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A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a matching. It is known that every planar graph with maximum degree ∆ has a strong edge-colouring with at most 4∆ + 4 colours. We show that 3∆ + 1 colours suffice if the graph has girth 6, and 4∆ colours suffice if ∆ ≥ 7 or the girth is at least 5. In the last part of the paper, we raise some questions related to a long-standing conjecture of Vizing on proper edge-colouring of planar graphs.

Introduction

A proper edge-colouring of a graph G = (V, E) is an assignment of colours to the edges of the graph such that two adjacent edges do not use the same colour. We use the standard notation, χ ′ (G), to denote the chromatic index of G. A strong edge-colouring (called also distance 2 edgecolouring) of a graph G is a proper edge-colouring of G, such that the every set of edges using the same colour induces a matching. We denote by χ ′ s (G) the strong chromatic index of G which is the smallest integer k such that G can be strongly edge-coloured with k colours. Strong edge-colouring has been studied extensively in the literature by different authors (see [START_REF] Erdős | Problems and results in combinatorial analysis and graph theory[END_REF][START_REF] Erdős | Irregularities of partitions[END_REF][START_REF] Molloy | A bound on the strong chromatic index of a graph[END_REF][START_REF] Faudree | The strong chromatic index of graphs[END_REF]1,[START_REF] Horák | Induced matchings in cubic graphs[END_REF][START_REF] Hocquard | On strong edge-colouring of subcubic graphs[END_REF]2,3,[START_REF] Hudák | Strong edge-coloring of planar graphs[END_REF]).

The girth of a graph G is the length of a shortest cycle in G. We denote by ∆ the maximum degree of a graph.

Perhaps the most challenging question for strong edge-colouring is the following conjecture:

Conjecture 1 (Erdős and Nešetřil [START_REF] Erdős | Irregularities of partitions[END_REF]). For every graph G, χ ′ s (G) ≤ 5 4 ∆ 2 for ∆ even and 1 4 (5∆ 2 -2∆ + 1) for ∆ odd.

Andersen [1] and Horák et al. [START_REF] Horák | Induced matchings in cubic graphs[END_REF] showed this conjecture for the case when ∆ = 3. When ∆ is large enough, Molloy and Reed showed that χ ′ s (G) ≤ 1.998∆ 2 [START_REF] Molloy | A bound on the strong chromatic index of a graph[END_REF]. In this note, we study the strong chromatic index of planar graphs. The work in this area started with the paper of Faudree et al. [START_REF] Faudree | The strong chromatic index of graphs[END_REF], who proved the following theorem.

Theorem 2 (Faudree et al. [START_REF] Faudree | The strong chromatic index of graphs[END_REF]). If G is a planar graph then χ ′ s (G) ≤ 4∆ + 4, for ∆ ≥ 3.

The proof of Theorem 2 uses the Four Colour Theorem. The authors also provided a construction of planar graphs of girth 4 which satisfy χ ′ s (G) = 4∆ -4. Hence, the bound of Theorem 2 is optimal up to an additive constant.

The same authors also conjectured that for ∆ = 3 the bound can be improved.

Conjecture 3 (Faudree et al. [START_REF] Faudree | The strong chromatic index of graphs[END_REF]). If G is a planar subcubic graph then χ ′ s (G) ≤ 9. Hocquard et al. obtained the following weakening of Conjecture 3.

Theorem 4 (Hocquard et al. [START_REF] Hocquard | On strong edge-colouring of subcubic graphs[END_REF]). If G is a planar graph with ∆ ≤ 3 containing neither induced 4-cycles, nor induced 5-cycles, then χ ′ s (G) ≤ 9.

