 0.0078 0 0.0047 0 0.0078

0 0 0 0 0.0156 0 0 0 0 0 0 0.0047 0 0.0078 0

0.1250 0 0 0.0156 0 0.0781 0 0 0 0 0.0047 0 0.0078 0 0.0547




and the matrix 15 × 15 matrix Md
d(y) (= M4

4(y)) reads:




0.3333 0 0 0.2778 0 0.2778 0 0 0 0 0.2639 0 0.0880 0 0.2639

0 0.1852 0 0 0 0 0.1759 0 0.0586 0 0 0 0 0 0

0 0 0.1852 0 0 0 0 0.0586 0 0.1759 0 0 0 0 0

0.1389 0 0 0.1319 0 0.0440 0 0 0 0 0.1254 0 0.0251 0 0.0251

0 0 0 0 0.0440 0 0 0 0 0 0 0.0251 0 0.0251 0

0.1389 0 0 0.0440 0 0.1319 0 0 0 0 0.0251 0 0.0251 0 0.1254

0 0.1056 0 0 0 0 0.1003 0 0.0201 0 0 0 0 0 0

0 0 0.0352 0 0 0 0 0.0201 0 0.0201 0 0 0 0 0

0 0.0352 0 0 0 0 0.0201 0 0.0201 0 0 0 0 0 0

0 0 0.1056 0 0 0 0 0.0201 0 0.1003 0 0 0 0 0

0.0880 0 0 0.0836 0 0.0167 0 0 0 0 0.0791 0 0.0113 0 0.0068

0 0 0 0 0.0167 0 0 0 0 0 0 0.0113 0 0.0068 0

0.0293 0 0 0.0167 0 0.0167 0 0 0 0 0.0113 0 0.0068 0 0.0113

0 0 0 0 0.0167 0 0 0 0 0 0 0.0068 0 0.0113 0

0.0880 0 0 0.0167 0 0.0836 0 0 0 0 0.0068 0 0.0113 0 0.0791



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Figure 4: The annulus G = {x : (1− x21 − x22)(x
2
1 + x22 − 2/3) ≥ 0}

From the vector of eigenvalues

(0.6562 −0.0595 0.1624 0.2941 0.2941 0.0053 0 0.0628

−0.0021 0.0178 0.0178 −0.0063 −0.0063 −0.0007 0.0045)

of M4
4(y) one can see that rankM4

4(y) = 14. The normalized eigenvector associated with
the zero eigenvalue reads

(0.1925 0 0 −0.4811 0 −0.4811 0 0 0 0 0.2887 0 0.5774 0 0.2887)

After scaling, in

(0.6667 0 0 −1.6667 0 −1.6667 0 0 0 0 1 0 2 0 1)

one recognizes the vector of coefficients of the polynomial

x 7→ g(x) = (1− x21 − x22)(s − x21 − x22)

which vanishes on the boundary ∂G. Finally, one can also check that the matrix

M2
2(y) =




0.3333 0 0 0.2778 0 0.2778

0 0.1852 0 0 0 0

0 0 0.1852 0 0 0

0.1389 0 0 0.1319 0 0.0440

0 0 0 0 0.0440 0

0.1389 0 0 0.0440 0 0.1319




and the matrix M3
3(y) :




0.3333 0 0 0.2778 0 0.2778 0 0 0 0

0 0.1852 0 0 0 0 0.1759 0 0.0586 0

0 0 0.1852 0 0 0 0 0.0586 0 0.1759

0.1389 0 0 0.1319 0 0.0440 0 0 0 0

0 0 0 0 0.0440 0 0 0 0 0

0.1389 0 0 0.0440 0 0.1319 0 0 0 0

0 0.1056 0 0 0 0 0.1003 0 0.0201 0

0 0 0.0352 0 0 0 0 0.0201 0 0.0201

0 0.0352 0 0 0 0 0.0201 0 0.0201 0

0 0 0.1056 0 0 0 0 0.0201 0 0.1003



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have respective full rank 6 and 10 so that (2.4) has no solution when d = 2 or d = 3.
So this example illustrates Corollary 2.3 to show that sometimes we only need consider

moments up to order 2d = 8 and not 3d = 12.

Example 3. The following (convex) example illustrates that the assumption 0 ∈ intG is
important. Let G ⊂ R

2 be the two-dimensional simplex {x : x1 + x2 ≤ 1; x ≥ 0}. The
matrix M1

1(y) which reads:

M1
1(y) =




1/2 1/4 1/4
1/6 1/9 1/18
1/6 1/18 1/9




has rank 2 with zero eigenvector (−1, 1, 1). And indeed even though the polynomial x 7→
1− (x1 + x2) vanishes only on some part Ω ⊂ ∂G of the boundary ∂G, (2.4) holds because
〈x, ~nx〉 vanishes on ∂G \Ω.

What is more surprising is that M2
2(y) has only rank 3 with three zero-eigenvalues

λ1 = λ2 = λ3 = 0. One has multiplicity 1 with eigenvector

(1,−4.405781742297638, 0.823092738895580, 3.405781742297638,

1.582689003402045,−1.823092738895576),

whereas the other eigenvalue is double with associated eigenvector

(1, 0.744634776919192,−6.597713889514154,−1.744634776919187,

3.853079112594940, 5.597713889514163).

One can check that the two associated polynomials vanish when x1 + x2 = 1.
Similarly M3

3(y) has only rank 7 with three zero-eigenvalues whose associated eigenvec-
tors are polynomials of degree 2 which vanish whenever x1 + x2 = 1.

Even more surprising is that M4
4(y) has rank 14 with associated zero-eigenvector

(−1, 1, 1, 0, . . . , 0).
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