Blowing up points for an elliptic Neumann problem with sub- and supercritical nonlinearity. Part II: N≥4 - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2005

Blowing up points for an elliptic Neumann problem with sub- and supercritical nonlinearity. Part II: N≥4

Résumé

We consider the sub- or supercritical Neumann elliptic problem $-\Delta u+\mu u=u^{\frac{N+2}{N-2}+\epsilon}$, $u>0$ in $\Omega$; $\frac{\partial u}{\partial n}=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain in $\mathbb{R}^{N}, N\geq 4, \mu>0$ and $\epsilon\neq0$ a small number. We show that for $\epsilon>0$, there always exists a solution to the slightly supercritical problem, which blows up at the most curved part of the boundary as $\epsilon$ goes to zero. On the other hand, for $\epsilon<0$, assuming that the domain is not convex, there also exists a solution to the slightly subcritical problem, which blows up at the least curved part of the domain.
Fichier principal
Vignette du fichier
rey-wei2.pdf (301.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00935412 , version 1 (23-01-2014)

Identifiants

  • HAL Id : hal-00935412 , version 1

Citer

Olivier Rey, Juncheng Wei. Blowing up points for an elliptic Neumann problem with sub- and supercritical nonlinearity. Part II: N≥4. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2005, 22, pp.459-484. ⟨hal-00935412⟩
134 Consultations
79 Téléchargements

Partager

More