An interesting question is to see how the strong chromatic index behaves for sparse planar graphs. For instance, when the girth is large enough the strong chromatic index decreases to the near optimal lower bound, as showed in the following theorems: Theorem 5 (Borodin and Ivanova [2]). If G is a planar graph with maximum degree ∆ ≥ 3 and girth

g ≥ 40⌊ ∆ 2 ⌋, then χ ′ s (G) ≤ 2∆ -1.
Recently this result was improved for ∆ ≥ 6:

Theorem 6 (Chang et al. [3]).
If G is a planar graph with maximum degree ∆ ≥ 4 and girth

g ≥ 10∆ + 46, then χ ′ s (G) ≤ 2∆ -1.
For smaller values of the girth, Hudák et al. [START_REF] Hudák | Strong edge-coloring of planar graphs[END_REF] improved the bound in Theorem 2.

Theorem 7 (Hudák et al. [START_REF] Hudák | Strong edge-coloring of planar graphs[END_REF]). If G is a planar graph with girth g ≥ 6 then χ ′ s (G) ≤ 3∆ + 6.

Our main result in this paper improves the upper bound in Theorem 7. In particular, we show the following.

Theorem 8. If G is a planar graph with girth g ≥ 6 then χ ′ s (G) ≤ 3∆ + 1.
Moreover, in Section 3, by a more careful analysis of the proof of Theorem 2 given in [START_REF] Faudree | The strong chromatic index of graphs[END_REF] and by using some results on proper edge-colouring, we obtain the following strengthening.

Theorem 9. Let G be a planar graph with maximum degree ∆ and girth g. If G satisfies one of the following conditions below, then χ ′ s (G) ≤ 4∆

• ∆ ≥ 7,

• ∆ ≥ 5 and g ≥ 4,

• g ≥ 5.

Before proving our results we introduce some notation.

Notation. Let G be a graph. Let d(v) denote the degree of a vertex v in G. A vertex of degree k is called a k-vertex. A k + -vertex (respectively, k --vertex) is a vertex of degree at least k (respectively, at most k). A k l -vertex is a k-vertex adjacent to exactly l 2-vertices. A bad 2-vertex is a 2-vertex adjacent to another 2-vertex. When speaking about a vertex as a neighbour, same notations apply just by replacing the word "vertex" with "neighbour". Two edges are at distance 1 if they share one of their ends and they are at distance 2 if they are not at distance 1 and there exists an edge adjacent to both of them. We define N 2 [uv] as the set of edges at distance at most 2 from the edge uv and 

N 2 (uv) = N 2 [uv] -uv.
(u) = {u 1 , u 2 , . . . , u k-1 , x}, such that each u i with i ∈ k -1 is a 2 --vertex and u 1 is either a 1-vertex or a 2-vertex adjacent to either a 3 --vertex or a 4 3 -vertex. 8. If k ≥ 5, then H does not contain a k-vertex adjacent to k-2 vertices of degree 2, u 1 , . . . , u k-2 , such that for i ∈ k -3 , each u i is adjacent to either a 3 --vertex or a 4 3 -vertex. 9. If k ≥ 5 and 1 ≤ α ≤ k -4, then H does not contain a k-vertex adjacent to α 1-vertices and to k -2 -α vertices of degree 2, u 1 , . . . , u k-2-α , such that for i ∈ k -3 -α each u i is adjacent to either a 3 --vertex or a 4 3 -vertex.

Proof

Let L be the set of colours 3∆ + 1 . For each of the parts of the claim, we will suppose by contradiction that the described configuration exists in H. Then we will build a graph H ′ from H by removing a certain number of vertices and edges. By minimality of H we will have χ ′ s (H ′ ) ≤ 3∆+1. Finally, for each of these cases, we will show a contradiction by showing how to extend a strong (3∆ + 1)-edge-colouring φ of H ′ to a strong edge-colouring of H without using an extra colour.

1. Suppose H contains a 1-vertex u adjacent to a 4 --vertex v. Then let H ′ = H -{uv}. We can extend φ to H by colouring uv because |L \ SC φ (N 2 (uv))| ≥ 1.
2. Suppose H contains a 2-vertex u adjacent to two 3 --vertices v and w. Then let

H ′ = H -{uv, uw}. Since |L \ SC φ (N 2 (uv))| ≥ ∆ -1 ≥ 3 and |L \ SC φ (N 2 (uw))| ≥ ∆ -1 ≥ 3,
we can extend φ to H by coulouring uv and uw.

