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Convergence analysis of a DDFV scheme for a system describing miscible fluid
flows in porous media ™

C. Chainais-Hillairet!, S. Krell', A. Mouton'

“Laboratoire P. Painlevé, CNRS UMR 8524, Université Lille 1, 59655 Villeneuve d’Ascq Cedex
bLaboratoire J. Dieudonné, CNRS UMR 6621, Université de Nice - Sophia Antipolis

Abstract

In this paper, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential
equations describing miscible displacement in porous media. This system is made of two coupled equations: an
anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration.
We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the
compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the
sequence of approximate solutions is a weak solution to the problem under study.

Keywords:
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1. Introduction

The Peaceman model has been introduced by Bear in [6] and Douglas in [1]. It describes the single-phase dis-
placement of one fluid by another in a porous medium; the fluids are assumed incompressible and the gravity is ne-
glected. This model is constituted of an anisotropic diffusion equation on the pressure of the mixture and a convection-
diffusion-dispersion on the concentration of the invading fluid. We refer to the work [2] by Feng for the theoretical
analysis of this system of partial differential equations.

Many different schemes have already been proposed for the Peaceman model, since the beginning of the 1980’s:
finite element schemes for both equations [1, 1, 2], finite element schemes for the pressure combined with method of
characteristics for the concentration [2, 2, 1], or combined with Eulerian Lagrangian Localized Adjoint Method for
the concentration [2, 2]. The first finite volume scheme scheme proposed for the Peaceman model is a Mixed Finite
Volume scheme [7]. In this paper, Chainais-Hillairet and Droniou establish the convergence of the MFV scheme for
the Peaceman model. In [5], Bartels, Jensen and Miiller provide the convergence analysis of a combined Mixed Finite
Element method for the pressure and a Discontinuous Galerkin method for the concentration.

As discrete duality finite volume schemes are well adapted for the discretization of anisotropic diffusion operators
(see for instance [1, 4, 1]....), we have proposed in a recent work [8] some discrete duality finite volume schemes for
the Peaceman model. In [8], we have focused on the a priori estimates satisfied by the schemes and on the study of
the numerical efficiency. The numerical experiments showed the good convergence behaviour of the schemes and also
good qualitative results. In the present paper, we will now consider the convergence analysis (when time and space
steps go to 0) of a DDFV scheme for the Peaceman model.

1.1. Presentation of the problem

Let assume that Q is a connected polygonal domain of R? and let T > 0. We denote by dQ the boundary of Q. The
unknowns of the Peaceman model are the pressure in a fluid mixture, p, its Darcy velocity U and the concentration of
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some invading fluid ¢. As proposed by Chainais-Hillairet and Droniou in [7], we consider a synthesized form of the

Peaceman model. It writes:

div(0)=¢" - ¢ in 10, T[xQ,

U =-A(,0)Vp in 10, T[x,

U-n=0 on ]0, T[x0Q,

Lﬁ(-,x) dx=0 on |0, T,
®9,¢ — div(D(-, U)Ve) + divelU) + g ¢ = g'c in 10, T[xQ,
D(-,U)Ve-n=0 on 10, T[X0Q,
c(0,4) =g on Q.

(1a)
(1b)
(Io)
(1d)

(2a)

(2b)
(20)

In this system, ¢* and g~ denote the injection and production terms, ¢ the injected concentration, @ the porosity of
the porous medium. The tensor A contains the effect of the permeability of the porous medium and the viscosity
of the fluid mixture. The tensor D is the diffusion-dispersion tensor; it includes molecular diffusion and mechanical

dispersion. The assumptions on the data are the following:

(g*,q7) € L™(0, T; L*(Q)) are nonnegative functions such that

féf(',x)dx:qu(-,x)dxa.e. on 0, T,
Q Q

A QX R - M;(R) is a Caratheodory matrix-valued function satisfying:
das > 0 such that A(x, s) - € > aa |§|2 forae. xeQ,allse Randall § € R2,
AA,4 > 0 such that |A(x, s)| < A4 fora.e. x € Qand all s € R,

D : QxR?> - M,(R) is a Caratheodory matrix-valued function satisfying:
Jap > 0s.t. D(x, W)é - € > ap(l + [W))IEP forae. x € Q, all W € R? and all ¢ € R?,
JAp > 0 such that |D(x, W)| < Ap(l + |W|) for a.e. x € Q and all W € R?,

® € L*(Q) and there exists ®, > 0 such that ®, < ® < d;! ae. in Q,
Te L*(]0, T[xQ) satisfies: 0 <c < 1 a.e. in ]0, T[XQ,
co € L*(Q) satisfies: 0 < ¢y < 1 a.e. in Q.

The following definition (similar to the one in [2]) of weak solution to (1)—(2) makes sense.
Definition 1.1. Under assumptions (3)—(8), a weak solution to (1)—(2) is a triple (p, U, €) satisfying

peLl¥0,T;H'(Q), UeL0,T;L*(Q)*, ¢eL0,T;L*Q)NL*0,T;H (),

f[)(t, )=0forae t€]0,T[, U=-A(2)Vp ae onl0,T[xQ,
Q

T T
Vo € C(0,T]x Q). —f fﬁ-VsD=f f(q*—q*)w,
0 Q 0 Q
_ T T T T
Vg € C2([0, T[xD), —f fcbaa,ng fID)(~,I_J)VE-V<p—f fﬂ_}-V(p+f fq_ap
0 Q 0 Q 0 Q 0 Q

T
- f Dcop(0,-) = f f g ce.
Q 0 Q

3

“

®

(6)
(N
®

®

10)



1.2. Aim of the paper and outline

Different development of new finite volume schemes for diffusion equations have been done since twenty years.
Their aim is to reconstruct some discrete gradient which has no serious restriction on meshes and strong enough
convergence for handling the nonlinear coupling of the equations. Let us cite for instance the Multi Points Flux Ap-
proximation schemes by Aavatsmark, Barkve, Boe and Mannseth [1, 2], the Discrete Duality Finite Volume (DDFV)
schemes by Domelevo and Omnes [1, 4], the Mixed Finite Volume schemes by Droniou and Eymard [1, 1], the
Scheme Using Stabilization and Hybrid Interfaces by Eymard, Gallouét and Herbin [2, 2]. We refer to [1] where
Droniou presents a review on finite volume methods for diffusion equations, with a focus on coercivity and minimum-
maximum principles.

In [8], we have proposed a DDFV scheme for the Peaceman system (1)-(2). The DDFV scheme requires unknowns
on both vertices and “centers” of control volumes. These two sets of unknowns allow to define a two-dimensional
discrete gradient (piecewise constant on new geometric elements called diamonds) and a discrete divergence operator.
These two operators satisfy a duality property in a discrete sense, which gives its name to the method.

In order to prove the convergence of the scheme, we need to add a penalization operator in the discretization of the
convection-diffusion-dispersion equation. Such a penalization operator has already been introduced by Andreianov,
Bendahmane and Karlsen in the numerical approximation of a degenerate hyperbolic-parabolic equation [3]. It ensures
that both reconstructions of the concentration, either on the primal mesh or on the dual mesh, converge to the same
limit. It is crucial when passing to the limit in the concentration equation. However, the numerical experiments will
show that the penalization operator is not necessary in practice.

In Section 2, we present the different meshes and the associated notations. After having introduced the different
discrete operators, we present the DDFV scheme in Section 2.5. The main result of the paper (convergence of the
DDFV scheme) is stated in Theorem 2.6.

In order to prove this Theorem, we establish in Section 3 some a priori estimates satisfied by the numerical
solution to the scheme. Then, in Section 4, we prove some properties satisfied by the discrete functional spaces. They
will be useful to apply a discrete counterpart of Aubin-Simon Theorem, proved by Gallouét and Latché in [2]. Thanks
to the a priori estimates and the properties satisfied by the discrete functional spaces, we prove the compactness of
the sequence of approximate solutions. Then, the proof of Theorem 2.6 is concluded by passing to the limit into the
scheme in Section 5. In Section 6, we provide some numerical experiments. The efficiency of the DDFV scheme has
already been shown in [8]. In this last Section, we just show that the penalization operator introduced for the proof of
convergence can be set to 0 in practice.

