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DIFFRACTION OF BLOCH WAVE PACKETS FOR MAXWELL’S

EQUATIONS

GRÉGOIRE ALLAIRE1, MARIAPIA PALOMBARO2, AND JEFFREY RAUCH3

Abstract. We study, for times of order 1/h, solutions of Maxwell’s equations in
an O(h2) modulation of an h-periodic medium. The solutions are of slowly vary-
ing amplitude type built on Bloch plane waves with wavelength of order h. We
construct accurate approximate solutions of three scale WKB type. The leading
profile is both transported at the group velocity and dispersed by a Schrödinger
equation given by the quadratic approximation of the Bloch dispersion relation.
A weak ray average hypothesis guarantees stability. Compared to earlier work
on scalar wave equations, the generator is no longer elliptic. Coercivity holds
only on the complement of an infinite dimensional kernel. The system structure
requires many innovations.
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1. Introduction.

This paper studies the propagation of electromagnetic waves through perturbed periodic

media with period h ≪ 1.1 We treat the resonant case where the length scale of the

periodic structure is comparable to the wavelength. The observation time t satisfies t ∼
1A word on units. The Maxwell equations in vacuum have permittivities ǫ, µ and speed of light

c = 1/
√
ǫµ. Since the speed of light is ≫ 1 in KMS or CGS units, ǫµ is small in those units. We

perform an asymptotic analysis as h → 0. Denote by ∆t the unit of time. No matter what the units
one has h ≪ ∆t/{ǫ, µ} in this limit so there is scale separation no matter what are the values of ǫ and
µ. Nevertheless it is wise to, and we choose to, work in units with c∆t comparable to 1. For example
centimeters for length and ∆t ≪ 1 equal to the number of seconds that it takes light in vacuum to
traverse one centimeter. In those units c∆t = 1 and one expects that the constants in our error bounds
will not be very large.
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1/h. This is the diffractive time scale where standard Maxwell equations (without periodic

structure) are approximated by Schrödinger’s equation (see [12], [18]). Wavelengths that

are short compared to the period are short compared to the scale on which the coefficients

vary. This is the domain of validity of standard geometric optics (see [12], [7] for the

diffractive case). Wavelengths long compared to the period are analysed by standard

homogenisation [8]. The interest, both mathematical and scientific, of the resonant scaling

is that the speeds of propagation and diffractive effects for wave packets are given by the

Bloch dispersion relation of the periodic medium and not by the symbol of the hyperbolic

operator or its hyperbolic homogenisation. The propagation speeds can be radically

different from those of the original equations. The new speeds must not violate the

finite speed of the original equations (see Theorem 7.2 for a proof of this upper bound)

but can be much smaller. This is the basis for strategies to slow light ([5], [16], [6], [29]).

That in turn is one of the proposed design elements of the all optical computer. Another

domain of application is photonic crystal fibers constructed with periodicity in crossection

(see [27], [14], [21]). The last three examples are modeled by Maxwell’s equations that

are the subject of the current article.

In our papers [1], [2] we study scalar wave equations. In most cases, Maxwell’s equations

cannot be reduced to scalar equations. The most interesting applications require the

methods of the present paper. For constant scalar permittivities the Maxwell equations

can be reduced to the scalar wave equation. For constant ǫ, µ with ǫ a three by three matrix

with three distinct positive eigenvalues, it has been known since the time of Hamilton (see

[15], [11] page 610), that the characteristic polynomial is of the form τ 2Q(τ, ξ) with Q

an irreducible quartic polynomial. The characteristic variety is conic with nontrivial

singular points. Q does not factor as the product of two quadratics in which case the

variety would be the union of two (double) cones with elliptic cross-section. For variable,

even scalar, permittivities, the standard derivation of second order equations by taking

time derivatives works but leads to a system of second order equations for E coupled

through lower order terms.

Maxwell’s dynamic equations for unknown E(t, x), B(t, x) ∈ R3 × R3 read

(1.1) ∂t

(
ǫE
µB

)
+

(
− curlB
+curlE

)
= 0

whose infinitesimal generator is not elliptic. Indeed if ǫ, µ depends only on x, then

(∇xφ , ∇xψ) is a stationary solution for any φ(x), ψ(x) ∈ C∞
0 (R3). For any ball there

is an infinite dimensional set of such solutions supported in the ball. This is one of the

main differences of the current article with the earlier ones on scalar wave equations. The

failure of ellipticity is compensated by the fact that the set of physically relevant solutions

have additional strong control on their divergence. Those solutions satisfy semiclassical
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ellipticity estimates (see Theorem 3.2). A second principal difference with the earlier

work is that for systems it is not uncommon to have Bloch eigenvalues of multiplicity

greater than one. In that case the Schrödinger equations of diffractive geometric optics

are systems and we treat that possibility. A third difference with the scalar case is a

simplification. For the scalar case, estimates for gradients of the error in the approximate

solution were straight forward but there was a strikingly difficult argument to estimate

the undifferentiated error. In the case of systems, the natural energy estimate is an L2

estimate. Derivative estimates are proved from L2 estimates for the time derivatives and

the divergence. The remaining derivatives are estimated by an ellipticity argument. The

difficult argument from the scalar case is not required.

There are two problems closely related to the ones we analyse. The first is the treatment

of first order elliptic systems. The second is the treatment of the Maxwell system on the

time scales of geometric optics. The second problem is solved en passant in §8. We have

chosen to skip the first and jump directly to the Maxwell’s equations. The methods that

suffice for Maxwell yield the elliptic case directly.

The semiclassical estimates of the present article permit a strengthening of the earlier

paper [2], where derivatives of order ≤ 1 were estimated. The new method yields estimates

for derivatives of all orders.

Our three articles use corrector terms in asymptotic expansions. Article [1] correc-

tors were constructed by an ad hoc method and used in test functions to study weak

convergence. In [2] we introduced a a general strategy yielding accurate expansions.

The h-dependent Maxwell equations are written in the form P h(Eh, Bh) = 0 with

(1.2) P h(t, x, ∂t, ∂x)(E
h, Bh) := ∂t

(
ǫhEh

µhBh

)
+

(
− curlBh

+curlEh

)
+ Mh

(
Eh

Bh

)
.

For the diffractive scaling the perturbations satisfy the following hypothesis where ǫ0(x/h)

and µ0(x/h) are the permittivities of the unperturbed periodic structure at scale h. The

6 × 6 matrix valued function Mh serves for example to model dissipative effects such as

Ohm’s law (see §8).

Notation. For two vectors (e, b) ∈ C3 ×C3, their Hermitian inner product is denoted by

〈e, b〉 while (e, b) denotes the ordered pair in C3×C3. The cross product in C3 is denoted by

∧. The set of linear maps (homeomorphisms) on a vector space K is denoted by Hom(K).

For any α = (α0, α1, α2, α3) ∈ N4 the notation ∂αt,xφ(t, x) means ∂α0

t

(∏3
i=1 ∂

αi
xi

)
φ(t, x).

The Maxwell equations (1.2) are a symmetric first-order hyperbolic system for uh =

(Eh, Bh)

(1.3) P h(t, x, ∂t, ∂x)u
h = ∂t(A

h
0u

h) +
3∑

j=1

Aj∂xj
uh + Mhuh ,
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with symmetric matrix coefficients Aj for j ≥ 1 defined in (8.3), (8.4) and

Ah
0(t, x) :=

(
ǫh(t, x) 0
0 µh(t, x)

)
.

Hypothesis 1.1. Diffractive time scale hypothesis. The coefficients in (1.2) are

given by
ǫh(t, x) = ǫ0(x/h) + h2ǫ1(t, x, x/h) ,
µh(t, x) = µ0(x/h) + h2µ1(t, x, x/h) ,
Mh(t, x) = hM(t, x, x/h) .

The matrix valued functions ǫ0(y) , µ0(y) ∈ C∞(T3) are symmetric and positive defi-

nite and for all α, ∂αt,x,y{ǫ1, µ1,M}(t, x, y) ∈ L∞(R1+3 × T3) with T3 denoting the three-

dimensional torus (R/2πZ)3. Define

A0
0(y) :=

(
ǫ0(y) 0
0 µ0(y)

)
, A1

0(t, x, y) :=

(
ǫ1(t, x, y) 0

0 µ1(t, x, y)

)
.

Definition 1.2. The space of L2
loc(R

3) periodic functions of period 2π is denoted L2(T3).

The functions (E,B) of L2(T3) with values in R3 × R3 are normed by∫

[0,2π[3

(
|E|2 + |B|2

)
dx .

When normed by the equivalent expression natural in the context of Maxwell’s equations∫

[0,2π[3

(
〈E , ǫ0 E〉 + 〈B , µ0B〉

)
dx

it is denoted L2
ǫ0,µ0

(T3).

Definition 1.3. For θ ∈ [0, 1[3 a function g(x) on R3 is θ-periodic when x→ e−iθ.x g(x)

is periodic in x with period 2π. The parameter θ is called the Bloch frequency. The set

of L2
loc(R

3) θ-periodic functions is denoted L2(T3
θ). With alternate norm as in Definition

1.2 it is denoted L2
ǫ0,µ0

(T3
θ).

Our solutions are amplitude modulated Bloch plane waves. The plane waves are

θ-periodic solutions of the unperturbed periodic Maxwell equations of the form u =

eλt(E(x), B(x)). Equivalently E,B are solutions of the spectral problem

(1.4) λ

(
ǫ0(x) 0
0 µ0(x)

)(
E(x)
B(x)

)
=

(
0 curl

−curl 0

)(
E
B

)
, {E , B} θ− periodic .

We recall in §6 that the spectrum at fixed θ consists of {0} with infinite multiplicity

and a discrete set of purely imaginary eigenvalues λ = iω(θ) of finite multiplicity. We

label the nonzero eigenvalues according to their distance from the origin and repeat them

according to their multiplicity

(1.5) · · · ≤ ω−2(θ) ≤ ω−1(θ) < ω0(θ) = 0 < ω1(θ) ≤ ω2(θ) ≤ · · · .
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We work near an eigenvalue of constant multiplicity.

Hypothesis 1.4. (Constant multiplicity hypothesis.) Fix θ 6= 0, n ∈ Z∗, and denote

by κ the multiplicity,

λ = iωn(θ) 6= 0 , ωn−1(θ) < ωn(θ) = . . . = ωn+κ−1(θ) < ωn+κ(θ) .

Assume that there are δ1 > 0, δ2 > 0 and real analytic ω(θ) defined on {|θ − θ| < δ1} so

that for each |θ−θ| < δ1 the only point of the spectrum in {λ : |λ− iωn(θ)| < δ2} is iω(θ)

with multiplicity κ.

The hypothesis is automatically satisfied when κ = 1. An example with κ > 1 is ǫ and µ

constant and scalar where every eigenvalue is of constant multiplicity two (see Example

6.6 below).

Definition 1.5. When the constant multiplicity hypothesis 1.4 is satisfied the group

velocity is defined by

V := −∇θω(θ) .

Define

(1.6) L(ω, θ, y, ∂y) := iω

(
ǫ0(y) 0
0 µ0(y)

)
−
(

0 (iθ + ∂y)∧
−(iθ + ∂y)∧ 0

)
.

