Strong edge-colouring of sparse planar graphs - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2014

Strong edge-colouring of sparse planar graphs

Résumé

A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a matching. It is known that every planar graph with maximum degree $\Delta$ has a strong edge-colouring with at most $4\Delta+4$ colours. We show that $3\Delta+1$ colours suffice if the graph has girth 6, and $4\Delta$ colours suffice if $\Delta\geq 7$ or the girth is at least 5. In the last part of the paper, we raise some questions related to a long-standing conjecture of Vizing on proper edge-colouring of planar graphs.
Fichier principal
Vignette du fichier
Second_version.pdf (142.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00932945 , version 1 (18-01-2014)
hal-00932945 , version 2 (21-01-2014)
hal-00932945 , version 3 (21-07-2014)

Identifiants

Citer

Julien Bensmail, Ararat Harutyunyan, Hervé Hocquard, Petru Valicov. Strong edge-colouring of sparse planar graphs. Discrete Applied Mathematics, 2014, ⟨10.1016/j.dam.2014.07.006⟩. ⟨hal-00932945v3⟩
437 Consultations
296 Téléchargements

Altmetric

Partager

More