2. Presentation of the numerical scheme and of the main results

2.1. Meshes and notations

In order to define a DDFV scheme, as for instance in [1, 4], we need to introduce three different meshes — the
primal mesh, the dual mesh and the diamond mesh — and some associated notations.

The mesh construction starts from the partition 9, the partition of the computational domain €, with disjoint open
polygonal control volumes K c Q such that UK = Q. This partition 9t is called the interior primal mesh. We denote
by 0t the set of boundary edges, which are considered as degenerate control volumes. Then, the primal mesh is
composed of M U &M, denoted by M. To construct the two others meshes, we need to associate at each primal cell
K € M, a point xi € K, called the center of the primal cell. Notice that for K a degenerate control volume, the point
x5 is necessarily the midpoint of K. This family of centers is denoted by X = {xg, K € M} and these will determine
the two others meshes.

Let X* denote the set of the vertices of the primal control volumes in 9. Distinguishing the interior vertices from
the vertices lying on the boundary, we split X* into X* = X} U X . To any point x«- € X} , we associate the polygon
K, whose vertices are {xx € X/xgc- € K, K € M}. The set of these polygons defines the interior dual mesh denoted by
9t*. To any point x4~ € X,,, we then associate the polygon K™, whose vertices are {xg-}U{xqx € X/xqc- € K, K M.
The set of these polygons is denoted by d9i* called the boundary dual mesh and the dual mesh is 9t* U 99", denoted
by Mi*.

In order to define the diamond mesh, we first introduce the notion of edges. For all neighboring primal cells
K and L, we assume that 0K N 0L is a segment, corresponding to an edge of the mesh 9, denoted by o =

3



K|L. Let & be the set of such edges. We similarly define the set & of the edges of the dual mesh M*: & =
{o-*, o =KL with K*, L* € 9JE*}. Let us note that, if K € I, all its edges belong to & and if K* € M, all its
edges belong to &*. But, if K* € 9", then it has edges inside the domain and also on its boundary: the interior edges

belong to & while the boundary edges belong to &.

Xgc Xy
n n
<, R4
,0, \ ',
B *, 4
./ nU"K\¢ /.
0, ? . /.
XL T N XK e
" -~ Y N, m  Vertices of the primal mesh \ TTeog
. N . ’
KN Twor Tl * o  Centers of the primal mesh A
‘\ n(,.*,K* ;‘b x'c \¢
N A —— o = K]|L, edge of the primal mesh \
* ,‘ K
\, PR ----  o* =K*|L*, edge of the dual mesh \
\Nf,~° 3
‘o’ » =2 Diamond D, - "
X1+ xre

Figure 2.1: Definition of the diamonds Dy -+

For each couple (0,0") € & X & such that o0 = K|L = (xg+, xp-) and 0% = K*|L* = (xg, xz), we define the
quadrilateral diamond cell D, - whose diagonals are o and o*. If o0 € &N 9Q, we note that the diamond degenerates
into a triangle. The set of the diamond cells defines the diamond mesh D. It verifies Q = | Jpep D. We have as many
diamond cells as primal edges. We can rewrite © = D" U D" where D" is the set of all the boundary diamonds
(associated to the boundary edges) and D™ the set of all the interior diamonds.

Finally, the DDFV mesh is made of the 7~ = (M, M*) and D. Let us now introduce some notations associated to
the meshes 7~ and ©. For each primal or dual cell V (V € MorV € Nt*), we define my the measure of V, Ey the
set of the edges of V (it coincides with the edge o = V if V € dI), Dy the set of diamonds D, - € D such that
m(Dy o+ NV) >0, and dy the diameter of V.

For a diamond D, ,+, whose vertices are (xx, xx-, Xz, Xr+), we define, as shown on Figure 2.1: xp the center of
the diamond cell D: {x,} = o N o*, m, the length of the primal edge o, m,- the length of the dual edge o*, mp
the measure of D, dy, its diameter, 6y the angle between (x«, x,) and (xx-, x,+). We will also use two direct basis
(Txr > Moge) AN (Mg, T, ), Where N 18 the unit normal to o, outward K, ng«- is the unit normal to o, outward
K*, T4+ 4+ is the unit tangent vector to o, oriented from K* to L*, T, . is the unit tangent vector to o, oriented from
K to L.

We introduce now the size of the mesh, size(7") = rzr)la%( d,. We assume that the diamonds cannot be flat: there
[S¥Y)

exists a unique 67 €]0, 2] such that sin(6,) := %ﬁg(l sin(fp)|). We also need some regularity of the mesh, as in [4].
€

We assume that there exists £ > 0 such that

S meme < TE VKM, and Y mpme < A YK €T, (11a)
DEDy ¢ DEDye+ (
mp < DKOK ypye DK e M, K € D such that m(D 1K) £ 0 and m(D N K*) # 0. (11b)

2.2. Set of discrete unknowns

We need several types of degrees of freedom to represent scalar and vector fields in the discrete setting. Let us
introduce :



e R” the linear space of scalar fields constant on the cells of 9t and M :

R = {ur = () e » () ) » With uge € R, VK € W, and ugc- € R, VK™ € M.

D
. (Rz) the linear space of vector fields constant on the cells of D :

(R2) ={€5 = (€p)pen» Withép € R, VD € D).

Similarly, we may define R®, R®", R™ the spaces of scalar fields constant respectively on D, D and 0 and
R2)®"the space of vector fields constant on D%, It permits to introduce two trace operators, defined respectively on
p p P p y

D
R” and (R?)". The first one is ¥ : ur € R” > ¥ (ur) = (y *,_-(MT))LE&JJE € R™ defined by :

uge + 2uyp + Up
yelur) = = EE Y L= e xp] € OO0, (12)
The second one is y® : ¢° € (R*)® > (¢pp)pen,, € (R?)Per.
D
We define the scalar products [, -7 on R” and (-, ) on (Rz) by

vr.urly = [Z Mg UV + Z Mg Uge Ve ] Vug, vy € R”,
Kem ICreMm*
D
v po)p = Z mp &p - Pp. V. ¢ € (Rz)

PDeD

D
The corresponding norms are denoted by || - |4~ and || - |[>,o. More generally, we set for all uy € R”, £ € (Rz) and
1 < p < +oo:

1/p
1 1
| = [5 D i lugel” + 3 > mye quoll’] [ (Z mp |§@|p] ,

KeM M DeD (13)
u = max | max |u max |Ugc- = max
el (mg el max fux |), 2]l = max|és|-

We also define the bilinear form (-, -}3o on R x R™ by

Do om
(D, vom)oa = E mePpve, YV dp € R, Yvgm = (Vo)reom € R,
Dy o+ €Dt

To a given vector ugs = ((u«)m@ , (MW*)W*EW) € R” defined on a DDFV mesh 7 of size h, we associate the

approximate solution:
S Z uq(1K+ - Z uge- Tgce. (14)
'7(69]? K*EW

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed,

1 . . . .
we have u, = = (upm +u, 57), where uy, gy and u,, 5= are two different reconstructions based either on the primal values

or the dual values:

Upam = Z uq(lq( and uh’w = Z Ugc+ 1(}(*
KeM K-

The space of the approximate solutions is denoted by Hy:

1 1
Hy ={u, € LI(Q) / Aug = ((”7(),,(6@, (l/tf](*),](*eﬁ) € R” such that u;, = E Z ugclye + E Z uge-Lge ¢ . (15)
Jcem -
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In the sequel, we will also need some reconstruction of the approximate solutions on the diamond cells. Therefore,
we associate to a given u;, € Hy the piecewise constant function on diamond cells u;, v, defined by:

1
U o (x) = Z uply  with  up=— f up(y)dy VD e D. (16)
DeD mp Jop

2.3. Discrete operators and duality formula

In this section, we recall the definition of the discrete operators: discrete gradient, discrete divergence operator
and discrete convection operator. The discrete gradient has been introduced in [1] and developed in [1]. The discrete
divergence has been introduced in [1].