L with domain equal to the periodic functions in H∞(T3
y) := ∩s≥0H

s(T3) is formally

antiselfadjoint on L2(T3 ; dy). The method of proof of Proposition 6.3 shows that the

closure has domain equal to the v ∈ L2(T3) so that Lv ∈ L2(T3) and that the closure is

antiselfadjoint.

Definition 1.6. Denote by Π the projection operator onto K := kerL(ω(θ), θ, y, ∂y) along

the image of L. Π is orthogonal with respect to the scalar product of L2(T3 ; dy) and not

with respect to the scalar product of L2
ǫ0,µ0

(T3).

Our wave packets have group velocity V and travel for long times. They see the coeffi-

cients on group lines for long times. The averages of the coefficients along such long rays

are important. A particular combination enters in the asymptotic description.

Definition 1.7. For each t, x define the linear map γ(t, x) ∈ Hom(K) by

(1.7) γ(t, x) :=
(
ΠA0

0(t, x)Π
)−1

Π (iωA1
0(t, x) +M(t, x)) Π .

We assume that the ray averages

(1.8) lim
T→+∞

1

T

∫ T

0

γ(t, x+ Vt) dt := γ̃(x) , exist uniformly in x ∈ R3.

We make a fairly weak assumption asserting that this limit is attained at an algebraic

rate.
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Definition 1.8. The function γ satisfies the ray average hypothesis when (1.8) holds

and there is a 0 ≤ β < 1 so that for all α ∈ N× N3 the solution gα(t, x) of
(
∂t + V.∂x

)
gα = ∂αt,x

(
γ(t, x)− γ̃(x− Vt)

)
, gα(0, x) = 0

satisfies 〈t〉−βgα ∈ L∞([0,∞[×R3) where 〈t〉 := (1 + t2)1/2.

This hypothesis, introduced in [2], is discussed in §9.1. Our main theorem gives an

approximate solution and an error estimate. In the theorem, T is a new variable, a slow

time. In the approximate solution it is replaced by ht. In addition there is a K valued

function, w̃0(T , x). Abusing notation, the value at (T , x) is a function of y denoted

w̃0(T , x, y).

Theorem 1.9. Assume that γ satisfies the ray average hypothesis with parameter 0 ≤
β < 1. For f ∈ S(R3;K) define w0 := w̃0(T , x − Vt), where w̃0 ∈ C∞(R ; S(R3;K)) is

the unique solution of the initial value problem for Schrödinger’s equation

(1.9)
(
∂T +

1

2
i ∂2θω(∂x, ∂x) + γ̃(x)

)
w̃0 = 0, w̃0(0, x) = f(x).

Define a family of approximate solutions

vh(t, x) := ei(ω(θ)t+θ.x)/h w0(ht, t, x, x/h)

and let uh denote the exact solution of P huh = 0 with uh|t=0 = vh|t=0. Then

∀T > 0, α ∈ N4, ∃C(α, T ), ∀h ∈]0, 1[, sup
t∈[0,T/h]

∥∥(x , h ∂t,x)α(uh−vh)
∥∥
L2(R3)

≤ C h1−β ,

with 0 ≤ β < 1 from the ray average hypothesis of Definition 1.8.

Remark 1.10. i. The operator ΠA0
0Π is positive definite on K. WhenM = 0, mulitplying

the Schrödinger equation (1.9) by ΠA0
0Π shows that

∫
〈ΠA0

0Πw̃0 , w̃0〉 dx is conserved. ii.

The principal part of equation (1.9) is scalar. Coupling occurs through γ̃ (see Remark

9.3).
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the CMAP at the École Polytechnique and the Centro di Ricerca Matematica “Ennio De

Giorgi” for their hospitality.



7

2. L2(R3) estimates

Suppose given real symmetric permittivities

ǫh(t, x) , µh(t, x) ∈ C∞
(
R1+3×]0, 1[h ; Hom(R3)

)

satisfying the positivity constraint

(2.1) ∀ t, x, h 0 < cI ≤ ǫh(t, x) , µh(t, x) ≤ CI .

Consider the dynamic Maxwell equations in a medium that varies on scale 0 < h << 1

(2.2) ∂t(ǫ
h(t, x)Eh) = curlBh, ∂t(µ

h(t, x)Bh) = − curlEh .

This is a symmetric hyperbolic system. The energy identity for solutions is

(2.3) ∂t

∫

R3

〈Eh, ǫhEh〉+ 〈Bh, µhBh〉 dx = −
∫

R3

〈Eh, ∂tǫ
hEh〉 + 〈Bh, ∂tµ

hBh〉 dx .

Large time derivatives of ǫh, µh can lead to rapid growth of energy. On the other hand

if ∂tǫ
h, ∂tµ

h are bounded (resp. O(h)) one has uniform estimates for the L2 norm for

t = O(1) (resp. t = O(1/h)). Corresponding estimates for derivatives is subtle because

the coefficients are rapidly varying in space. Our strategy is to derive estimates for

time derivatives and for divEh, divBh. Then estimate spatial derivatives using an elliptic

estimate from the next section.

3. Coercivity

The generator of the dynamic equations (1.2) is not elliptic. However, the special

structure of Maxwell’s equations yields supplementary bounds on divE and divB. The

over determined system consisting of the generator together with divergence is elliptic.

For problems with coefficients oscillating in x on scale h, estimates in semiclassical Sobolev

spaces are natural.

Definition 3.1. The semiclassical Sobolev norm Hm(R3) denoted ‖ · ‖Hm
h
(R3) is defined by

( ∑

|α|≤m

∫ ∣∣(h∂x)αu
∣∣2 dx

)1/2

.

For a function u(t, x), integer m ≥ 0 and h ∈]0, 1[ define the semiclassical norm with

derivatives in space and time,

(3.1)
∥∥u(t)

∥∥2
m,h

:=
∑

|α|≤m

∥∥(h ∂t,x)αu(t)
∥∥2
L2(R3)

.

Denote by Ck
h(R

1+3) the set of families {wh : 0 < h < 1} ⊂ Ck(R1+3) so that

(3.2) sup
0<h<1

∑

|α|≤k

∥∥(h ∂t,x)αwh
∥∥
L∞(R1+3)

< ∞.
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The same notation is used for functions valued in any finite dimensional real or complex

vector space. The left hand side of (3.2) serves as norm making Ck
h a Banach space. The

Fréchet space C∞
h is defined as ∩kC

k
h.

Theorem 3.2. For ǫh(t, x), µh(t, x) ∈ C∞
h (R1+3) and m ∈ N there is a constant C(m) so

that for all E,B ∈ Hm(R3), t ∈ R, and h > 0
∥∥E(t)

∥∥
Hm

h
(R3)

≤ C(m)
(∥∥h curlE(t)

∥∥
Hm−1

h
(R3)

+
∥∥h div(ǫh(t, x)E(t))

∥∥
Hm−1

h
(R3)

+
∥∥E(t)

∥∥
Hm−1

h
(R3)

)
,

∥∥B(t)
∥∥
Hm

h
(R3)

≤ C(m)
(∥∥h curlB(t)

∥∥
Hm−1

h
(R3)

+
∥∥h div(µh(t, x)B(t))

∥∥
Hm−1

h
(R3)

+
∥∥B(t)

∥∥
Hm−1

h
(R3)

)
.

Proof. The inequalities for E and B are identical so it suffices to consider E. The variable

t is simply a parameter so it suffices to consider t fixed. The key estimate is the following.

Lemma 3.3. If ǫ(x) is a symmetric matrix valued function so that ǫ ≥ cI > 0 for all x,

and ∂αx ǫ ∈ L∞(R3) for all α ∈ N3, then for each m ∈ N there is a constant C(m) so that

for all E ∈ Hm(R3)

(3.3)
∥∥E
∥∥
Hm(R3)

≤ C(m)
(∥∥curlE

∥∥
Hm−1(R3)

+
∥∥div(ǫ(x)E)

∥∥
Hm−1(R3)

+
∥∥E
∥∥
Hm−1(R3)

)
.

Proof. The integrand in
∫

R3

|div(ǫ(x)E)|2 + |curlE|2 dx

is a quadratic form in E and its first derivatives. The terms quadratic in the derivatives

of E have the form ∑

1≤i,j≤3

〈
ai,j(x) ∂iE , ∂jE

〉

with uniquely determined real matrix valued functions ai,j(x) with aj,i equal to the trans-

pose of ai,j. Introduce the the symbol
∑

i,j ai,j(x)ξiξj. The definition implies that for any

x, e and ξ in R3

(3.4)
∑

i,j

〈
ai,j(x)ξiξje , e

〉
= |〈ξ , ǫ(x)e〉|2 + |ξ ∧ e|2 .

Choose 0 < c ≤ 1 so that for all x, ǫ(x) ≥ cI. The lemma is a consequence of Gärding’s

inequality once we prove that for all real x, e, ξ

(3.5) |〈ξ , ǫ(x)e〉|2 + |ξ ∧ e|2 ≥ c |ξ|2 |e|2/2 .

By homogeneity it suffices to consider |ξ| = 1.

Decompose e = e‖ + e⊥ into parts parallel and perpendicular to ξ. The definition of c

yields

(3.6) |e⊥|2 ≤ |e|2/2 =⇒ |〈ξ , ǫ(x)e‖〉|2 ≥ c |e‖|2 = c
(
|e|2 − |e⊥|2

)
≥ c |e|2/2 .
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On the other hand since c ≤ 1

(3.7) |e⊥|2 ≥ |e|2/2 =⇒ |ξ ∧ e|2 = |e⊥|2 ≥ |e|2/2 ≥ c |e|2/2 .

Estimates (3.6) and (3.7) imply (3.5) completing the proof of the lemma. �

Scaling shows that (3.3) implies the h dependent coercivity of Theorem 3.2. �

4. Stability

Theorem 4.1. Let P h, be the operator (1.2) with ǫh, ∂tǫ
h, µh, ∂tµ

h,Mh ∈ C∞
h (R1+3). If

f, g ∈ H∞(R3) := ∩sH
s(R3) then there is a unique family of solutions uh = (Eh, Bh) ∈

C∞(R ; H∞(R3)) to P huh = 0, with uh(0) = (f, g). For each m ∈ N there is a constant

c(m) so that with

C(m, h) :=
∑

|α|≤m

∥∥(h∂t,x)α(∂tǫh, ∂tµh,Mh)
∥∥
L∞(R1+3)

one has

(4.1)
∥∥uh(t)

∥∥
m,h

≤ c(m) ec(m)C(m,h) t
∥∥uh(0)

∥∥
m,h

.

Remark 4.2. If Mh = 0, one has ∂t
(
div
(
ǫh(t, x)Eh

))
= 0 and ∂t

(
div
(
µh(t, x)Bh

))
= 0.

In particular one has

(4.2) div
(
ǫh(t, x)Eh

)
= 0, div

(
µh(t, x)Bh

)
= 0 ,

as soon as these identities hold at t = 0.

Remark 4.3. For the analysis on the diffractive scale, the theorem is applied with C(m, h) =

O(h) as h→ 0. In that case one has uniform bounds for t = O(1/h).