3. Suppose H contains a 2-vertex u adjacent to a 3 --vertex w and the other neighbour of u, say v, be either a 4 2 -vertex or 4 3 -vertex. We can assume that v is a 4 2 -vertex since the proof will be the same when v is a 4 3 -vertex. Then let

H ′ = H -{uv, uw}. One can observe that |L \ SC φ (N 2 (uv))| ≥ ∆ -3 ≥ 1 and |L \ SC φ (N 2 (uw))| ≥ ∆ -2 ≥ 2.
We can extend φ to H by colouring uv and uw in this order. [START_REF] Erdős | Problems and results in combinatorial analysis and graph theory[END_REF]. Suppose H contains a 2-vertex u adjacent to a 4 3 -vertex v and to a 4 2 -vertex w. We assume that N (w) = {u, w 1 , x, y}, N (v) = {u, v 1 , v 2 , z}, where w 1 , v 1 and v 2 are 2-vertices. Then take H ′ = H -{uv, uw}. In order to extend φ to H we proceed as follows. We uncolour the edges vv 1 and vv 2 . One can observe that

|L \ SC φ (N 2 (uv))| ≥ 2∆ -4 ≥ 4 and |L \ SC φ (N 2 (uw))| ≥ ∆ -2 ≥ 2.
Hence, we colour uv and uw.

Observe now that |L \ SC φ (N 2 (vv 1 ))| ≥ ∆ -2 ≥ 2 and |L \ SC φ (N 2 (vv 2 ))| ≥ ∆ -2 ≥ 2.
We can extend φ to H by colouring vv 1 and vv 2 .

5. Suppose H contains a k-vertex u adjacent to k -3 1-vertices u 1 , u 2 , . . . , u k-3 with 4 ≤ k ≤ ∆. Let H ′ = H -{uu 1 }. We can extend φ to H by colouring uu 1 which is possible because |L \ SC φ (N 2 (uu 1 ))| ≥ ∆ -k + 3 ≥ 3. 6. Suppose H contains a k-vertex u adjacent to k 2 --vertices u 1 , u 2 , . . . , u k with 4 ≤ k ≤ ∆.
Then let H ′ = H -{uu 1 , uu 2 , ..., uu k }. We extend φ to H by colouring the edges uu 1 , ..., uu k in this order. Observe that for all

i ∈ k , |L \ SC φ (N 2 (uu i ))| ≥ 2∆ -2k + 3 ≥ 3. Therefore, φ can be extended. 7. Let 5 ≤ k ≤ ∆. Suppose H contains a k-vertex u with neighbours u 1 , u 2 , . . . , u k-1 , x such that each u i with i ∈ k -1 is a 2 --vertex and u 1 is either a 1-vertex or a 2-vertex adjacent to either a 3 --vertex or a 4 3 -vertex. Let H ′ = H -{u 1 }.
If u 1 is a 1-vertex then φ obviously can be extended to H. Therefore, u 1 is a 2-vertex. Let v 1 be the neighbour of u 1 other than u. By contradiction we assumed that v 1 is either a 3 --vertex or a 4 3 -vertex. In order to show how to extend φ to H, we consider two cases:

• If v 1 is a 3 --vertex, then |L\SC φ (N 2 (uu 1 ))| ≥ 2∆-2k+3 ≥ 3 and |L\SC φ (N 2 (u 1 v 1 ))| ≥ ∆ -k + 2 ≥ 2. • If v 1 is a 4 3 -vertex, then |L\SC φ (N 2 (uu 1 ))| ≥ 2∆-2k+2 ≥ 2 and |L\SC φ (N 2 (u 1 v 1 ))| ≥ 2∆ -k -2 ≥ 2.
Therefore, in both cases φ can be extended.