Definition 2.1. The discrete gradient is a mapping from R” to (]Rz)L defined for all ur € R” by Vus = (VDMT)
where for D € D :

DeD’

D 1 Ur —uUg U — Ugex
Dgeger |-

Uy = —
T sin@y) | m,. " m,

D D
Definition 2.2. The discrete divergence operator div” is a mapping from (R2> to R” defined for all é € (Rz) by
div'é, = (div‘mg-‘g, div™é 4, div™ g4, div?™ gb) ,

with div"¢y = (divacE ) gemp divV™Ep = 0, div™ &g = (divae €)oo cp- and div™ £y = (divae € ) ocome Stch that:

1
VK M diviky = — > Mg €, ey,
m
DeDye
D=

and analogous definitions for divg € for K* € M= (see [8]).

Discrete Duality Finite Volume methods are based on the discrete duality formula recalled in Theorem 2.3 and
proved for instance in [1]. This is the discrete counterpart of the Green formula.

Theorem 2.3. For all (§o,vr) € (R2)" X R7, we have
[div7 €, vr]r = =&, Vv + (Y (€n) - 0y (v7))aq.

where n is the exterior unit normal to Q.

The discrete convection operator has been introduced in [8]. It is similar with previous definitions given by
Andreianov, Bendahmane and Karlsen in [3] and by Coudiere and Manzini in [9].

D
Definition 2.4. The discrete convergence operator divc” is a mapping from (R2) X R” to R” defined for all €4 €
D
(RZ) and vy € R” by
dive” (€3, vr) = (dive” (€, vr), dive™ (Eq, vr), dive™ (€, v7), dive™ (€5, v7))

with dive™ (5, vr) = (divex(Ep, v7))egn dve™ €y, vr) = 0, dive™ (€, vr) = (divege (Ep. V7))o and
dive™ (£, v7) = (diveg (€, V7)) e comre Such that:

, 1 )
VK €M, divex(Eo,vr) = — > My (€ non) v = (€ M) vE),
m:
DeDy
DDy

where x* = max(x,0) and x~ = —min(x, 0) for all x € R, and analogous definitions for divcg (&4, vy) for K* € m*

(see [8]).



2.4. A penalization operator

Let us introduce now a penalization operator as in [3]. This operator has not been introduced in our previous work
[8]. However, we will see that it is essential when passing to the limit in the scheme, especially in the convection term
in (2a). Indeed, the penalization operator will ensure that the reconstructions of the concentration on the primal mesh
and on the dual mesh converge to the same limit.

Definition 2.5. Let 8 €]0,2[. The penalization operator P : R” — R is defined for all ur € R”, by:
Py = (p«m s, PP P PO Mfr) ’
with PP uz = (Pour)xem: P ug = 0, P™ ur = (P utr)ecm and P™ ug = (Pt )ye-com such that

1 1

YK eI,

Pyug = e SIZC(T)B WZJ:R My (Uge — Uger),
e\

1
Y K* e ﬂﬁ* P,
w U = Mg SIZC(T)B %LmKﬂK < (Uger — Uge).

The penalization operator clearly satisfies the following property:

1 1 1
P ur, urlr = = My (Uge = ttge ) = = ———=llunan — U, 571172 - a7
[P ur urlr 2 51ze(‘7' size(T ) Wéy 7;\31 e 2 size(7p R T el

2.5. The numerical scheme

Let (7, D) be a DDFV mesh of Q (as presented in Section 2.1) and 6¢ > 0 be a time step. We set Ny = T /6t (we
always choose time steps such that Ny is an integer) and we define ¢, = ndt forn € {0,..., Nr}.

First, we discretize all the data of the problem. Therefore, we introduce Py (respectively Py ) the L? projection
over an interior primal (respectively dual) cell. We then define cf]’, = ((cho)mn,o (Pgcco)ge- eﬁ) € R”. and

7 Cr

the mean values of ¢g*, ¢~ and ¢ on the primal and dual cells crossed with the time interval (¢,-1, #,). Forw = ¢*,47, ¢,
it writes:

OfF = ((]P’q(CD)q(egR 5 0, (Pge- @) e i ) € R”. In a similar way, for all n > 1, we define (qT ,q", &) e (R7)? by taking

(I
Wy = (Pgew(, e - 0. Poc-w(.. D). )t
In-1

At each time step n, the numerical solution will be given by (pi-, Ug, ¢7) € R” X (Rz) X R” and the computation of
the pressure and the velocity (pi-, Uy) will be decoupled from the computatlon of the concentration (cT) Due to the
coupling in the Darcy law (1b), we need to reconstruct some approximate values on the diamond cells cg = (cp Dpen
from ¢~ ! following (16). We may also introduce the approximate tensors

1 1
Ap(s) = - f A(x, s)dx Vs €R, Dp(W) = - f D(x, W)dx, YW € R2.
D D

It permits to define Ax(cy D = (AD(C )) and Dy (U”) = (]D)D(U ))
Then, the scheme for (1) writes:

div’ (Uy) = g" - g;". V1 <n < Nr, (18a)

UL = —Ap(cy )Vﬁp(r, V1 <n<Nrp, (18b)

U, -n=0, VDe Dy, V1<n< Ny, (18¢)
Z mycpll = Z mye-ple. =0, Y1 < n < Ny, (18d)
KeM K



and the scheme for (2) writes:

ot — Cn—l
@T% — div" (Do (U%) Vo) + dive” (UL, cb) + g"cle + AP (ch) = g, V1 <n < Ny, (19)

Dy (Up) V2l -0 = 0,YD € Dy, V1 <1 < N (19b)

Note that A is a positive constant. The scheme (18)—(19) comes down to a resolution of two linear systems: starting
from ¢~ ! (p7-, Uy) is obtained by solving the linear system (18a)-(18d) and then cf- is computed by solving the
linear system (19a)-(19b). Existence and uniqueness of a solution to each linear system has been proved in [8] in the
case where 4 = 0. This result is based on the a priori estimates satisfied by the discrete pressure and the discrete
concentration. It remains true in the case where 4 > 0 because the same a priori estimates on the pressure and the
concentration still hold (see Lemma 3.1 and Lemma 3.2 in Section 3).

2.6. Definition of the functional spaces for approximate solutions

As we are interested in the numerical analysis of the scheme (and particularly in its convergence analysis), we
need to define some functional spaces for the approximate solutions.
We have already defined in (15) the space of approximate solutions Hy. For a function u;, € Hy, we define its

approximate gradient V"u;, by
thh = Z VDMTIZ).

DeD
This approximate gradient is a piecewise constant function on each diamond. The space of such functions is denoted
by Hyp:
D
Hy = {Uh e (LYQ))? /AUy € (RZ) such that U, = Z UDID}.
DeD

Then, we define the space-time approximation spaces Hy 5, and Hyp s based respectively on Hy and Hyp:

Hr g {ung € L'(10,T1 x Q) such that ups(t, x) = u}(x) V1 € [t,1.1,), withu} € Hy, V1 <n < Nr},

{Unar € (L'(10. T1 x Q))? such that Uy (2, x) = Uj(x) ¥t € [1,-1,1,), with Uy € Ha, V1 <n < Nr}.

H@,(Sz
We still keep the notation V" to define the approximate gradient of u;, 5, € Hy s
Vitpgi(x,1) = V(o) V1 € (g1, 1,).