Remark 4.4. This careful accounting of derivatives in Theorem 4.1 is at the heart of

extenting the results of this paper to equations whose coefficients are only finitely differ-

entiable.

Proof. The existence for fixed h is classical. The estimate for m = 0 follows from Gron-

wall’s inequality together with

∂t

∫

R3

(
〈ǫhEh , Eh〉+ 〈µhBh , Bh〉

)
dx =−

∫

R3

(
〈∂tǫhEh , Eh〉+ 〈∂tµhBh , Bh〉

)
dx

+ 2

∫

R3

〈uh,Mhuh〉 dx

≤ C
(
‖∂tǫh(t), ∂tµh(t)‖L∞(R3) + ‖Mh(t)‖L∞(R3)

)
‖(Eh, Bh)(t)‖L2(R3) .
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The proof for arbitrary m is by induction. Assume the estimate proved for m. Denote

by Kh(t, s) the evolution operator associated to the equation P hw = 0. Precisely, for a

distribution g ∈ D′(R3), w(t) = Kh(t, s)g is the unique solution of the Cauchy problem

P hw = 0 , w
∣∣
t=s

= g .

The inductive hypothesis is a bound

‖Kh(t, s)g‖m,h ≤ c(m) ec(m)C(m,h)|t−s| ‖g‖Hm
h
(R3) .

The Duhamel relation

vh(t) = Kh(t, 0)vh(0) +

∫ t

0

Kh(t, s) P h(vh)(s) ds

then yields the estimate

‖vh(t)‖m,h ≤ c(m)
(
ec(m)C(m,h)t‖vh(0)‖m,h +

∫ t

0

ec(m)C(m,h)(t−s) ‖P h(vh)(s)‖m,h ds
)
.

The key point is that one cannot simply apply the estimate at level m to vh := h∂uh.

Doing so yields

‖h∂uh(t)‖m,h ≤ c(m)
(
ec(m)C(m,h)t‖h∂uh(0)‖m,h+

∫ t

0

ec(m)C(m,h)(t−s) ‖P h(h∂uh)(s)‖m,h ds
)
.

Write P h(h∂) = (h∂)P h + [P h, h∂]. The first term vanishes when applied to u. The

commutator [P h, h∂] is

h∂t

(
∂ǫh 0
0 ∂µh

)
+ h ∂Mh .

If ∂ were a derivative with respect to x then ∂x{ǫh, µh} ∼ 1/h leading to an unac-

ceptably large contribution. Instead of estimating all derivatives we estimate only ∂t,

div{ǫhEh, µhBh}, and curl . The time derivatives of ǫh, µh are bounded. The divergence

and curl play a special role in Maxwell’s equations. The remaining spatial derivatives are

recovered using coercivity. 2

For ∂t compute

[P h, h∂t] =

(
∂tǫ

h 0
0 ∂tµ

h

)
h∂t + h ∂tM

h .

Estimate

‖P h(h∂tu
h)(s)‖m,h ≤ C(m+ 1, h) ‖uh(s)‖m+1,h .

The Duhamel estimate yields

(4.3)

‖h∂tuh(t)‖m,h ≤ c(m)
(
ec(m)C(m,h)t‖uh(0)‖m+1,h+

∫ t

0

ec(m)C(m,h)(t−s) C(m+1, h)‖uh(s)‖m+1,h ds
)
.

2The use of ∂t, div, curl is reminiscent of the use of ∂t + v∂x, div, curl , and tangential derivatives for
the inviscid compressible Euler equations in [24].
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Write the Maxwell equations as
(
h curlBh , −h curlEh

)
= h∂t(ǫ

hEh , µhBh) + hMh uh .

Therefore
∥∥h curlEh(t) , h curlBh(t)

∥∥
m,h

≤
(
r.h.s. of (4.3) + ‖h uh(t)‖m,h

)
C(m, h) .

Use the fundamental theorem of calculus to estimate

‖h uh(t) ‖m,h ≤ ‖h uh(0) ‖m,h +

∫ t

0

‖h∂tuh(s)‖m,h ds .

Wasting a derivative in the first term yields

≤ ‖uh(0) ‖m+1,h +

∫ t

0

‖uh(s)‖m+1,h ds.

Combining the last four assertions yields

(4.4)
∥∥h curlEh(t) , h curlBh(t)

∥∥
m,h

≤ r.h.s. of (4.3) .

Next estimate ‖h div ǫhEh, h divµhBh‖m,h. Write Mh in block form with 3× 3 blocks

Mh =

(
Mh

11 Mh
12

Mh
21 Mh

22

)
.

Therefore

∂t
(
div(ǫhEh)

)
= div(ǫhEh)t = −div(Mh

11E
h +Mh

12B
h) .

Integrate to find

‖h div(ǫhEh)(t)‖m,h ≤ ‖h div(ǫhEh)(0)‖m,h +

∫ t

0

‖Mh
11E

h(s) +Mh
12B

h(s)‖m,h ds

≤ C(m, h) ‖uh(0)‖m+1,h +

∫ t

0

C(m, h)‖uh(s)‖m,h ds .

Performing the analogous estimate for h div(µhBh) and replacing ‖ ‖m,h on the right by

the larger ‖ ‖m+1,h yields

(4.5) ‖h div(ǫhEh)(t) , h div(µhBh)‖m,h ≤ r.h.s. of (4.3) .

Combining (4.3), (4.4) and (4.5), the inductive hypothesis, and the coercivity estimate

from Theorem 3.2 yields

(4.6)

‖uh(t)‖m+1,h ≤ c(m)
(
‖uh(0)‖m+1,h +

∫ t

0

ec(m)C(m,h)(t−s) C(m+ 1, h)‖uh(s)‖m+1,h ds
)
.

The theorem follows from Gronwall’s inequality. �
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5. Stationary solutions

When ǫ and µ depend only on x, there is a conserved L2 norm for the solution of (1.1),

(5.1) ∂t

∫

R3

〈E , ǫ(x)E〉 + 〈B , µ(x)B〉 dx = 0 .

Equations (1.1) have an infinite dimensional space of stationary solutions. The set of func-

tions satisfying div ǫ(x)E = divµ(x)B = 0 is invariant and orthogonal in the conserved

L2 scalar product to the stationary solutions.

To prove this assertion we use the Fourier Transform. For any u ∈ L2(R3), we have

û(ξ) = (2π)−3/2

∫

R3

e−ix.ξ u(x) dx, u(x) = (2π)−3/2

∫

R3

eix.ξ û(ξ) dξ .

The Fourier Transform is unitary on L2(R3, dx).

Theorem 5.1. When ǫ(x), µ(x) depend only on x, u(x) = (E(x), B(x)) ∈ L2(R3) is a

stationary solution of the dynamic Maxwell equations (1.1) if and only if curlE = curlB =

0. The orthogonal complement of these data in L2
ǫ,µ(R

3) normed by
∫
〈ǫE,E〉+〈µB,B〉 dx

is invariant under the flow and consists exactly of the solutions satisfying (4.2). The fields

(gradφ, gradψ) with φ, ψ ∈ H1(R3) are L2(R3)-dense in the stationary solutions.

Proof. The first assertion is obvious.

The orthogonal complement of the stationary solutions is invariant because the evolu-

tion is unitary.

Next prove the density of gradients. The field E satisfies curlE = 0 if and only if

ξ ∧ Ê(ξ) = 0, that is the Fourier Transform Ê(ξ) is parallel to ξ for almost all ξ. For

ξ 6= 0 Ê = ξf(ξ) uniquely defines the scalar valued f(ξ). Choose a smooth cutoff function

0 ≤ χ ≤ 1 vanishing on a neighborhood of ξ = 0 and identically equal to 1 outside

a compact set. Then E is the L2-limit as n tends to infinity of the field with Fourier

transform equal to χ(nξ) ξ f(ξ). Define φ̂n = χ(nξ)f so φ ∈ H1(R3) and gradφn → E in

L2.

Using the density of the Schwartz space S(R3) in H1(R3), shows that a vector E is

orthogonal to the stationary states if and only if
∫

R3

〈ǫE, gradφ〉 dx = 0, for all φ ∈ S(R3) .

This is the definition of div(ǫE) = 0 in the sense of tempered distributions. �

6. The theory of Floquet and Bloch

6.1. Bloch Transform. We recall the essentials of the method of Floquet and Bloch (see

for example [13], [9], [10], [26], [30], [8]).
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Write each ξ ∈ R3 as n+θ with uniquely determined n ∈ Z3 and θ ∈ [0, 1[3. Expressing

u(x) in terms of its Fourier transform, û(ξ), yields

(6.1) u(x) = (2π)−3/2

∫

[0,1[3
eiθ.x

(∑

n∈Z3

ein.xû(θ + n)
)
dθ .

The parentheses enclose the Fourier series expansion of a function periodic in x with period

2π. Considered as a function of x, the integrand is θ-periodic in the sense of Definition

1.3. Identity (6.1) decomposes L2(R3) as the direct integral over θ of the Hilbert spaces

of θ-periodic functions belonging to L2
loc(R

3).

Proposition 6.1. The map that associates to u its Bloch wave expansion uθ

(6.2) L2(R3) ∋ u 7→ uθ(x) := (2π)−3/2 eiθ.x
( ∑

n∈Z3

ein.xû(θ + n)
)

∈ L2(T3
θ)

yields a unitary decomposition of L2(R3) as the direct integral over θ ∈ [0, 1[3 of L2(T3
θ).

The inverse is given by

u(x) =

∫

[0,1[3
uθ(x) dθ with ‖u‖2L2(R3) =

∫

[0,1[3
‖uθ‖2L2(T3) dθ .

The map u 7→ e−iθ.xuθ is a unitary map L2(R3) → L2([0, 1[3 ; L2(T3)).

Remark 6.2. The partial derivatives and 2π-translates of θ-periodic functions are θ-

periodic and the product of a θ-periodic function by a 2π-periodic function is θ-periodic.

Therefore partial differential operators with 2π-periodic coefficients map θ-periodic func-

tions to themselves. The Bloch decomposition reduces these operators.

6.2. Maxwell’s equations. The method of Floquet-Bloch applies to Maxwell’s equa-

tions (see for example [8] and [28]). The delicate part for us is the infinite dimensional

kernel and the degeneration of the coercivity estimates as h → 0. From here to the end

of this section the Bloch strategy is used to analyse Maxwell’s equations

(6.3)

(
ǫ0(x) 0
0 µ0(x)

)
∂t − G , G :=

(
0 curl

−curl 0

)

in the case of periodic ǫ(x) and µ(x). It suffices to analyse its action as a map on L2(T3
θ)

Proposition 6.3. If Aj are symmetric matrices then the operator L =
∑

j Aj∂j satisfies

(6.4) ∀u, v ∈ L2(T3
θ) ∩ C∞ 〈Lu, v〉 = −〈u, Lv〉 .

Denote by L the closure of the operator so defined and by L∗ the Hilbert space adjoint.