8. Let u be a k-vertex in H with 5 ≤ k ≤ ∆ such that there exists k -2 paths in H, uu j v j with j ∈ k -2 and such that d H (u j ) = 2 and d H (v j ) ≥ 2 (by Claim 1.1). By contradiction we assume that each v i , for i ∈ k -3 , is either a 3 --vertex or a 4 3 -vertex. Then let

H ′ = H -{uu 1 , uu 2 , ..., uu k-3 , u 1 v 1 , u 2 v 2 , ..., u k-3 v k-3 }.
In order to extend φ to H, we distinguish the following two cases:

• Assume that there exists a vertex v i with i ∈ k-3 such that v i is a 3 --vertex. Without loss of generality assume this vertex is v k-3 . Then we colour each edge

uu i for i ∈ k -4 (this is possible since |L \ SC φ (N 2 (uu i ))| ≥ ∆ -4 ≥ k -4).
We continue by colouring uu k-3 and u k-3 v k-3 in this order, so that at each step there is at least one colour left. Now, for each edge

u i v i with i ∈ k -4 we have |L \ SC φ (N 2 (u i v i ))
| ≥ 1 and we can colour them independently.

• Each vertex v i , with i ∈ k -3 , is a 4 3 -vertex. Let v be a 2-vertex adjacent to v k-3 and distinct from u k-3 . We uncolour the edge vv k-3 . Now, similarly to the previous case, we colour each edge uu i for i ∈ k -4 and this is possible since for all i,

|L \ SC φ (N 2 (uu i ))| ≥ ∆ -4 ≥ k -4
. Now, we colour uu k-3 , vv k-3 and u k-3 v k-3 in this order (at each step we have at least one colour left for the current edge). It remains to colour the edges u i v i , with i ∈ k -4 , and since |L \ SC φ (N 2 (u i v i ))| ≥ 1 we can colour them independently.

9. Let u be a k-vertex in H with 5 ≤ k ≤ ∆ and suppose by contradiction that u is adjacent to α 1-vertices and to k -2α 2-vertices u 1 , . . . , u k-2-α , such that for each i ∈ k -3α , u i is adjacent to either a 3 --vertex or a 4 3 -vertex v i .

Let H ′ = H-{uu 1 , uu 2 , ..., uu k-3-α , u 1 v 1 , u 2 v 2 , ..., u k-3-α v k-3-α }. Then we proceed exactly as in the proof of the previous claim. 

Discharging procedure

d(v) = f ∈F (H) r(f ) = 2|E(H)| we get that: v∈V (G) (2d(v) -6) + f ∈F (G) (r(f ) -6) = -12 (1) 
We define the weight function ω :

V (H) ∪ F (H) -→ R by ω(x) = 2d(x) -6 if x ∈ V (H) and ω(x) = r(x) -6 if x ∈ F (H).
It follows from Equation (1) that the total sum of weights is equal to -12. In what follows, we will define discharging rules (R1) to (R6) and redistribute weights accordingly. Once the discharging is finished, a new weight function ω * is produced. However, the total sum of weights is kept fixed when the discharging is finished. Nevertheless, we will show that ω * (x) ≥ 0 for all x ∈ V (H) ∪ F (H). This will lead us to the following contradiction: 

0 ≤ x ∈ V (H) ∪ F (H) ω * (x) = x ∈ V (H) ∪ F (H)
(v) = -2 + 1 × 1 + 1 × 1 = 0. Suppose now, w is a 4 3 -vertex then by (R3) and (R6.2), ω * (v) = -2 + 1 × 2 3 + 1 × 4 3 = 0. (d) Assume d(u) ≥ 5 and d(w) ≥ 5. Hence, by (R6.3), ω * (v) = -2 + 2 × 1 = 0.
Case k = 3. The initial charge of v is ω(v) = 0 and it remains unchanged during the discharging process. Hence