Therefore, for all uy, 5, € Hy 5, we have V*u, 5; € Hy 5;. Furthermore, we introduce the following reconstructions

gt X) = Wy (¥) = )" i Lyc(x), Vi€ [h1, 1), (20a)
KeM
ty sy () = W0 () = D e e (), V1 € [yt 1), (20b)
KM
o (%) = 105 (X) = ) 1ty (), V1 € [taet, 1), (20¢)
Ded

We may now define some norms on Hy, Hy 5. First, we define some discrete W'”-norms (1 < p < +o0) and a
discrete W' ~!-norm on Hy-. For all u;, € Hy, we set

Wil = (el + [V2ur]l” o). V1< p < boo,
gl oo = Nzl + [|[V2ur]| o -
laalliors = Mtgllyoor + [P7ur ur] 2
leplli -1 = max{ vy, us]q . Yvi € Hy verifying [[vplli coxr < 1},

8



where the norms |||, - and ||-|| , » have been defined by (13) and the penalization operator #” is given in Definition 2.5.
Then, we define some discrete L'(0, T; W'?(Q)) (1 < p < +00), L®(0,T; WH*(Q)) and L*(0, T; LP(€))-norms on
Hy . For all uy 5, € Hy 5, We set:

Nr
Zét””;;“l,pf, V1< p < +oo,

n=1

“”hﬁful-lpT

n
max il -

1 1 v

u = max —Zm u””+—me*uf’*” V1 < p < +o0.

l51l] ., ne{l,...,Nﬂ[zm welodl| 2 2 L B p
e

Let us also remark that, for all Uy, s, € Hp s, and for 1 < p < +o0, we have

1/p
WUnsilliz=,r:r@y> = ~ max {Z m@lU}ﬂp] ,
ne(l,Nr)
DeD
Nr 1/p
Onsillrorxey = [Z&Zmﬁ)mmlj] .
n=1 Ded

2.7. Main result

We may now state the main result of the paper.
Theorem 2.6. Let Q be an open bounded connected polygonal domain of R*> and T > 0. Assume (3)—(8) hold, 1 > 0
and B €]0,2[. Let (Tp)m>1 be a sequence of DDFV meshes such that h,, = size(T,,) — 0 while the regularity

parameters {,, and 0,, verifying:
16 > 0, > 0 such that,Ym, 6, >60and{, <{. 21

Let (6t,)m=1 be a sequence of time steps such that T |ot,, is an integer and 6t,, —> 0. Then, the scheme (18)—(19)

defines a sequence of approximate solutions (pm = ph,,st,» Un = Up, 61,-¢m = Cn,o1,) € Hr,, 61, X Ho,, 51, X Hr,, 61,
there exists p € L*(0,T; H'(Q)),U € L(0, T;L2(Q)? and ¢ € L=(0,T;L*(Q)) N L*0,T; H (Q)), and, up to a
subsequence, we have the following convergence results when m — oo:

Pm — P weakly-+ in L™ (0, T; L*(Q)) and strongly in LP(0, T; LY(Q)),Vp < c0,q < 2;
V" p, = Vp  weakly-+ in (L™(0, T; L*(Q)))* and strongly in(L*((0, T) X Q))*;
U,—-U weakly-+ in (L*(0, T, L2(§2)))2 and strongly in (Lz((O, T) X Q))Z;
Cm — C weakly-+ in L(0, T; L*(Q)) and strongly in L(0, T; LY(Q)),Yp < o0, q < 2;

Vhne, — Ve weakly in (L*((0,T) x Q))>.

Moreover, (p, U, ¢) is a weak solution to (1)-(2).

In order to prove this result, we split the proof in different steps. Firstly, we establish some a priori estimates sat-
isfied by the scheme (Section 3). Then, thanks to these estimates and to some properties of the spaces of approximate
solution (Section 4), we show the compactness of the sequences of approximate concentrations and of approximate
pressures. Then we can pass to the limit in the scheme for the pressure and in the scheme for the concentration.

For the sake of simplicity, we will restrict the proof of Theorem 2.6 to the case where the porosity @ is constant
on the whole domain (® = ®*). Indeed, in this case, the proof of the compactness of the sequence of approximate
concentration is simpler and based on the paper by Gallouét-Latché [2].



3. A priori estimates

In this Section, we prove a priori estimates satisfied by a solution to the scheme. Lemma 3.1 gives a priori
estimates on the pressure, the gradient of the pressure and the Darcy’s velocity at the discrete level, while Lemma
3.2 gives a priori estimates on the approximate concentration and its approximate gradient. Thanks to these two
lemmas, we get the existence and uniqueness of a solution to the scheme, as in [8]. Then, Lemma 3.3 shows that the
reconstructions of the concentration on the primal and dual meshes will necessarily converge to the same limit (when
convergence occurs). In Lemma 3.4, we give an a priori estimate on the discrete time derivatives of the approximate
concentration.

Lemma 3.1. Under the hypotheses of Theorem 2.6, we assume that the scheme (18)—(19) defines an approximate
solution (ppsts Up.sts Chst) € Hy 50 X Ho 50 X Hy ;. Then, there exists C > 0 depending only on Q, {, 6, a4 and Ay such
that:

h —
”phﬁf“oo;o,zﬂ' + ”V phﬁl“(m(o,T;Lz(Q»)z + “Uhﬁf H(Lw(o,T;LZ(Q)))Z < Cllg" - g ll.r:2@)- (22)
Proof. Inequality (22) is a direct consequence of Lemma 3.2 in [8]. O

Lemma 3.2. Under the hypotheses of Theorem 2.6, we assume that the scheme (18)—(19) defines an approximate
solution (pn.st, Unests Chor) € Hr 5 X Hp 5t X Hy 51 Then, there exists C > 0 depending only on Q, T, {, 6, ®, and ap
such that:

2 h 2 Loh 2 2 )
lenanlenir + 19" chanllrz o e * sl Venad] e < € (el + 16 w0 i) - @3
Nr
2 2
A [P (@)l < C (ol + 16 Boor o) (24)

n=1

Proof. The proof is very close to the proof of Lemma 3.3 in [8]. We multiply the scheme (19a) by c7. It yields

n—1

IlCDT Cq —&CT s Cg—u - [[divT (ID)'D (U"@) VEC(”T) , C"T]] ., i [[diVCT (U%, C;_) ’ C;]]T N [[q;nc;, C"T]]T
T
+ A[P" (), ey = [[q;”@'jr’ e .-

Following the same computations as in [8], we get

2
[0r. @], = [0 @], )+ an (Voo + U3V ) + AP @il < oy el -

1
55 (
Multiplying by 26¢ and summing over n = 1,...,N with 1 < N < Ny, we get

O,

N
f 200 ) or IV o + [rUsiivees
n=1

2 S 7 1 n
2’3) +22 El 5t[P" (c7), ci-]r
n=
277 D
-1 2 2 * n2
S q)* ||CO||L2(Q) + (D* ||CI+|| W(O,T,LZ(Q)) + 2 1<S:’<€VT||C;_”2'T' (25)

Thanks to (17), the contribution of the penalization is positive and therefore we conclude the proof of (23) by taking
the supremum over 1 < N < Nr. Then, restarting from (25), we obtain (24).
O

Thanks to Lemma 3.1 and 3.2, we have the existence and uniqueness of a solution (pps:, Unsi, chor) € Hy st X
Hy 5 X Hy 5 to the scheme (18)—(19) as in [8].

10



Lemma 3.3. Under the hypotheses of Theorem 2.6, there exists C > 0 depending only on Q, T, ¢, 6, @, and ap such

that the solution (py.si, Up sty Cnor) € Hy st X Hp 5 X Hy g5 to the scheme (18)—(19) verifies

C
2 2 +112
”Ch,zstﬂﬁ - Ch,ét,W”H(O,T;LZ(Q)) < zhﬁ (”CO”LZ(Q) + ”q ||L°°(0,T,L2(Q))) .