Then L is antiselfadjoint with domain equal to the set of u ∈ L2(T3
θ) so that

∑
j Aj∂ju ∈

L2(T3
θ) in the sense of distributions.
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Proof. To prove (6.4), write u = eiθ.xũ and similarly v with periodic ũ, ṽ. Then,

〈Lu, v〉 =

∫

[0,2π[3
〈Aj∂ju , v〉 dx =

∫

[0,2π[3
〈Aj∂j(e

iθ.xũ) , eiθ.xṽ〉 dx

=

∫

[0,2π[3
〈eiθ.xAj(∂j + iθj)ũ , e

iθ.xṽ〉 dx =

∫

[0,2π[3
〈Aj(∂j + iθj)ũ , ṽ〉 dx

= −
∫

[0,2π[3
〈ũ , Aj(∂j + iθj)ṽ〉 dx ,

the last step by integration by parts and periodic boundary conditions.

Identity (6.4) implies that L∗ ⊃ −L in the sense that the left hand side is an extension

of the right. The definition of distribution derivative implies that L∗u = f ∈ L2(T3
θ) if

and only if −(
∑

j Aj∂j)u = f in the sense of distributions.

In that case denote by Jδ a standard mollifier. Since θ-periodic functions are invariant

under translations, Jδu ∈ C∞ ∩ L2(T3
θ). Since Jδ commutes with Aj∂j so uδ := Jδu

satisfies −Luδ = Jδf . Passing to the limit shows that u belongs to the domain of L and

Lu = −f . Thus L∗ ⊂ −L. �

The spaces L2(T3
θ) depend on θ. The following proposition allows one to apply standard

results in perturbation theory.

Proposition 6.4. The unitary map L2(T3) ∋ v 7→ ei θ.x v ∈ L2(T3
θ) intertwines the

operators
(

0 ∂x∧
−∂x∧ 0

)
, and

(
0 (∂x + iθ)∧

−(∂x + iθ)∧ 0

)
.

The former acts on L2(T3
θ) and the latter on the θ independent space L2(T3). The latter

family of operators depends analytically on θ.

Proof. The unitary map commutes with multiplication operators and intertwines the an-

tiselfadjoint operators ∂j on L2(T3
θ) and ∂j + iθj on L2(T3). This yields the desired

result. �

The straight forward proof of the next result is omitted.

Proposition 6.5. A function u(x) = (E(x), B(x)) ∈ L2(R3) is a stationary solution of

(1.1) if and only if its Bloch wave expansion (Eθ, Bθ) ∈ L2(T3
θ) satisfies G (Eθ, Bθ) = 0

for almost all θ ∈ [0, 1[3 with G from (6.3). A function u is in the invariant space of

functions orthogonal in L2
ǫ0,µ0

(T3
θ) to these stationary solutions if and only if its expansion

satisfies div(ǫ0Eθ) = div(µ0Bθ) = 0 in the sense of distributions.



15

6.3. Bloch spectral theory. Consider fixed periodic ǫ0(x), µ0(x) ∈ C∞(T3). The func-

tion

u(t, x) := eλt
(
E(x) , B(x)

)

satisfies Maxwell’s equations (1.1) if and only if

(6.5) λ

(
ǫ0(x) 0
0 µ0(x)

)(
E(x)
B(x)

)
=

(
0 curl

−curl 0

)(
E
B

)
.

In the same way a θ-periodic u = eλt(E(x), B(x)) is a θ-periodic solution of Maxwell’s

equations if and only if E,B is a solution of (6.5) and (E , B) is θ-periodic. The function

u is then a solution of (2.2).

When each of ǫ0 and µ0 is a positive constant times the identity the change of variable

Ẽ, B̃ = ǫ
1/2
0 E, µ

1/2
0 B reduces to the case ǫ0 = µ0 = I. For that case the eigenvalue problem

is exactly solved in the next example.

Example 6.6. In case ǫ0 = µ0 = I the problem is translation invariant. Denote by Tℓ the

translation operator u(x) 7→ u(x− ℓ) acting on L2(T3
θ). The antiselfadjoint G commutes

with Tℓ so the eigenspaces of Tℓ are invariant by G.

For given k ∈ Z3 denote by Ek the subspace consisting of exponentials eik.xeiθ.x(e,b)

when e,b run in R3. Ek consists of eigenvectors of Tℓ with eigenvalue ei(k+θ).ℓ. Choose

the vector ℓ so that the ℓj/2π are rationally independent. Then the eigenvalues for distinct

k are distinct, so the spectral decomposition of Tℓ is L
2(T3

θ) = ⊕⊥Ek.

It follows that G(Ek) ⊂ Ek for all k ∈ Z3. It suffices to diagonalize the restriction of

G to each Ek. Compute

G

(
eiθ.xeik.x

(
e

b

))
=

(
0 curl

−curl 0

)(
eiθ.x

(
eik.xe
eik.xb

))
= eiθ.xeik.x

(
i(k + θ) ∧ b

−i(k + θ) ∧ e

)
.

To have eigenvalue λ = iω it is necessary and sufficient that ω is an eigenvalue of G0 ∈
Hom(C6)

(6.6) G0

(
e

b

)
:=

(
(k + θ) ∧ b

−(k + θ) ∧ e

)
= ω

(
e

b

)
,

One has eigenvalue 0 if and only if both e and b are parallel to k + θ This kernel has

dimension equal to two.

The orthogonal space has dimension 4 and consists of vectors with both e and b or-

thogonal to k + θ. Since (k + θ) ⊥ b, (k + θ) ∧ (k + θ) ∧ b = −|k + θ|2b. Using (6.6)

compute

−|k + θ|2b = (k + θ) ∧ (k + θ) ∧ b = (k + θ) ∧ (ωe) = −ω2b .

Therefore for (k + θ) 6= 0 there are two roots ω = ±|k + θ|. Each has a two dimensional

eigenspace generated by taking e ⊥ (k + θ) and b = ∓(k + θ) ∧ e.

Return next to the general case.
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Proposition 6.7. There is an infinite dimensional space of θ-periodic solutions of (6.5)

with eigenvalue λ = 0 consisting of E and B with vanishing curls. The L2
ǫ0,µ0

(T3
θ)-

orthogonal complement to this kernel satisfy div(ǫ0E) = div(µ0B) = 0. There is a constant

C independent of θ so that θ-periodic E,B satisfy

(6.7)
‖E,B‖H1(T3

θ
) ≤ C

(
‖curl E‖L2(T3

θ
) + ‖curl B‖L2(T3

θ
)

+ ‖div(ǫ0(x)E)‖L2(T3
θ
) + ‖div (µ0(x)B)‖L2(T3

θ
) + ‖E,B‖L2(T3

θ
)

)
.

For each θ the λ = iω 6= 0 for which (6.5) has a nontrivial solution is a discrete set in

R \ {0}. Each eigenspace is a finite dimensional space of smooth functions. The value 0

is not an accumulation point of nonzero eigenvalues. The ω are not bounded above and

are not bounded below.

Proof. The estimate is the key. Write u = eiθxũ with periodic ũ. Expand the latter in a

Fourier series. The proof of the Lemma 3.3 yields (6.7).

Proposition 6.5 implies that the stationary solutions are curl free and their orthogonal

complement is invariant under the flow by Maxwell’s equations. Also that the complement

consists of solutions satisfying div(ǫ0(x)E) = div(µ0(x)B) = 0.

Decompose L2
ǫ0,µ0

(T3
θ) as a Maxwell invariant direct sum of stationary and dynamic

states

L2
ǫ0,µ0

(T3
θ) = KerG ⊕⊥ Hdyn , Hdyn :=

{
E,B : div(ǫ0(x)E) = divµ0(x)B = 0

}
.

The L2
ǫ0,µ0

(T3
θ) unitary group e

tG restricts to a unitary group onHdyn whose anti selfadjoint

generator is the restriction G|Hdyn
.

Estimate (6.7) implies that (I + G|Hdyn
)−1 is compact, hence has pure point spectrum

tending to zero and total multiplicity in {|z| ≥ δ > 0} finite for all δ > 0. Therefore the

spectrum of G|Hdyn
is pure point and the total multiplicity in any bounded set is finite.

Commuting with derivatives yields an inductive proof of an Hs version of (6.7) for

1 ≤ s ∈ N,

(6.8)
‖E,B‖Hs+1(T3

θ
) ≤ C(s)

(
‖curl E‖Hs(T3

θ
) + ‖curl B‖Hs(T3

θ
)

+ ‖div(ǫ0(x)E)‖Hs(T3
θ
) + ‖div (µ0(x)B)‖Hs(T3

θ
) + ‖E,B‖Hs(T3

θ
)

)
.

The smoothness of eigenfunctions for eigenvalues λ 6= 0 follows.

It remains to show that the spectrum is unbounded above and unbounded below. Define

P to be the bounded strictly positive selfadjoint multiplication operator P (E,B) :=

(ǫE, µB). The eigenvalue equation is Gu = iωPu. It holds if and only if v = P 1/2u

satisfies P−1/2(G/i)P−1/2v = ωv. Need to show that the eigenvalues are not bounded

below and not bounded above. The ω are bounded below (resp. above) by C ∈ R if and
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only if for all v so that P−1/2v belongs to the domain of G,

〈P−1/2(G/i)P−1/2v , v〉 ≥ C
〈
v , v

〉
, (resp. ≤ ) .

This holds if and only if for all u belonging to the domain of G,

〈(G/i)u , u〉 ≥ C
〈
P 1/2u , P 1/2u

〉
, (resp. ≤ ) .

This holds if and only if the spectral problem with ǫ0 = µ0 = I has eigenvalues bounded

below (resp. above). Example (6.6) shows by explicit computation that for ǫ0 = µ0 = I

the spectrum is unbounded in both directions. Thus the ω are not bounded below and

not bounded above. �

Proposition 6.7 implies that the discrete spectrum at fixed θ consists of {0} with infinite

multiplicity and a discrete set of possibly multiple eigenvalues λ = iω that we label

according to their distance from the origin as in (1.5). Away from eigenvalue crossings,

the functions θ 7→ ωj(θ) are real analytic. Rellich’s theorem shows that away from the

crossings the associated spectral projections Πj(θ) are also real analytic in the sense that

the unitary map of Proposition 6.4 intertwines them with an analytic family acting on

L2
ǫ,µ(T

3) (see [20]).

For θ fixed and an eigenvalue ω(θ) 6= 0 there is a finite dimensional space of eigen-

functions eiθ.x(Eθ(x), Bθ(x)) ∈ L2(T3
θ) and corresponding Bloch plane wave solutions

of (1.1)

eiω(θ)t eiθ.x (Eθ(x), Bθ(x)) .

We assume the constant multiplicity Hypothesis 1.4.

From the analytic dependence of the operators it follows that the L2(T3
θ) orthogonal

projection, Π(θ) ∈ Hom(L2(T3
θ)) onto the nullspace of iω(θ)A0

0(y)−
∑

j Aj∂j is analytic

and in particular of constant rank.

7. The purely periodic case

Fix θ and a locally constant multiplicity eigenvalue ω(θ) 6= 0. Denote by K(θ) the

kernel of L(ω(θ), θ, y, ∂y) from Definitions 1.6. If θ 7→ eiθ.xψ(x, θ) is a smooth function of

θ on a neighborhood of θ with values in K(θ) then ψ is periodic with period 2π in x and

smooth in its dependence on x, θ for θ ≈ θ. The function

eiω(θ)t eiθ.x ψ(x, θ)

is a θ-periodic solution of Maxwell’s equation in the periodic medium ǫ(x), µ(x).

