Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media - Archive ouverte HAL
Article Dans Une Revue Numerical Methods for Partial Differential Equations Année : 2014

Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media

Résumé

In this paper, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration. We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the sequence of approximate solutions is a weak solution to the problem under study.
Fichier principal
Vignette du fichier
paper2conv_CKM2014.pdf (380.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00929823 , version 1 (16-01-2014)

Identifiants

Citer

Claire Chainais-Hillairet, Stella Krell, Alexandre Mouton. Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numerical Methods for Partial Differential Equations, 2014, pp.38. ⟨10.1002/num.21913⟩. ⟨hal-00929823⟩
612 Consultations
341 Téléchargements

Altmetric

Partager

More