Moreover,
Ny

Ny
oty mplh —chlP 0. Y 6> mpldh— chP -0, when h.6t 0.
n=1 DeD n=1 DeD

Proof. The property (17) of the penalization operator yields

Nt 1 Nr 1
T N n _ no_n N2 _ - _ 2
; 6IIIP (C']')$ C’]‘ﬂ’f - Zhﬁ Z 6t Z Z Mgenger (C7( C(K*) - 2h/3 ”Ch,él‘,im Ch,ét,!m* ||L2(0,T;LZ(Q))'

n=1 KeM gcr e

Then, we deduce (26) from Lemma 3.2. In order to prove (27), let us rewrite c};:

1 Mpnx Mpnk- Mmpn Mpn £+
cp=— | cp(x)dx = Cge + Cger + £ cr+ £ 'y
myp J, 2m@ 21’111) 2mz) 2mz)
Therefore, we have
Mpn s Mpn £+ 1
n n n n n n n n
cr—Co = (=) + (" — Che) + =(Che. — Coe).
D K 2H11) L K 2m1) L K 2 K K
Using the fact that C”L - Can = m,-(V? Cq) " Ty,c and c"ﬁ - cﬁ}(* =m,(V? ) * Toer, o, WE Obtain:
ol — e <2 Y mplVPP + 2 S mplc. — il
DICy — Cxe =3 D T 4 DlCqge Kl -
DeD DeD DeD

Thanks to the regularity of the mesh (11b), we get:

1
n n 2

E mplcge — cgel” < Z

DeD

1
n n |2 n n 2

E Mycnge-lege. = Cxl” < Z”Ch,‘m ~ Garlize

DeD

We deduce that

Ny
3 3
n n2 211oh 2 2
Z ot Z mD|C7) - Cf](' Szh ”V chv&”(Lz((O,T)XQ))Z + 4_é,||ch,6t,‘]JI - ch,étﬂﬁ‘||L2(O,T;L2(Q))'
n=1  DeD

It yields the first part of (27), thanks to (26) and (23). The second part of (27) is obtained similarly.

(26)

@7

O

The a priori estimates given in Lemma 3.1 and Lemma 3.2 will lead to compactness in space of the sequences of
approximate solutions. But, as the problem is evolutive in time, we also need compactness in time for the sequence of
approximate concentration. Therefore, we need an a priori estimate on the discrete time derivatives of the approximate

concentration.

For a given function uy, 5, € Hy 5, we recall that we have u;,5(-, 1) = u;(-) € Hy for all ¢ € [t,-1,1,). Let us define

the discrete time derivative 0, 7uys; € Hy s by

) = ()

,  Yte|[t,_1,t).
5 [th-1,10)

at,’]’”h,ﬁt(‘, nH=

n_ ,n-1
uh uh

ot

n _ ,n—1 n _ . n—1
O, il = Uge — Uge Uge. — Uge
t, =\ T —— .
T 5t _’ 8t _
Hem I

11

Then, we note 0y g-uj, 5, = € Hy, associated to the vector of values



Lemma 3.4. Under the hypotheses of Theorem 2.6, there exists C > 0 depending onlyon T, Q, £, 6, q*, q~, co, aa,
A4, Ap, ©. and ap such that the approximate solution (pps:, Up.st, Chst) € Hy 5¢ X Hop 5t X Hy 50 to the scheme (18)—(19)
satisfies:

Nr
Y stllordircil, ., <C (28)

n=1

Proof. Letwy, € Hr andn € {1,--- , Nr}. Multiplying the scheme (19a) by wy-, we get :

o — Cn—l
H(DT%, WTH = [[divT (]D)g (U%) VEC;—) , Wq—]] ;o [[diVCT (U"b, cg—) , Wq—]] ;o [[q;"cg—, WTH .
T
- A[P" (), wr]r + [[q;.’"ég—, Wrr]] o

We will now bound separately each term, denoted by T; for 1 < i < 5, of the right-hand-side of this equality.
Using the discrete duality formula (Theorem 2.3) and the boundary conditions, we first obtain that

T, = [[div‘f (Ds (U%)Vbd}),vwf]](r = — (Do (U2) Vo Vowr ) = = > mpDyp (U,) V2ely - V0w,

Ded
Then, the hypothesis (5) on D implies :
711 < Ap IWnlly o D mop (14 |UR)) [V2e]. (29)
DeD
The second term 75 = — [[dich (U% c,"r) R Wr]"]] can be split into the sum of a primal term 7>, and a dual term 7> 4.
T
Let us consider the primal term
1 . 1 + _
Tap==3 3 macdivex(Up,chownc = =3 > > my ((U"D gx) e — (U - o) c"L.)wW.
Kem HeM DDy
D=Dy o+

Rewriting 75, as a sum on all the primal edges of the mesh and using the relations x = x* — x~, we get:

] ] - n n
Top==5 2, mo(Up mox)chOvm —wo) =5 > me(Up ) (e~ cpwge —wp). (30)

Dy o+ €D Dy o+ €D

But, by definition, we have (wg — wy) = Mgy VPwq - Ty,. and therefore [wge — we| < [wpllj o Mo+ It yields:

D7 mo(Ug - n)chewae = wo)| < Iwill o D moeme U] el

D
Dy o+ €D Dy ;+ €D

For the second term in 75 ,, we use the bound |wg — wz| < 2 [[wyll; o0 to get:

D me(Ug, - ng) (e = v = wi)| < 2lwilly o

Dy o+ €D <€D

D
> memg U |V c"¢|].

Do

Nr
- 1 .
As we may treat similarly the dual term 75 4 = 3 Z ot Z mgc-divege- (Ug, ¢f-)wye-, we deduce that
n=1 W*EW

|Tz|s||wh||1,w,7-( D memg|UplIchl +2 > mymg.|Up| |ch';]. (31)
Dy €D

DA‘I'.(Tv € D

12



Let us now consider
7 n /l 1 n 1
T3 = AP (el = =5 >0 D e (e = i) = wic).
KM g¢- e

Using Cauchy-Schwarz inequality, equality (17) and the definition of ||wy|; c4 7> We obtain

A
T3] < Z—hﬁHWh,*JR - Wh,WnLZ(Q)”CZ,gJ; - CZ’W“LZ(Q) (32)
A n n
< \/Ehé ||Wh||1,oo*,‘r ||ch’§]]f - Ch’W”LZ(Q)' (33)
We focus now on the last two terms 74 = — [[q,}’"c;_, w«;—]] . and T5 = [[q;.’”én,/—, W7—]] - They verify :
ITal < Iwally o g o [lc |l o (34)
ITsl < Il cosr gy o (|5 - (35)

Finally, due to (29), (31), (33), (34) and (35), we obtain that, for all w, € Hz,

n n—1

C7~ C7~ < ” ” . . : .
’ ) )
ot . Whilleox.7 | AD Z mD<1 |UD|) lC C‘T| E ; mgmg[Up)| |cgl
7 DeD Dy g+ €D

A
+2 ) meme Uyl V2| + ——llcf o, -
Dy ,+ €D \/§h2

)

n —,n n +,n Al
¢ allize) + gy o |||, 7 + gyl (|5

It gives the bound for ||(Dr/-c')t,7—cz’ &“1 _, 7 Multiplying by 6¢ and summing over n, we obtain that

Nt Nr Nt
Yoot @rdirchyll, oy <Ap D 6t D mp (1+[Up)) [P + > 6t > myemy Uy Il
n=1

n=1 DeD n=1 Dy ;+ED
NT NT
+2 ) ot |U"||VD"|+L Stllct g — " ||
Mo Mg [Upl IV Cq on Chan ~ € e 1@
n=1 o __.€D 2 n=1
NT NT
-, +, A
+ 20l ol + D atla "oy [,
n=1 n=1

Applying Cauchy-Schwarz inequality and using the a priori estimates (22), (23) and (26), we conclude the proof of
(28).
O

4. Spaces of approximate solutions

In order to prove the convergence of a sequence of approximate solutions given by the scheme, we need some
compactness properties on the space of approximate solutions Hy-.