Scaling the periodic structure to ǫ(x/h), µ(x/h) yields the corresponding rapidly oscil-

latory Bloch plane waves

eiω(θ)t/h eiθ.x/h ψ(x/h , θ) .
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For a ∈ C∞
0 (R3) and h << 1 the function a((θ − θ)/h) is supported in the domain of

definition of ω(θ). Superposing nearby waves yields a Bloch wave packet for h << 1
∫

[0,1[3
a
(θ − θ

h

)
eiω(θ)t/h eiθ.x/h ψ(x/h , θ) dθ, a ∈ C∞

0 (R3) .

Letting ζ := (θ − θ)/h yields the exact solutions

(7.1) uh = eiθ.x/h
∫

R3

ψ
(x
h
, θ + hζ

)
eitω(θ+hζ)/h eix.ζ a(ζ) dζ .

7.1. The geometric optics time scale t ∼ 1.

Definition 7.1. Complementing Definition 1.5 the corresponding transport operator is

defined by

D(∂t, ∂x) := ∂t + V.∂x .
The symbol is D(τ, k) = τ + V.k.

The Taylor series in h of infinite and finite orders respectively are,

(7.2) ψ(y, θ+ hζ) ∼ ψ(y, θ) +
∑

j≥1

hj gj(y, ζ) , ω(θ+ hζ) = ω(θ)−Vhζ + h2k(h, ζ) ,

where the sum on the right hand side of ∼ is an asymptotic expansion as h → 0, not a

convergent series. Then,

(7.3)

eitω(θ+ǫζ)/h = eitω(θ)/h e−itV .ζ ei(ht)k(h,ζ)

= eitω(θ)/h e−itV .ζ
(
1 +

∑

j≥1

(ht)jkj(h, ζ)
)
,

where the last line uses a Taylor expansion of s 7→ eisk(h,ζ) about s = 0. Define

v(x) :=

∫
eix.ζ a(ζ) dζ .

Use (7.2) and (7.3) in (7.1) to find

(7.4) uh ∼ eiS/h w(h, t, x, x/h) , S := ω(θ)t+ x.θ ,

and

w(h, t, x, y) ∼ w0(t, x, y) + hw1(t, x, y) + · · ·
in the sense of Taylor series about h = 0. The leading term is

w0(t, x, y) = v(x− Vt)ψ(y, θ) .

The velocity is V = −∇θω(θ). It is not at all obvious from this definition that V does

not exceed the speed of light. As our media are anisotropic, the speed may depend on

direction. We recall the algorithm giving such anisotropic speeds (see [23], [19], [25]).
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Denote by (τ, ξ) the dual variable of (t, y). The characteristic polynomial of Maxwell’s

equations is

p(y, τ, ξ) := det

(
τ

(
ǫ0(y) 0
0 µ0(y)

)
+

(
0 −ξ∧
ξ∧ 0

))
.

Its roots τ(y, ξ) for ξ real define the characteristic variety. Define extreme roots τmax(y, ξ)

by

τmax(y, ξ) := max
{
τ : p(y, τ, ξ) = 0

}
.

with a similar defintion for τmin(y, ξ). The function τmax is positive homogeneous of degree

one in ξ, and,

(7.5) τmax(y,−ξ) = − τmin(y, ξ) .

The set of velocities that do not exceed the speed of propagation is a convex set of vectors

v whose support function equal τmax(y,−ξ), equivalently

∩ξ∈R3\{0}

{
v : ξ.v ≤ τmax(y,−ξ)

}
.

In case of constant and isotropic permittivities τmax(y,−ξ) = |ξ|/√ǫµ yielding the

classic formula for the speed of light.

Define

τmax(ξ) := max
y∈T3

τmax(y, ξ) .

Then τmax(−ξ) is the largest speed limit for ξ.v.

Theorem 7.2. The group velocity V from Definition 1.5 respects the maximum speed of

propagation for each ξ 6= 0, precisely for all 0 6= ξ ∈ R3, ξ.V ≤ τmax(−ξ).

Proof. The Bloch spectral eigenvalue problem for periodic as opposed to θ-periodic func-

tions is

(7.6) i ω(θ)

(
ǫ0(y) 0
0 µ0(y)

)
Π(θ) +

(
0 −(iθ + ∂y)∧

(iθ + ∂y)∧ 0

)
Π(θ) = 0

where Π(θ) is the projector (of constant rank) on the eigensubspace of the eigenvalue

ω(θ). The constant multiplicity hypothesis implies that the eigenvalue and the spectral

projector are analytic in a vicinity of θ. Differentiating (7.6) with respect to θ in the

direction of a covector ξ and multiplying on the left by Π(θ) yields

(7.7) ξ.∇θω(θ) Π(θ)

(
ǫ0(y) 0
0 µ0(y)

)
Π(θ) + Π(θ)

(
0 −ξ∧
ξ∧ 0

)
Π(θ) = 0 .

Take any eigenfunction E(y), B(y), normalized by

(7.8)

∫

T3

〈
(
ǫ0(y) 0
0 µ0(y)

)(
E(y)
B(y)

)
,

(
E(y)
B(y)

)
〉 dy = 1 .
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The quadratic form associated to (7.7) yields

(7.9) ξ.∇θω(θ) +

∫

T3

〈
(

0 −ξ∧
ξ∧ 0

)(
E(y)
B(y)

)
,

(
E(y)
B(y)

)
〉 dy = 0 .

The−τ(y, ξ) are the eigenvalues with respect to the postitive definite matrix diag {ǫ0(y) , µ0(y)}
so the min-max characterization implies that for each y

〈
(

0 −ξ∧
ξ∧ 0

)(
E(y)
B(y)

)
,

(
E(y)
B(y)

)
〉 ≤ − τmin(y, ξ) 〈

(
ǫ0(y) 0
0 µ0(y)

)(
E(y)
B(y)

)
,

(
E(y)
B(y)

)
〉

≤ − τmin(ξ) 〈
(
ǫ0(y) 0
0 µ0(y)

)(
E(y)
B(y)

)
,

(
E(y)
B(y)

)
〉 .

Integrating and using (7.8) and (7.9) proves

ξ.∇θω(θ) − τmin(ξ) ≥ 0 ,

which is the desired relation since V = −∇θω(θ). �

An analogous result to Theorem 7.2 is proved in [3], where a bound on the group

velocity for scalar wave equations is given.

7.2. The diffractive time scale t ∼ 1/h. In (7.3), the expansion parameter is ht so

when ht is not small, the approximation is not appropriate. For the diffractive scale

ht ∼ 1, one needs a refinement. Take the next term in the Taylor expansion in the

exponent. Denote by q the symmetric quadratic expression

(7.10) q(ζ, ζ) :=

3∑

i,j=1

∂2ω(θ)

∂θi∂θj
ζi ζj .

Then,

ω(θ + ǫζ) = ω(θ) − hV.ζ + h2q(ζ, ζ)/2 + h3
∑

j≥0

hjβj(ζ) ,

and,

eiω(θ+hζ)t/h = eiω(θ)t/h e−itV .ζ eihtq(ζ,ζ)/2 eih(ht)
∑

j≥0 h
jβj(ζ) .

Introduce the slow time T = ht. The exact solution has the form

e2πiS/h W̃ (h, ht, x− Vt, x/h) , S = ω(θ)t + θ.x ,

W̃ (h, T , x, y) :=

∫
ψ(y, θ + hζ) eiT q(ζ,ζ)/2 eihT

∑
j≥0 h

jβj(ζ) eix.ζ a(ζ) dζ .

Taylor expansion in h yields

(7.11) eihT
∑

j≥0 h
jβj(ζ) =

(
1 +

∑

j≥1

hj rj(T , ζ)
)
.
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Using (7.2) and (7.11) in the definition of W̃ shows that

(7.12) W̃ (h, T , x, y) ∼
∑

j≥0

hj w̃j(T , x, y) ,

with

(7.13) w̃0(T , x, y) = ψ(y, θ)

∫
eiT q(ζ,ζ)/2 eix.ζ a(ζ) dζ .

This shows that the solution has an asymptotic expansion of the form

eiS/h W̃ (h, ht, x− Vt, x/h) ,
with W̃ satisfying (7.12).

Equation (7.13) implies that w̃0 is a tempered solutions (with values in K) of the

Schrödinger equation

(7.14) i ∂T w̃0 − 1

2
∂2θω(θ)

(
∂x, ∂x

)
w̃0 = 0 .

Though the function w̃0 takes values in the finite dimensional space K the equation (7.14)

is scalar. The constant rank hypothesis is crucial here.

8. Bloch wave packets on a modulated background and t = O(1)

This section considers solutions of the Maxwell’s equations for times t = O(1). This

time scale is an essential first step in treating the diffractive case. In order that the asymp-

totic description be nontrivial we allow lower order terms in the equations. In particular

this includes the case of a possibly conducting medium with Ohm’s law dissipation,

(8.1) ǫ(x, x/h) ∂tE = curlB − σ(t, x, x/h)E, µ(x, x/h) ∂tB = −curlE .

Here σ(t, x, y) is a nonnegative symmetric matrix valued function. The physics modelled

is that where σ 6= 0 the medium reacts instantaneously to the field E by generating a

current J = σ E. Such an assumption is realistic only when the field E varies little on

the time scales associated to the motion of electrons. The associated energy dissipation

law is

∂t

∫

R3

〈ǫE , E〉 + 〈µB , B〉 dx = −
∫

R3

〈
σE , E

〉
dx ≤ 0 .

The lower order tem is O(1) and appreciably affects the fields for times t = O(1).

In this section only, we replace Hypothesis 1.1 by the following that allows (8.1). The

perturbations are larger by a factor h−1 than in the diffractive case.

Hypothesis 8.1. T = O(1) hypothesis.

(8.2) 0 = P h(t, x, ∂t, ∂x)u
h := ∂t(A

h
0u

h) +
3∑

j=1

Aj∂xj
uh + Mh uh .
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The coefficients Aj, for j = 1, 2, 3, are the constant 6× 6 matrices

(8.3) A1 :=

(
0 J1

−J1 0

)
, A2 :=

(
0 J2

−J2 0

)
, A3 :=

(
0 J3

−J3 0

)
,

(8.4) J1 :=




0 0 0
0 0 1
0 −1 0


 , J2 :=




0 0 −1
0 0 0
1 0 0


 , J3 :=




0 1 0
−1 0 0
0 0 0


 .

The coefficient Ah
0 and Mh are of the form

(8.5) Ah
0(t, x) = A0

0(x/h) + hA1
0(t, x, x/h) , Mh =M(t, x, x/h) ,

where A0
0 and A1

0 satisfy Hypothesis 1.1.

Remark 8.2. It follows that the growth rate C(m, h) from Theorem 4.1 (and Remark

4.3) is of order O(1) as h→ 0.