ω(v) = ω * (v) = 0. Case k = 4. Observe that ω(v) = 2. By Claim 1.1 v is not adjacent to a 1-vertex. By Claim 1.6, v is adjacent to at most three 2-vertices. If v is a 4 1 -vertex, then by (R5), ω * (v) = 2 -1 × 2 = 0. If v is a 4 2 -vertex, then by (R4), ω * (v) = 2 -2 × 1 = 0. Suppose now v is a 4 3 -vertex. Hence, by (R3), ω * (v) = 2 -3 × 2 3 = 0. Case k ≥ 5. Observe that ω(v) = 2k -6. Consider the following cases: (a) Assume v is not adjacent to a 1-vertex. By Claim 1.6, v is adjacent to at most k -1 2-vertices. If v is adjacent to at most k -3 2-vertices then by (R6), ω * (v) ≥ 2k -6 - (k -3) × 2 = 0.
If the number of 2-neighbours of v is k -2, then by Claim 1.8 at most k -4 of them have a 3 --neighbour or a 4 3 -neighbour. Hence, by (R6.1) and (R6.3), ω * (v) ≥ 2k-6-(k-4)×2-2×1 = 0. Suppose now that the number of 2-neighbours of v is exactly k-1. Then by Claim 1.7, none of these 2-neighbours is adjacent to a 3 --vertex or to a 4 3 -vertex. Therefore, by (R6.3), we have ω

* (v) = 2k -6 -(k -1) × 1 = k -5 ≥ 0.
(b) Suppose v is adjacent to α 1-vertices with α ≥ 1. By Claim 1.5 we have α ≤ k -3. Moreover, if α = k -3 then, by the same claim, v cannot be adjacent to a 2-vertex and thus, by (R2), ω

* (v) = 2k -6 -(k -3) × 2 = 0. So we may suppose that α ≤ k -4. If the number of 2-neighbours of v is at most k -3 -α, then by (R6) ω * (v) ≥ 2k -6 -α × 2 -(k -3 -α) × 2 = 0.
Suppose the number of 2-neighbours of v is at least k -2α. This number cannot be kα according to Claim 1.6, and, since α ≥ 1, by Claim 1.7 this number cannot be k -1α neither. So v has exactly k -2α neighbours of degree 2. Then by Claim 1.9, at most k -4α of the 2-neighbours of v are adjacent to either a 3 --vertex or a 4 3 -vertex. Therefore, by (R2) and (R6),

ω * (v) ≥ 2k -6 -α × 2 -(k -4 -α) × 2 -2 × 1 = 0.
Let f ∈ F (H) be a k-face. By hypothesis on the girth condition we know that k ≥ 6. Note that if f has α incident 1-vertices, then k ≥ 6 + 2α. Since ω(f

) = k -6, by (R1), ω * (f ) ≥ k -6 -2α ≥ 0.
After performing the discharging procedure the new weights of all faces and vertices are positive and therefore, H cannot exist.

Proof of Theorem 9

In this section we show how the proof of Theorem 2, given by Faudree et al. in [START_REF] Faudree | The strong chromatic index of graphs[END_REF], can be analysed in order to get a better bound for χ ′ s for several subclasses of planar graphs. Below we provide this proof because its idea will be used to prove Theorem 9.

Proof of Theorem 2. First, decompose the edges of the planar graph into ∆+1 distinct matchings (this is possible by Vizing's Theorem). For each matching M build the following graph G M .

Each vertex of G M corresponds to an edge of M . Two vertices of G M are adjacent if the corresponding edges are adjacent in G (do not form an induced matching in G). The graph G M is planar and hence its vertices can be coloured properly with 4 colours using the Four Colour Theorem. This colouring corresponds to a strong edge-colouring of the matching M in G.

Since there are at most ∆ + 1 matchings and for each we use 4 colours, we obtain a strong 4(∆ + 1)-edge-colouring of G.