Proposition 4.1. Let (T,,), be a sequence of DDFV meshes satisfying h,, = size(7,,) — 0 when m — co and (21).
We consider a sequence of functions (W), with w,, = wy, € Hr, . If the sequence (Wl 1.7, )m is bounded, then there
exists w € L'(Q) such that, up to a subsequence,

Wy — winLl(Q).

m—oo

13



Proof. The convergence result of Proposition 4.1 is a consequence of an estimate on the space translates of the
sequence of approximate solutions. Such an argument is classical in the finite volume framework since [2].
Let us consider one function wy, of the given sequence (w;, = wy,, but we omit the subscript m for ease of presen-

tation). We are looking for an upper bound of [|wx(- +17) = wi()l|L1g2)- But, by construction, wj, = E(Wh,sl]f + W3-

Therefore, we first focus on ||Wh,9jz(' +1)— wh;m(')“ L@®) The calculations are similar to those followed in [4, Lemma
3.8]; the main difference comes from the fact that we do not impose boundary conditions.
For each primal edge o = K|L and for all x,57 € R2, we define

3 1 where [x,x+n]No %0,
Volr.m = { 0 elsewhere.
Then, for x € R? and 57 € R? \ {0}, we have
e+ m) = wamI < DT el —wil + Y Wl mlwcl, (36)
Dxr.rr* EIDint -Z)rr,rr* EDext

We treat the first term of the right hand side as in [4, Lemma 3.8]:

wg —Wq('
me |

M@= Y, dawnbez-wel € ) medolun)|

Dy €Dint Dy €D

o0t

As f Yo (x,m)dx < mg|n|, we obtain that
R2

2 2
Ty(x)dx < S < = Vowr| < < :
fR Ti@dxs<ll ) mem ‘ a1 2 MoVl < el Tl

Tt ™
Dy y+ €D DeD

Wyp — Wg

For the second term of the right hand side in (36), T»(x) := Z Vo (x, )lwgl, we have

D{r.(r* [Sopm
f dx <l > melwxl < IiCIwll17
R Der* €Dext

thanks to the trace Theorem 7.1 proving in Section 7. Therefore, we get:
[whsn( + 1) = wimOl| 1 gy < Cll Iwalliar,

with C depending only on Q and the regularity parameters 6 and . With the same calculations on the dual mesh, we
also get

WG+ 1) = Wy Oll 1 ey < Clnl bl

Therefore, since |[wy,||;,1.7,, is bounded, there exists C not depending on m such that

m

Wi + 1) = WOl 12y < Cligly Vi € R

We conclude thanks to Kolmogorov Theorem: there exists a subsequence of (w,,) which converges towards w €
L'(R?). Furthermore, as w,, vanishes outside Q for all m, w also vanishes outside Q: w € L' (Q). O

Proposition 4.2. Let (T,,), be a sequence of DDFV meshes satisfying h,, = size(7,,) — 0 when m — oo and (21).
We consider a sequence of functions (W) With w,, = wy, € Hy . If

Wn — winL"Q) and  lwull, 17, — O,
m— oo m—oo

thenw = 0.

14



Proof. Let us consider one function wy, of the given sequence (w;, = wj, but we omit the subscript m for ease of
presentation). Let € C°(€2). We define

1
Ug=— | w@dx YKeM andyg =0 YK e oM,
mgc Jg

1 P
Yo = f Y(xydx VK € N,
Mygee Jgce

and yq = ((!P'K)q@@’ (W )‘7(*6‘117)’ By this way, we can associate to each function ¢ € C2(€) a vector s and a
function ¥, € Hy. For all D, ,+ € D, the Taylor’s theorem implies:

W — Wyl < (dgc +dpIIVUll=@ and g — ] < (dge + dp)IIVYll=»
Yo — Yac-| < (dgc + dac)|IVY |-

Using the regularity of the mesh, we deduce that there exists C only depending on # and ¢ such that

”l//h”l,oo,'r <C “W”WLOO(Q) 5

and
Wnam = ¥, 55l < ChIWwieq) - (37)
Then, as 8 < 2, we deduce, thanks to (17), that

Wall1 cox < C Iy -
But, for w, € Hy-, we have the following inequality:
wr. vr ]y <lwalli 21 Wallcox < Clwalli 217 Wy -

Therefore, if Y € C°(Q) and the sequence (w,,) satisfies |[wyll; - 7

- — 0, it yields:
m—o0
[wr,,» 7, ] — 0asm — oo,

Yet, by definition, we have

1 1
r¥r.lr, = 5 Z wic fﬂ Y yc()dx + 5 Z Wi fg Y (x0)1ge- (x)dx

K, V=T (38)

f (U0,
Q

As a consequence, as w,, — w in L!'(Q), we obtain f w(x)y(x)dx = 0 for all ¢ € C°(€2), hence w = 0.
m—o00 Q
O

Proposition 4.3. Let (7). be a sequence of DDFV meshes satisfying h,, = size(7,,) — 0 when m — oo and (21). We
consider a sequence of functions (Vi) wWith v, = v, € Hy, such that the sequence (Ilvm||1!2,¢ )” is bounded. Then,

m m)m

there exists v € H'(Q) such that, up to a subsequence, we have the following convergence results when m — oo:
Vi — v strongly in LZ(Q),
Viny,, — Vv weakly in (L*(Q))>.
Proof. Let us set w,, = v, [v,,|. An adaptation of the proof of Proposition 4.1, with the ideas of [4, Lemma 3.8], leads

to
”Wm(' + T]) - Wm(')”LI(RZ) < C|7]|, VT] € Rz.

15



It proves the convergence of (w,,) in L' (Q) and the existence of v € L*(Q) such that
Vm — v strongly in L2(Q).
As IV v, < C, there exists y € (L*(€))? such that, up to a subsequence:
Vv, — x weakly in (L*(Q))%.

It remains to prove that y = Vv, which will also imply v € H!(Q).
Lety € (C‘;"(Q))z, we define

I, = f Viy,(2) - e(z)dz + f Vin(2)div(y(z))dz — f Xx(2) - Y(z)dz + f v(2)div((z))dz.
Q Q m=e o Q

For D = Dy, we define Y, Y, and - respectively as the mean values of ¢ over D, o~ and . We consider also
Y, defined by
Up  Ngye = Yo - Ny, Up Dgrger = Yoe - Ngoger

We have :

f Vi@ p@dz = Y oV, g = Y mpVPvr, -+ ) mpVPvr, - (U — ).

Q DED,, DED,, DED,,
But,
D — 1 — 1 —
Z mp V=g, Yy =— 5 Z Vi Z Mgy - Ny — ) Z Vs Z Mg+ - Ngrges
DED,, KeM,, DeDy KM, DeDyc+
D=D D=Dy s+

Using the definition of i/, and the fact that ¢ has a compact support, we get, thanks to Stokes formula,

Z mpV2vr - Uy =—% Z Ve f divn//(z)dz—% Z Voe- f divg(2)dz = - fg vm(2)divis(z)dz.

DED, KeM,, KM,

It implies that

Iy = mpV2vr,, - Wy — ¥n).
DED,,

Since ¥ is a smooth function, we have

Wo = B S —— (i = |+ Wi = ) < — IV

D ol = sin(&r) D o* D ol) = sin(HT) m L>(Q)>
and we deduce that
D -~ n 2
D mpVPur - Wy = U0)| < IVl Vg ——— Al Vil
DED,, sin(6,)

so that /,, tends to 0. We conclude that

L X (@) - Y(z)dz = - L V(2)div(y(2)dz, Vi € (CZ(Q))%,

which ends the proof. O
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Proposition 4.4. Let (T,,), be a sequence of DDFV meshes satisfying h,, = size(7,,) — 0 when m — oo and (21).
Let (8t,)m>1 be a sequence of time steps such that T /dt,, is an integer and 6t,, — 0. We consider a sequence of

Sunctions (Vp)m with vy, = vy, 5, € Hy, 5., when m — oo such that:

Vi — v weakly in L*((0,T) x Q)  (respectively weakly-x in L™ (0, T; L*(Q)));
Vi, — y weakly in (L*((0,T) x Q))*  (respectively weakly-x in L*(0, T; L*(Q)));

then, we have
Vv=xyandve L2(0, T: H'(Q)) (respectively L*(0, T, H'(Q))).