Motivated by the special case of purely periodic media in Section 7.4 and the linear

case of Lax [22] (see also [25]) try the ansatz of two scale WKB type,

(8.6) vh(t, x) := eiS(t,x)/hW
(
h, t, x,

x

h

)
, W

(
h, t, x, y

)
= w0(t, x, y) + hw1(t, x, y) ,

where the wj(t, x, y) are periodic functions of y with period 2π. The case when S is a

linear function of (t, x) is our principal interest

S(t, x) = ω t+ θ .x , (ω, θ) ∈ R1+3 \ {0} .

For this phase the rays will be parallel straight lines and one finds Schrödinger type

equations at the diffractive scale t = O(1/h).

Three identities are at the heart of checking the accuracy of the ansatz

(8.7)

∂t

[
Ah

0 e
iS(t,x)/hW

(
h, t, x, y

)]
= eiS(t,x)/h

( iω
h

+ ∂t

)[
Ah

0 W
(
h, t, x, y

)]
,

curl x

[
eiS(t,x)/hW

(
h, t, x, y

)]
= eiS(t,x)/h

(
∂x +

iθ

h

)
∧W

(
h, t, x, y

)
,

1

h
curl y

[
eiS(t,x)/hW

(
h, t, x, y

)]
= eiS(t,x)/h

1

h
∂y ∧W

(
h, t, x, y

)
.

These yield

(8.8) P h(t, x, ∂t, ∂x)v
h = eiS(t,x)/h Zh(t, x, x/h) , with

Zh :=

[(iω
h

+ ∂t

)
Ah

0 −
(

0
(
∂x +

iθ
h

)
∧

−
(
∂x +

iθ
h

)
∧ 0

)
−
(

0 1
h
∂y∧

− 1
h
∂y∧ 0

)
+M

]
W.

Then

(8.9) Zh(t, x, y) = h−1 r−1 + r0 + h r1 + h2r2 , rj = rj(t, x, y) .
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Since one substitutes y = x/h, it would suffice to satisfy rj = 0 on the subspace of (t, x, y)

with x parallel to y. We achieve the more ambitious goal of choosing the wj so that

r−1 = r0 = 0 everywhere.

8.1. The leading order term. The leading two orders in Zh are

h−1r−1 + r0 = h−1 L(ω, θ, y, ∂y)W +
(
M(ω, θ, y, ∂t, ∂x, ∂y) + iωA1

0 + M
)
W ,

where L is from (1.6) and

(8.10) M(y, ∂t, ∂x) := A0
0(y)∂t −

(
0 ∂x∧

−∂x∧ 0

)
.

The highest order term in (8.9) is

(8.11) r−1 = L(ω, θ, y, ∂y)w0 .

In order that r−1 = 0 have nontrivial solutions, it is necessary that

kerL(ω, θ, y, ∂y) 6= {0} .
According to the Floquet-Bloch theory of Section 6, L(ω, θ, y, ∂y) has a nontrivial kernel

on periodic functions if and only iω = iω(θ) is an eigenvalue of (1.4). From now on we

make the choice of θ and ω(θ) so that the constant multiplicity hypothesis 1.4 is satisfied.

Definition 8.3. In addition to Definition 1.6 denote by Q ∈ Hom
(
Hs(T3

y);H
s+1(T3

y)
)
the

partial inverse of L defined by

QΠ = ΠQ = 0 , QL = LQ = I −Π .

The equation r−1 = 0 is equivalent to w0 ∈ K := kerL, that is

(8.12) Πw0 = w0 .

Using the definitions of L and M, the term r0 is given by,

(8.13) r0 = Lw1 +
(
M + iωA1

0 +M
)
w0,

so r0 = 0 if and only if,

(8.14) Lw1 +
(
M+ iωA1

0 +M
)
w0 = 0 .

Equation (8.14) involves both w0 and w1. Since L is selfadjoint on L2(T3) its range is

perpendicular to its kernel so ΠL = 0. This is true only because Π is the orthogonal

projection on the kernel K for the L2(T3) scalar product (not for the other scalar product

in Definition 1.6). The equation Π r0 = 0 yields an equation for w0 alone,

Π
(
M + iωA1

0 + M
)
w0 = 0 .

Taking into account (8.12), this is equivalent to

(8.15) Π
(
M + iωA1

0 + M
)
Πw0 = 0 .
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Proposition 8.4. For any w(t, x, y) ∈ C∞,

(8.16) ΠMΠw = ΠA0
0Π
(
∂t + V.∂x

)
w ,

with the group velocity V from Definition 1.5. The operator ΠA0
0Π is a linear isomorphism

of K to itself.

Proof. Prove the last sentence first. Since K is finite dimensional, it suffices to prove

injectivity. If ΠA0Π k = 0 then

0 =
〈
ΠA0Π k , k

〉
=
〈
A0 Π k , Πk

〉
≥ c ‖Πk‖2 , c > 0 ,

since A0 is strictly postive. Therefore k = Πk = 0 proving injectivity.

From the definition of Π and M one automatically has for arbitrary w,

ΠMΠw =
(
a0 ∂t +

3∑

j=1

aj
∂

∂xj

)
Πw ,

with matrices aj(y). It suffices to compute the aj . This is done by computing the dif-

ferential operator on the test functions t ψ, and xjψ, with ψ ∈ K. Applying to tψ and

setting t = 0 yields

(8.17) a0Π = ΠA0
0Π .

Applying to xjψ and setting xj = 0 yields

(8.18) aj Π = −Π

(
0 ej ∧

−ej ∧ 0

)
Π , {e1, e2, e3} is the standard basis of R3 .

The identification of aj from (8.18) and (8.17) requires first order perturbation theory as

in (8.19) of the next proposition. Second order perturbation theory as in (8.20) is needed

for diffractive geometric optics. The identites are proved by differentiating the identities

ΠL = 0 and LΠ = 0. We refer the reader to [2], [25] for detailed proof.

Proposition 8.5. Suppose that θ and ω satisfy the constant multiplicity hypothesis 1.4.

Suppose that the coefficient A0
0 and θ depend smoothly on a parameter α with their unper-

turbed values attained at α. With ′ denoting differentiation with respect to α, the following

perturbation formulas hold,

(8.19) ΠL′ Π = 0 ,

and

(8.20) ΠL′′ Π − 2ΠL′QL′ Π = 0 .

Returning to the formula for aj , use (8.19) with α equal to the jth component of θ and
′ = ∂/∂θj . Then,

L′ = i
∂ω

∂θj
A0

0(y) −
(

0 i ej∧
−i ej∧ 0

)
.
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The above identity in combination with (8.19) and (8.18) yeilds

aj Π = −ΠA0
0(y) Π

∂ω

∂θj
.

This together with (8.17) completes the proof of Proposition 8.4. �

Recall Definition 1.7. The map γ inherits the regularity of the coefficients,

(8.21) ∂αt,xγ ∈ L∞
(
R1+3 ; HomK

)
.

Then r−1 = Πr0 = 0 exactly when w0 = Πw0 satisfies the transport equation

(8.22)
(
∂t + V.∂x + γ(t, x)

)
w0 = 0 .

The equation r0 = 0 is equivalent to the pair

Π r0 = 0 , Q r0 = 0 .

Equation (8.13) shows that Q r0 = 0 if and only if

(8.23)
(
I − Π

)
w1 = −Q

(
M+ iωA1

0 +M
)
w0 .

The choice of Πw1 does not influence r1, r0. Choose

(8.24) Πw1 = 0 .

Theorem 8.6. If g ∈ C∞(R3;K) there is a unique w0 ∈ C∞(R;H∞(R3;K)) satisfying

(8.22) with w0(0) = g. Define w1 and vh by (8.23), (8.24) and (8.6) respectively. If uh is

the exact solution of P huh = 0 with uh
∣∣
t=0

= vh
∣∣
t=0

, then for all α

sup
t∈[0,T ]

∥∥(h ∂t,x)α(uh − vh)
∥∥
L2(R3)

≤ C(α) h , 0 < h < 1 .

Proof. I. Estimate for P hvh. Use (8.8) together with (8.9) and the fact that the equa-

tions satisified by the functions wj guarantee that r−1 = r0 = 0. Therefore for h ∈]0, 1[
∥∥∂αt,x,yZh

∥∥
L∞([0,T ]×R3×T3)

≤ C(α) h, suppZh ⊂
{
(t, x+ Vt, y) : x ∈ supp g

}
.

This implies the fundamental residual estimate
∥∥(h ∂t,x)α

(
P hvh

)∥∥
L∞([0,T ]×R3)

≤ C(α) h, h ∈]0, 1[ .

Using the compact support one has

(8.25)
∥∥(h ∂t,x)α

(
P hvh

)∥∥
L∞([0,T ];L2(R3))

≤ C(α) h, h ∈]0, 1[ .

II. Stability for P h. For T > 0 and m fixed Theorem 4.1 shows that there is a

constant C = C(T,m) so that for 0 ≤ t ≤ T and h ∈]0, 1]

(8.26)
∥∥w(t)

∥∥
m,h

≤ C
(∥∥w(0)

∥∥
m,h

+

∫ t

0

∥∥P hw(s)
∥∥
m,h

ds
)
.
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III. Combining. Apply (8.26) to wh := uh − vh to find

∥∥(uh − vh)(t)
∥∥
m,h

≤ C
(∥∥(uh − vh)(0)

∥∥
m,h

+

∫ t

0

∥∥P h (uh − vh)(s)
∥∥
m,h

ds
)

= C
(∥∥(uh − vh)(0)

∥∥
m,h

+

∫ t

0

∥∥P h vh(s)
∥∥
m,h

ds
)

= C
(∥∥(uh − vh)(0)

∥∥
m,h

+ O(h)
)
.

where the last step uses the residual estimate (8.25).

It remains to show that wh = uh − vh satisfies for for all m,

(8.27) ‖wh(0)‖m,h = O(h), h→ 0 .

To do that it suffices to show that for all 0 ≤ k ∈ N and s,

(8.28) ‖(h∂t)kwh(0)‖Hs
h
(R3) = O(h), h→ 0 .

Since the initial values vanish, the case k = 0 is automatic. Prove (8.28) by induction on

k. Suppose (8.28) known for 0 ≤ k ≤ k and all s. We prove it for k + 1 and all s. Begin

with the identity

h(Ah
0)

−1P hwh = h(Ah
0)

−1
(
Ah

0∂tw
h + (∂tA

h
0)w

h +
∑

j

Aj∂jw
h +Mhwh

)
.

The first term on the right is h∂tw
h. Therefore

(h∂t)
k+1wh = (h∂t)

kh∂tw
h = (h∂t)

k(Ah
0)

−1 h
(
P h − (∂tA

h
0)−

∑

j

Aj∂j −Mh
)
wh.

The inductive hypothesis implies that ‖(h ∂t)k+1u(0)‖Hs
h
(R3) = O(h). This completes the

inductive proof of (8.28) and therefore the proof of the theorem. �

9. Bloch wave packets on a modulated background and t = O(1/h)

This section considers solutions of the Maxwell’s equations with coefficients and lower

order terms satisfying Hypothesis 1.1 so as to become pertinent at t ∼ 1/h.

