Diffraction of Bloch Wave Packets for Maxwell's Equations - Archive ouverte HAL
Article Dans Une Revue Communications in Contemporary Mathematics Année : 2013

Diffraction of Bloch Wave Packets for Maxwell's Equations

Résumé

We study, for times of order 1/h, solutions of Maxwell's equations in an O(h^2) modulation of an h-periodic medium. The solutions are of slowly varying amplitude type built on Bloch plane waves with wavelength of order h. We construct accurate approximate solutions of three scale WKB type. The leading profile is both transported at the group velocity and dispersed by a Schrödinger equation given by the quadratic approximation of the Bloch dispersion relation. A weak ray average hypothesis guarantees stability. Compared to earlier work on scalar wave equations, the generator is no longer elliptic. Coercivity holds only on the complement of an infinite dimensional kernel. The system structure requires many innovations.
Fichier principal
Vignette du fichier
apr-maxwell.pdf (399 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00932946 , version 1 (04-08-2020)

Identifiants

Citer

Grégoire Allaire, Mariapia Palombaro, Jeffrey Rauch. Diffraction of Bloch Wave Packets for Maxwell's Equations. Communications in Contemporary Mathematics, 2013, 15 (6), pp.1350040. ⟨10.1142/S0219199713500405⟩. ⟨hal-00932946⟩
231 Consultations
65 Téléchargements

Altmetric

Partager

More