Proof. An adaptation of the proof of Proposition 4.3, leads to prove that Vv = y in the distribution sense on ]0, T[x£,
and therefore v € L2(0, T; H'(Q)) or v € L*((0, T) X Q).
O

5. Proof of the convergence of the numerical scheme

5.1. Compactness of the concentration

Proposition 5.1. Under the assumptions of Theorem 2.6 and the fact that ® is a constant ®*, the sequence (Cy)m
defined by the scheme (18)—(19) is relatively compact in L' (0, T; L' (Q)). Let us note by ¢ its limit up to a subsequence.
Then, ¢ lies in L*(0, T; H'(Q)). Furthermore, up to a subsequence, we have, when m — oo

cm — € weakly-= in L(0, T; L*(Q)) and strongly in L(0, T; LY(Q)),Vp < co,q < 2;
Ve, — Ve weakly in (L*(0, T; L2(Q)))*.

Proof. The key of the proof is the discrete Aubin-Simon lemma proved by Gallouét and Latché [2, Theorem 3.4]. The
family (Hg, ),, is a family of finite dimensional subspaces of L'(€Q). Each space Hy, can be equipped with the norm

m

IIlly.1.9, or with the norm |||l _; +, . The following properties are satisfied:

o Let consider a sequence (Wy,),,With wy,, = wy,, € Hy, . If the sequence (|[Wyll; 1.7, )m is bounded, then there exists
w € L'(Q) such that, up to a subsequence, (w,,),, converges to w in L' (Q). See Proposition 4.1.

e Let consider a sequence (wy,),, With w,,, = wy, € Hy . If w,, converges towards w in L' (Q2) while Uwmlly —1.7,)m
tends to 0, then w = 0. See Proposition 4.2.

The sequence (c,),, verifies c,,(-,¢) = ¢, € Hy, for all t € [(n — 1)dt,,, ndt,,). Furthermore Lemma 3.2 (with

m

Cauchy-Schwarz inequality) ensures that (c,,),, verifies, for all m,

Nr(m)
Z Oty ||CZ1||1,1,T," <G,
n=1

and Lemma 3.4 gives, for all m,
Ny (m)

> ot
n=1

with C depending only on the data of the problem. Then, Theorem 3.4 in [2] implies that, up to a subsequence, (c;,)
converges in LY(0, T, L'(Q)) to a function ¢. Furthermore, Lemma 3.2 implies that there exists w € (L*(0, T; L2 (Q)))?,
such that, up to a subsequence, we have, when m — oo

a,;,mc;’,,||lrm <C, (39)

¢ — ¢ weakly- in L¥(0, T; L*(Q)), weakly in L*(0, T'; L*(Q)) and strongly in L7(0, T; LY(Q)),Vp < o0, ¢ < 2,
Ve, — wweakly in (L*(0, T; L*(Q)))°.
We conclude, applying Proposition 4.4:
¢ e L*0,T; H(Q)), and V& = w.

17



Remark 5.2. We have used the fact that ® is a constant function in order to get (39). Therefore the compactness of
the sequence of approximate concentration is obtained thanks to [2, Theorem 3.4]. If ® is not a constant, we need to
establish some estimates on the time translates of the approximate concentration, as for instance in [7], in order to
get the compactness. As the proof is rather technical, we have restricted the proof to the case ®*.

Proposition 5.3. Under the assumptions of Theorem 2.6 and the fact that @ is a constant ®*, the sequences (Cm3y)m,
(€ a)m and (C,n.»)m, defined by the scheme (18)—(19) and (20), are relatively compact in L'(0, T; L' (Q)) and converge
to the same limit ¢ € L*(0, T; H'(Q)), defined in Proposition 5.1.

Proof. We have

_ _ VImg
lleman = €llziqo,rixe) < llem = Elligorxa) + — |

CmM — lewnmloﬂxg) .
Lemma 3.3 and Proposition 5.1 imply that
llcmam — Cllzrqo,rixqy — 0, when m — oo.

We do similarly for the convergence of ¢, .
For the last convergence, we have

dxds

f cm(s, y)dy — €(s, x)

llem® = Cllziqorixe) <

DeD

f f lew(5,y) — &(s, )| dyds

0 DeD

+ f Zi f f I2(s, y)dy — &(s, x)| dydxds.
0 mp Jp Jo

DeD
Proposition 5.1 implies that the first term in the right hand side tends to 0. Using the regularity of the mesh and of ¢,
we have for the second term:

T
f Z Lf f [e(s, y)dy — &(s, x)| dydxds < h Cf
0 mp Jp 0

DeD D

f [Ve(s, y)l dyds,

DeD

term which tends to 0. We deduce that when m — oo

llcm = Cllzrgo,rixey — O.

5.2. Convergence of the pressure

Proposition 5.4. Under the assumptions of Theorem 2.6, and the fact that ® is a constant O, there exists p €
L0, T; H'(Q)) and U € L™(0,T;L*(Q))?, such that the sequences (py)m> (Un)m defined by the scheme (18)—(19)
have the following convergence result when m — oco:

DPm — P weakly-+ in L™ (0, T; L*(Q)) and strongly in LP(0, T; LY(Q)),Vp < 0,q < 2;
Vi Pm — VP weakly-«in (L*(0,T; LZ(Q)))2 and strongly in(LZ((O, T)x Q))z;
U,—-U weakly-+ in (L*(0, T, LZ(Q)))2 and strongly in (Lz((O, T) x Q))z;

and (p,0) is a weak solution to (1), with ¢ defined in Proposition 5.1.
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Proof. Lemma 3.1 implies that up to a subsequence, we have when m — oo:
Pm — P weakly-x in L¥(0, T; L*(Q));
Vi b, — v weakly-x in (L¥(0, T; L*(Q)))*

and Proposition 4.4 implies
p e L>0,T; H(Q)), with Vj = v.

Furthermore, we have fQ Pm(t, )dx = 0 for all ¢ €]0, T[, it gives that fQ p(t,.)dx = 0 for all  €]0, T[. We introduce a
new sequence (¢,,),, defined by
En(t, x) =¢j (x) € [0, 1], if £ € [0, 1],

Cm(t, x) =cpo(t — 01, x), on [0, T[XQ,

Thanks to Proposition 5.3, (¢, ). converges to ¢ in L'(0,T; L'(Q)). It implies that (¢,,),, converges also to ¢ in
L'(0,T; L'(Q)). As in [7, Section 5.2] (working on the diamond mesh instead of the primal mesh), we obtain

U, = -An(, &)V p, — U=-A(,86Vp weakly in (L2(]0, T[xQ))>.

Let us remark that the a priori estimates (Lemma 3.1) gives

U, — U weakly-*in (L*(0, T; L*(Q))°.

It remains to prove (9). Let ¢ € C*([0,T] X Q), we define @7 associated to the discrete values:

1 T
90"7( = —f f (s, x)dxds, YK € M, and 40;( =0,YKedM,, Ynel{l,--- ,N},
m7<(5t oy JK
1 In -
Ogee = f f @(s, x)dxds, YK* € M, Yn e {1,--- ,N}.
rn7(*6t faot JK*

We define also the corresponding function ¢, and ¥,, = Vhwm. Since p,, is the solution of (18a), the discrete duality
formula (Theorem 2.3) gives

m

Nr Nr
D otlar = a7 gy Iy, = Y 0t(ha, (g NV ply Vol ),
n=1 n=1

But, on one hand, thanks to (38), we have

Np T
Z stlar" — a7 e 17, = f f(q+ — 4 s
n=1 0 Q

and on the other hand,

Nr T
D 8thn, (5 OV ply VOl ), = - f f U, ¥
0 Q

n=1
T T
f f(q+ —q )pm = _f fUm o R (40)
0 Q 0 Q

The function ¢ is smooth and then we have the uniform convergence of ¢,, and ¥,, to ¢ and Ve, respectively. There-
fore, the weak convergence of U,, to U = —A(-, &)V in (L*((0, T) x ©))? implies (9). As in [7, Section 5.2], using the
Minty trick, we deduce the strong convergence of V' pp, Uy, and finally of p,,.