Remark 9.1. With permittivities satisfying Hypothesis 1.1, the growth rate C(m, h) from

Theorem 4.1 satisfies C(m, h) ≤ c(m) h with a constant c(m) independent of h ∈]0, h[.
The time evolution is uniformly bounded so long as the product t× h remains bounded.

Motivated by the special case of purely periodic media in Section 7.4, the ansatz ex-

pected to be valid for times t = O(1/h) is of two scale WKB type,

(9.1) vh(t, x) := eiS(t,x)/hW
(
h, ht, t, x,

x

h

)
, S(t, x) = ω t+ θ .x ,

W
(
h, T , t, x, y

)
= w0(T , t, x, y) + hw1(T , t, x, y) + h2w2(T , t, x, y),
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where the wj(T , t, x, y) are periodic functions of y with period 2π. To go further in time

requires the additional corrector w2. In order to preserve the relative ordering of the size

of the terms for t = O(1/h) it is crucial to insist that the wj(T , t, x, y) are sublinear in t,

lim
t→∞

wj(T , t, x, y)
t

= 0

uniformly in T , x, y. We construct profiles satisfying a stronger hypothesis.

Compute using (8.7)

(9.2) P h(t, x, ∂t, ∂x)v
h = eiS(t,x)/h Zh(hT , t, x, x/h) , with

(9.3)

Zh(T ,t, x, y) :=

[(iω
h

+ ∂t + h∂T

)
Ah

0 −

(
0

(
∂x + iθ/h

)
∧

−
(
∂x + iθ/h

)
∧ 0

)
−
(

0 1
h
∂y∧

− 1
h
∂y∧ 0

)
+ hM

]
W .

Then

(9.4) Zh(t, x, y) = h−1 r−1 + r0 + h r1 + h2 r2 + h3 r3 , rj = rj(t, x, y) .

As in the case of t = O(1), we achieve the ambitious goal of choosing the wj so that the

leading r−1 = r0 = r1 = 0 everywhere. This reduces the residual to O(h2) which allows

us to justify for times t = O(1/h).

One has

r−1 = Lw0 and r0 = Lw1 +Mw0

with L and M defined by (1.6) and (8.10) respectively. The next coefficient is

r1 = ∂tA
0
0w1 + ∂τ (A

0
0w0) + iω(A0

0w2 + A1
0w0)−

(
0 ∂x∧

− ∂x∧ 0

)
w1

−
(

0
(
iθ + ∂y

)
∧

−
(
iθ + ∂y

)
∧ 0

)
w2 +Mw0

= Lw2 +Mw1 + Nw0 ,

where

(9.5) N := ∂T A
0
0 + iωA1

0 +M .

As in Section 9, r−1 = 0 and Π r0 = 0 if and only if

Πw0 = w0 , and (∂t + V.∂x)w0 = 0 ,

with V as in Definition 1.5. Thus there is a reduced K valued profile w̃0 such that

w0(T , t, x, y) = w̃0(T , x− Vt, y) .
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In order to determine w̃0 one needs a dynamic equation in T . The equation Q r0 = 0

yields

(9.6)
(
I − Π

)
w1 = −Q M w0 ,

and thus

(9.7) (∂t + V.∂x)
(
I − Π

)
w1 = 0 .

The equation Πr1 = 0 yields the Schrödinger equation determining the dynamics of w̃0.

Plugging (9.6) into the equation Πr1 = 0 yields

(9.8) Π M Πw1 − Π M Q M Πw0 +Π N Πw0 = 0 .

Proposition 8.4 and (9.7) imply that equation (9.8) is equivalent to

(9.9)
(
Π N Π−Π M Q M Π

)
w0 = −Π A0

0 Π
(
∂t + V.∂x

)
Πw1 .

The next proposition identifies the operator on the left hand side of (9.9).

Proposition 9.2. On smooth functions w(T , t, x, y) that satisfy (∂t + V.∂x)w = 0,

(9.10)
(
ΠNΠ − ΠMQMΠ

)
w = ΠA0

0Π
[
∂T +

1

2
i ∂2θω(∂x, ∂x) + γ(t, x)

]
w .

Remark 9.3. It is surprising to find that the operator

(ΠA0
0Π)

−1
(
ΠNΠ − ΠMQMΠ

)

acting on K valued functions has leading terms that are scalar. Coupling only occurs

through the zero order term γ. A related zero order coupling occurs in §6 of [4]

Proof. With k = (k1, k2, k3) ∈ R3 fixed, θ := θ+αk, α ∈ R, differentiate L(ω, θ, y, k) with

respect to α to find

(9.11)
L′ = ikA0

0∂θω −
(

0 ik∧
−ik∧ 0

)
= iM(y, ∂t, k)− iA0

0 D(∂t, k) ,

L′′ = i(k∂θ)
2ωA0

0 .

Using the first identity yields

Π L′ Q L′ Π = −Π M Q M Π− Π A0
0 D(∂t, k) Q A0

0 D(∂t, k) Π .

Applying (8.20) yields

(9.12)
1

2
Π L′′ Π = −Π M Q M Π−Π A0

0 D(∂t, k) Q A0
0 D(∂t, k) Π .

Equation (9.12) and the definition of N in (9.5), give

(9.13)

(
ΠNΠ − ΠMQMΠ

)
w

= Π
[
∂T A

0
0 + iωA1

0 +M +
1

2
i (k∂θ)

2ωA0
0 + A0

0D(∂t, k) Q A0
0 D(∂t, k)

]
Πw .
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Next replace k by ∂x and simplify the right hand side of (9.13) using

D(∂t, ∂x)w = 0 .

This yields
(
ΠNΠ − ΠMQMΠ

)
w = Π

[
∂T A

0
0 + iωA1

0 +M +
1

2
i ∂2θω(∂x, ∂x)A

0
0

]
Πw

= ΠA0
0Π
[
∂T +

1

2
i ∂2θω(∂x, ∂x) + γ(t, x)

]
w .

�

9.1. Ray averages. In general it is impossible to satisfy (9.9) exactly since all the terms

are annihilated by ∂t + V∂x except the γ(t, x) term. If the coefficients are constant on

group lines the γ term is constant too and one can construct infinitely accurate solutions

(see [2]). In the present case we replace γ by its average on rays to find a solvable equation.

Then estimate the error. For that estimate we impose an assumption on γ slightly stronger

than the existence of ray averages. The material is recalled from [2] where the proofs and

additional information can be found.

Assume that γ ∈ C∞(R1+3 ; Hom(K)) satisfies (8.21) and that the averages on rays exist

as in (1.8). It follows that the γ̃ is smooth and that the ray averages of the derivatives of

γ exist uniformly on compacts and satisfy

(9.14) lim
T→+∞

∥∥∥ 1
T

∫ T

0

∂jt ∂
β
xγ(t, x+ Vt) dt − (−V.∂x)j∂βx γ̃(x)

∥∥∥
L∞(RN )

= 0 .

We need more than this. The function γ̃(x) is the average on the ray intersecting t = 0

at x. The ray passing through the point (t, x) intersects t = 0 at x − Vt. The function

which assigns to (t, x) the average value of γ on the ray through (t, x) is equal to γ̃(x−Vt).
The function that subtracts from γ(t, x) its average on the group line through (t, x) is

equal to γ(t, x)− γ̃(x− Vt).
Consider the Hom(K) valued solution g of the transport equation

(9.15)
(
∂t + V.∂x

)
g = γ(t, x)− γ̃(x− Vt) , g

∣∣
t=0

= 0 .

Then
g(t, x)

t
=

1

t

∫ t

0

γ(s, x̃+ Vs) ds − γ̃(x̃), x̃ := x− Vt .

Assumption (1.8) is equivalent to the fact that this is o(1) as t→ +∞,

(9.16) lim
t→+∞

sup
x∈RN

‖g(t, x)‖
t

= 0 .

Assume that γ satisfies the ray average hypothesis in Definition 1.8.
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Example 9.4. i. If γ(t, x) = f(ℓ(t, x)) where f(θ) is a smooth periodic function of

arbitrary period and ℓ is a linear functional then the ray average hypothesis is satisfied

with β = 0.

ii. If M : R1+N → RM is linear and satisfies the (generic) small divisor hypothesis

∃C > 0, m ∈ N, ∀n ∈ NM , n.M(1,V) 6= 0 ⇒ |(n.M(1,V)| ≥ C |n|−m ,

then, for h(θ1, . . . , θM ) ∈ C∞(TM) the quasiperiodic function γ(t, x) = h(M(t, x)) satisfies

the hypothesis with β = 0 (see [17]).

iii. Consider smooth almost periodic γ of the form

(9.17) γ(t, x) =
∑

η∈R1+N

aη e
iη.(t,x) ,

where aη vanish for all but a countable family of η and satisfy

(9.18) ∀n ∈ N,
∑

η

〈η〉n
∣∣aη
∣∣ < ∞ 〈η〉 := (1 + |η|2)1/2 .

Then γ(t, x) − γ̃(x−Vt) =
∑

η.(1,V)6=0 aη e
iη.(t,x) . Suppose that there is an α > 0 so that

for all n

(9.19)
∑

0<|η.(1,V)|<δ

〈η〉n
∣∣aη
∣∣ = O(δα), δ → 0 .

Then the ray average hypothesis of Definition 1.8 holds with β = α/(α+ 1).

9.2. Using ray averages. Rewrite (9.9) as

(9.20)
(
∂T +

1

2
i ∂2θω(∂x, ∂x)+ γ̃(x−Vt)

)
w0 = −

(
∂t+V.∂x

)
Πw1−

(
γ(x)− γ̃(x−Vt)

)
w0 .

This equation is satisfied by choosing w0 and Πw1 so that both sides are identically zero.

The left yields equation (1.9). The initial value, w̃0(0, x) ∈ S(R3 ; K) is arbitrary.

Lemma 9.5. For any f ∈ S(R3;K) there is a unique solution ζ(T , x) ∈ C∞(RT ; S(R3;K))

to the Schrödinger initial value problem

(9.21)
(
∂T +

1

2
i ∂2θω(∂x, ∂x) + γ̃(x)

)
ζ = 0 , ζ(0) = f .

For each m, s, r ∈ N, |α| ≤ m, |κ| ≤ s there exist constants c(m, s, r), b(m, s) so that for

all T

‖xκ∂αx∂rT ζ(T )‖L2(R3) ≤ c(m, s, r)e

(
1+b(m,s)‖γ̃‖

Wm+s,∞

)
T (1 + ‖γ̃‖W r,∞)r

s∑

|ℓ|=0

‖xℓf‖Hm+s−ℓ+2r .

Proof. We present only the a priori estimates. Multiplying the equation by ζ̄ and taking

the real part yields
1

2

∂

∂T

∫

R3

|ζ |2 dx+ ℜ
∫

R3

〈γ̃ζ, ζ〉 dx = 0 .



31

Estimate

ℜ
∫

R3

〈γ̃ζ, ζ〉 dx ≤ ‖γ̃‖
L∞

∫

R3

|ζ |2 dx ,

and integrate with respect to T to find

1

2

∫

R3

|ζ(T )|2 dx ≤ 1

2

∫

R3

|f |2 dx + ‖γ̃‖
L∞

∫ T

0

∫

R3

|ζ(T )|2 dx .