The two main tools used in the previous proof are Vizing's Theorem and the Four Colour Theorem. Specifically, the following holds:

Remark 10. For every graph G, χ ′ s (G) ≤ χ ′ (G) • χ(G M ) where χ(G M ) is the chromatic number of the graph G M .
Therefore, if one could show that under some restrictions a planar graph is properly ∆-edgecolourable, then the bound given by the proof of Faudree et al. would be improved. To this end, we would like to mention the following conjecture:

Conjecture 11 (Vizing's Planar Graph Conjecture [START_REF] Vizing | Critical graphs with given chromatic index, Metody Diskret[END_REF]). Every planar graph G with ∆ ≥ 6 satisfies χ ′ (G) = ∆.

The cases of ∆ ≥ 7 of this conjecture have been already shown:

Theorem 12 (Vizing [START_REF] Vizing | Critical graphs with given chromatic index, Metody Diskret[END_REF]). If G is a planar graph with ∆ ≥ 8 then χ ′ (G) = ∆.

Theorem 13 (Sanders & Zhao [12] and Zhang [START_REF] Zhang | Every planar graph with maximum degree 7 is of class 1[END_REF]). If G is a planar graph with ∆ = 7 then χ ′ (G) = ∆.

Next theorem treats the cases when ∆ ∈ {4, 5}: Theorem 14 (Li and Luo [START_REF] Li | Edge Coloring of Embedded Graphs with Large Girth[END_REF]). Let G be a planar graph with girth g. Then the following holds: We summarize all the observations of this section in the following table, where the upper bounds marked in bold are the ones given by Theorem 2 and that have not been improved since then: The last line of the table is an immediate consequence of Grötzsch's Theorem and Theorem 2 as observed in [3] and [START_REF] Hudák | Strong edge-coloring of planar graphs[END_REF]. The last column is given by the results from [1, 8] and Theorem 4.

• if g ≥ 5 and ∆ ≥ 4, then χ ′ (G) = ∆, • if g ≥ 4 and ∆ ≥ 5, then χ ′ (G) = ∆.
∆ ≥ 7 ∆ ∈ {5, 6} ∆ = 4 ∆ = 3 no girth restriction 4∆ 4∆ + 4 4∆ + 4 3∆ + 1 g ≥ 4 4∆ 4∆ 4∆ + 4 3∆ + 1 g ≥ 5 4∆ 4∆ 4∆ 3∆ + 1 g ≥ 6 3∆ + 1 3∆ + 1 3∆ + 1 3∆ g ≥ 7 3∆ 3∆ 3∆ 3∆

Concluding remarks and open problems

As mentioned in the introduction, for each ∆ ≥ 4 there exist a planar graph G of girth 4 such that χ ′ s (G) = 4∆ -4 [START_REF] Faudree | The strong chromatic index of graphs[END_REF]. Thus, the values in the first three rows of the table might not be optimal. For planar graphs of girth 6 there exists graphs satisfying χ ′ s (G) ≥ 12(∆-1) 5 as shown by Hudák et al. [START_REF] Hudák | Strong edge-coloring of planar graphs[END_REF]. Regarding Conjecture 11, the condition of ∆ ≥ 6 cannot be improved as Vizing himself showed in [START_REF] Vizing | Critical graphs with given chromatic index, Metody Diskret[END_REF] that there exist planar graphs with ∆ ∈ {2, 3, 4, 5} and which are not properly ∆-edgecolourable. The graphs proposed in his paper for ∆ ∈ {3, 4, 5} are the graphs of geometric solids having one edge subdivided. For the cases of ∆ ∈ {4, 5} these graphs contain many triangles. Moreover, Theorem 14 shows that planar graphs with ∆ ≥ 5 having girth at least 4 are properly ∆-edge-colourable and thus this result is tight (the size of the girth cannot be decreased). Therefore, the remaining natural question to which we could not find an answer is the following: Question 1. Let G be a planar graph with ∆ = 4 and girth at least 4. Is it true that χ ′ (G) = ∆?
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