Gronwall’s inequality gives

(9.22) ‖ζ(T )‖L2(R3) ≤ e‖γ̃‖L∞ T ‖f‖L2(R3) .

The Duhamel relation

∂xj
ζ(T ) = K(T , 0)∂xj

ζ(0) +

∫ T

0

K(T , s) P (∂xj
ζ)(s) ds

= K(T , 0)∂xj
f +

∫ T

0

K(T , s) (−∂xj
γ̃)ζ(s) ds

then yields the estimate

‖∂xj
ζ(T )‖L2(R3) ≤ e‖γ̃‖L∞ T ‖∂xj

f‖L2(R3) +

∫ T

0

e‖γ̃‖L∞ (T −s)‖∇γ̃‖L∞‖ζ(s)‖L2(R3) ds .

This combined with (9.22) gives

‖ζ(T )‖H1(R3) ≤ 2 e‖γ̃‖L∞ T ‖f‖H1(R3) +

∫ T

0

e‖γ̃‖L∞ (T −s)‖∇γ̃‖L∞‖ζ(s)‖L2(R3) ds .

Now apply Gronwall’s inequality to get

‖ζ(T )‖H1(R3) ≤ 2e‖γ̃‖W1,∞
T ‖f‖H1(R3) .

By induction one proves that

sup
|α|≤m

∥∥(∂x)α ζ(T )
∥∥
L2(R3)

≤ 2 eb(m) ‖γ̃‖
Wm,∞ T ‖f‖Hm(R3) .

Let us prove the weighted estimate xκ∂αx . The commutator of xj with the Schrödinger

operator S in (9.21) is the first order scalar differential operator

[S, xj ] = i
∑

l

(∂2θω)lj∂xj
.

Therefore, for |α| ≤ m

xj∂
α
x ζ(T ) = K(T , 0)xj∂αx ζ(0) +

∫ t

0

K(T , s) S(xj∂αx ζ)(s) ds

= K(T , 0)xj∂αx f +

∫ t

0

K(T , s) [S, xj ](∂αx ζ)(s) ds ,

which yields

‖xj∂αx ζ(T )‖L2(R3) ≤ c e

(
1+b(m+1)‖γ̃‖

Wm+1,∞

)
T
[
‖xjg‖Hm(R3) + ‖f‖Hm+1(R3)

]
.
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By induction one proves, for |κ| ≤ s,

(9.23) ‖xκ∂αx ζ(T )‖L2(R3) ≤ c(m, s)e

(
1+b(m,s)‖γ̃‖

Wm+s,∞

)
T

s∑

|ℓ|=0

‖xℓf‖Hm+s−ℓ .

The time derivative commutes with the Schrödinger operator, therefore, for each r ∈ N,

∂rT ζ satisfies the same equation as ζ with initial condition

|∂rT ζ(0)| ≤ C(r)(1 + ‖γ̃‖W r,∞)r
∑

j≤2r

|∂jT f | .

Apply (9.23) to ∂rT ζ to find

‖xκ∂αx∂rT ζ(T )‖L2(R3) ≤ c(m, s, r)e

(
1+b(m,s)‖γ̃‖

Wm+s,∞

)
T (1 + ‖γ̃‖W r,∞)r

s∑

|ℓ|=0

‖xℓf‖Hm+s−ℓ+2r .

�

Given w̃0(0) = f ∈ S(R3;K) choose w̃0 the solution provided by Lemma 9.5. It satisfies

for all α,

(9.24) (x , ∂T ,t,x)
αw0 ∈ L∞([0, T ]T × Rt × R3

x ; K) .

Setting the right hand side of (9.20) equal to zero yields an equation that is solved using

a Hom(K) valued integrating factor g(t, x),

(9.25) Πw1 = g(t, x)w0,

where g is the solution of (9.15). The ray average hypothesis with parameter 0 ≤ β < 1

yields estimates for the derivatives of g and therefore those of Πw1,

〈t〉−β (x , ∂t,x)
α(Πw1) ∈ L∞([0, T ]× Rt × R3

x ; K) .

The component (I −Π)w1 is given by (9.6) in terms of w0 so (9.24) implies,

(x , ∂T ,t,x,y)
α(I − Π)w1 ∈ L∞([0, T ]× Rt × R3

x × R3
y) ,

with w1 is periodic in y. This completes the determination of w0 and w1. At this stage

one has r−1 = r0 = Π r1 = 0. We choose w2 to that (I − Π)r1 = 0. The latter equation

holds if and only if

(9.26) (I − Π)w2 = QMw1 +QNw0 .

This determines (I−Π)w2. On the other hand, Πw2 does not affect the profiles r−1, r0, r1.

It is chosen equal to zero,

(9.27) Πw2 = 0 .
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The estimates for w0, w1 imply that the y-periodic w2 satisfies estimates analogous to

those of w1 so,

(9.28) 〈t〉−β (x , ∂T ,t,x,y)
αwj ∈ L∞([0, T ]× Rt × R3

x × R3
y), j = 1, 2 .

This completes the determination of the profiles so that

(9.29) r−1 = r0 = r1 = 0 .

Theorem 9.6. If f ∈ S(R3;K) there is a unique w0 ∈ C∞(R;S(R3;K)) satisfying (1.9)

with w0(0) = f . Define w1, w2 and vh by (9.6), (9.25), (9.26), (9.27) and (9.1) respec-

tively. If uh is the exact solution of P huh = 0 with uh
∣∣
t=0

= vh
∣∣
t=0

, then for all α

(9.30) sup
t∈[0,T/h]

∥∥(x , h ∂t,x)α(uh − vh)
∥∥
L2(R3)

≤ C(α) h1−β 0 < h < 1 .

Proof. Let m ∈ N. The bound (9.28) and the identity (9.29) yield the residual estimate

(9.31)
∥∥〈t〉−β(x , h ∂t,x)

α
(
P hvh

)∥∥
L∞([0,T/h]×R3)

≤ C(α) h2, h ∈]0, 1[ .
This combined with Theorem 4.1 and Remark 4.3 shows that there exists a constant

C(m, T ) such that for all t ∈ [0, T/h]

∥∥(uh − vh)(t)
∥∥
m,h

≤ C(m, T )
(∥∥(uh − vh)(0)

∥∥
m,h

+

∫ T/h

0

∥∥P h vh(s)
∥∥
m,h

ds
)

= C(m, T, β)
(∥∥(uh − vh)(0)

∥∥
m,h

+ O
(
h1−β

))
.(9.32)

For the first term in the rhs of (9.32) we follow the proof of Theorem 8.6 which yields in

this case ∥∥(uh − vh)(0)
∥∥
m,h

≤ O
(
h1−β

)
.

The error estimate with polynomial weights xα requires an additional weighted stability

estimate. We will use the following notation. For a function u(t, x), integers ℓ,m ≥ 0,

define

‖u(t)‖ℓ,m,h :=
∑

|β|≤ℓ , |α|≤m

∥∥xβ(h∂t,x)αu(t)
∥∥
L2(R3)

.

Lemma 9.7. Under the assumptions of Theorem 4.1, there exist constants c(ℓ,m), C(m, h)

such that

(9.33) ‖u(t)‖ℓ,m,h ≤ c(ℓ,m) ec(ℓ,m)C(m,h) t ‖u(0)‖ℓ,m,h .

Proof. It is a commutator argument resembling the proof of Theorem 4.1. The proof is

inductive in ℓ. The case ℓ = 0 is provided by Theorem 4.1. Assume that (9.33) holds for

ℓ = ℓ̄. The case ℓ̄+1 is proved by applying the inductive hypothesis to xju for j = 1, 2, 3

and using the commutator relation

[P h, xj] = Aj j = 1, 2, 3 .
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An application of Gronwall’s inequality finishes the proof of the lemma. �

Using the weighted estimates as above proves the theorem. �

Proof of Theorem 1.9 Write

uh − vh = (uh − vh) + (uh − uh) + (vh − vh) .

The preceding theorem estimates the first term. It suffices to show that the differences

uh − uh and vh − vh have similar upper bounds. The first follows from the stability for

Maxwell’s equations proved in Lemma 9.7. The second follows from Lemma 9.5. �
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Sup. Sér. 2, 12 (1883), pp. 47–89.

[14] H. Gersen, T. Karle, R. Engelen, W. Bogaerts, J. Korterik, N. van Hulst, T. Krauss, and L. Kuipers,
Real-space observation of ultraslow light in photonic crystal waveguides, Phys. Rev. Lett. 94(2005)
073903-1-073903-4.

[15] W.R. Hamilton, Third supplement to an essay on the theory of systems of rays, Trans. Roy. Irish
Acad. 17, 1-144, (1833).

[16] L.V. Hau, S. E. Harris, Z. Dutton, C. Behroozi, Light speed reduction to 17 meters per second in an

ultracold atomic gas, Nature 397, 594-598, (1999).
[17] J.-L. Joly, G. Métiver, and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear

multidimensional oscillatory waves, Duke Math J., 70, 373-404, (1993).
[18] J.-L. Joly, G. Métiver, and J. Rauch, Diffractive nonlinear geometric optics with rectification, Indiana

U. Math. J. 47, 1167-1242, (1998).



35

[19] J.L. Joly, G. Métivier and J. Rauch, Hyperbolic domains of dependence and Hamilton-Jacobi equa-

tions, J. Hyp. Diff. Eq., 2(2005)713-744.
[20] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin (1966).
[21] P. Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science,

207–272, Frontiers Appl. Math., 22, SIAM, Philadelphia (2001).
[22] P. D. Lax, Asymptotic solutions of oscillatory initial value problems, Duke Math. J. 24, 627-646,

(1957).
[23] J. Leray, Lectures on Hyperbolic Partial Differential Equations, Institute for Advanced Study (1953).
[24] T. Nishida and J. Rauch, The initial boundary value problem for the inviscid compressible Euler

equations, unpublished manuscript.
[25] J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, American Mathematical

Society (2012).
[26] M. Reed, B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York (1978).
[27] P. St. J. Russell, Photonic crystal fibers, J. Lightwave. Technol., 24 (12), 4729-4749, (2006).
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[29] Y.A. Vlasov, S. Petit, G. Klein, B. Hönerlage, and C. Hirlmann, Femtosecond measurements of the

time of flight of photons in a three-dimensional photonic crystal, Phys. Rev. E 60, 1030-1035, (1999).
[30] C. Wilcox, Theory of Bloch waves, J. Analyse Math. 33, 146–167, (1978)


	1. Introduction.
	2. L2(R3) estimates
	3. Coercivity
	4. Stability
	5. Stationary solutions
	6. The theory of Floquet and Bloch
	6.1. Bloch Transform
	6.2. Maxwell's equations
	6.3. Bloch spectral theory

	7. The purely periodic case
	7.1. The geometric optics time scale t1.
	7.2. The diffractive time scale t1/h.

	8. Bloch wave packets on a modulated background and t=O(1)
	8.1. The leading order term.

	9. Bloch wave packets on a modulated background and t=O(1/h)
	9.1. Ray averages.
	9.2. Using ray averages

	References