We deduce

O
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5.3. Convergence of the concentration

Proposition 5.5. Under the assumptions of Theorem 2.6, and the fact that ® is a constant ®*, the function ¢, intro-
duced in Proposition 5.1, and U, introduced in Proposition 5.4, satisfy (10).

Proof. Let ¢ € C*([0,T] x Q), we use the same notation as in the proof of Proposition 5.4 in order to define O Pm
and ¥,,. Since ¢,, is the solution of (19a), we obtain

Nr
; ot 00, — div™ (D, (U, ) Ve ) | -

NT NT
+ Z ot [[divc(r'" (U%m, C?m) + AP cflrm + q,}::lcg-m , (,o,nrm]] - = Z ot [[q;::@g-m s (pn,rm]] ;o
m n:l m

n=1 !

We will pass to the limit separately in each term, denoted by 7; for 0 < i < 5. We start with

Nr
Ty = ) 810" [9y,ch 0l 7,

m
n=1

It rewrites '
Nr—1 +
To = N S5t n (’D;Hm B (’D;Hm d* 0 1
DI — | ¥l 7]
n=1 T
since gofivf = 0. Applying (38), we get

T 6ts - s
To = —f f(l)*cm(s, x)go(s+ )~ ¢ls x)dxds - f D co(x)pn (61, x)dx.
0o Jo ot Q

(LA ) — ()
ot
to d;¢ and (0, -). Therefore, the weak convergence of ¢, to ¢ in L*(0, T; L*(Q) implies that

T
To—>—f f@*aa,<p—fq>*co¢(o,-).
0 Q Q

Using the discrete duality formula (Theorem 2.3), T rewrites

The function ¢ is smooth and then we have the uniform convergence o and ¢,,(0t, .) respectively

N N
T, = - Z 5t [[div"’" (Ds, (U3, ) Ve ). go"n]] L= Z ot (D, (Us, ) Voreh Vol ).
n=1 "

n=1

We deduce

Tl = fT f thcm : (,D(', Um)\Pm) .
0 Q

We have the uniform convergence of ¥, to V. Furthermore, we have U,, — U = —A(,,&)Vjp in (L*((0, T) x Q))?,
then we get D(-, Uy,) — D(-, U) in (L2((0, T) x Q))>2. Tt implies that ' D(-, U, )¥,, — 'D(-, U)Ve in (L2((0, T) x Q))>.
And finally, the weak convergence of Vine,, to VE in (L*((0, T) x Q))? implies that

T, — f ' f Ve ('D(, 0)Vy) = f ' f (DC.0)VE) - V.
0 Q 0 Q
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Nr
As in the proof of Lemma 3.4, T := Z ot [[diVCT’" (U% ,C ”T) 90"7,,,]‘ - can be split into the sum of a primal term T,
p m

and a dual term 7 4. Using the relation ¢g. — ¢, = mg- v? @7 Ty X* = x+x and (30), the primal part rewrites

Nr
1 g
Top=5 8t Y, meme(Up - nndche V0 - T
n=1  DeD,

D
Z& Z myme- (Uz) Ngy)” (Cq( CL)V ‘P'r * Ty
n=1 DeD,

T
LetsetT] = f f cmoUn - ¥ Using the convergence results, we remark that
0o Jo

T
T;—>f fZ‘I_J-V(,D.
0 Q

Moreover, T can also be split into the sum of a primal term T;p and a dual term T ,. The primal term is

Nr

. myp
Tip = 2300 D Gy Ub M (V2 T,
n=1 DD, sin
1
since we have Uy, = M(U"D Mgy )Ty r + (9 )( “Ngege )Ty ». Let us prove that T;’p — T, tends to 0. We
D D

obtain

Nr
Tap=Dy01 D o (U Mo (V26, ) = i)
n=1 DeD,, (41)

Nr
_Z Z sin(6, )( D Noy)™ (VD‘PT TK,L)(Cq(_C ).

n=1 DeD,

For the second term in the right hand side of (41), the relation c’% - an; = mgy+ VDc’fr - Ty, and Cauchy-Schwarz
inequality imply
Nr
D ¥ n
z; 5t D; o, )( ) (V2R Ty )l — ')

<C ‘/Thm”V@'" sﬂ«r;—m||oo,©m||Um||(L°°(0,T;L2(Q)))2||Vh’”Cm||(L2((0,T)xQ))2- 42)

The a priori estimates (23) and Lemma 3.5 of [4] give

Nr
D
;&@; — (9@)(U M) (VPlh - Ty (i = )| < Chy.

This term tends to 0. For the first term in the right hand side of (41), we have similarly

1

< C(i ot Z mplc) — c”wlz)2 .

n=1 DeD,

Ny
Zét Z i, )( M) (V2R - T )l — i)

n=1 DeD,,

We apply Lemma 3.3 to get that this term tends to 0 and finally Tz*,,, — T, — 0. The same convergence result is

obtained for the dual part and
T
T, — f f cU- V.
0 Ja
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Nr
As in the proof of Lemma 3.4, using (32), the penalization term T3 := Z ot [[PT'"C,”Tm, 90"7’,,,]] . verifies

n=1

11
T3] < Eh_ﬁllc'""m = ¢ awllzorzapllenm — ¢, 5w llor20)-
m

Inequality (26) and (37) imply that:
_8
T3] < Chy * — 0,

since 8 < 2.

Ny
Thanks to (38), Ty := Z ot Hq;"c"n, t,o”,r]] - rewrites

n=1

1

T T

1

Ty = —f fCm,sm(S,X)wm,mz(S,X)CI_(S,X)dXdS+—f fCm,sm*(S,x)wm,sm*(&X)CI_(S,X)dXdS
2Jo Ja 2Jo Jo

The uniform convergence of ¢, and ¢, - to ¢, the weak convergence of ¢, and ¢, 9n- to the same ¢ lying in

L=, T; L*(Q)) imply that
T
T4 e f fq‘ap
0 Jao

Nr
Similarly, T's := Z ot |[qfr’”ég. s ]] rewrites
m m m (]771

n=1
1T 1T
Ts =3 ﬁ fg (8, X)Pmam(s, )y, g (5, x)dxds + 3 fo f(; (8, X)@man- (8, X)qy, - (5, X)dxds.

The uniform convergence of ¢,, sn and ¢, 9n+ to ¢ and the weak convergence of q; g and q; to gt in L*((0,T) x Q)

imply that .
Ts — f f qtee.
0 Ja

Passing to the limit in each term, we have proved (10). O

e

Remark 5.6. The penalization term in the scheme is useful in order to prove that the sequences (Cp9)m, (€ 3T )m and

(cmp)m converge to the same limit ¢ € L*(0, T; H'(Q)) (Lemma 3.3). This is essential when passing to the limit in the
convection term T, and the reaction term Ty.

6. Numerical experiments

In this section, we provide some numerical experiments to illustrate the influence of the penalization operator in the
behavior of DDFV scheme. The efficiency of the DDFV scheme has already been shown in [8] without penalization.

The spatial domain is Q = (0, 1000) x (0, 1000) ft> and the time period is [0,3600] days. The injection well is
located at the upper-right corner (1000, 1000) with an injection rate g* = 30 ft?/day and an injection concentration
¢ = 1.0. The production well is located at the lower-left corner (0, 0) with a production rate g~ = 30 ft>/day. It means
that g~ and g* are Dirac masses, which can be taken into account with the scheme. The porosity of the medium is
specified as ®(x) = 0.1 and the initial concentration is cy(x) = 0. The viscosity of the oil is 4(0)=1.0 cp and M = 41.
We choose @d; = 5 ft and ®d, = 0.5 ft and there is no molecular diffusion ®d,, = 0 ftz/day. ‘We choose a constant
permeability K = 801

We introduce a sequence of triangular meshes. For a refinement level i € {1,:--,8}, the mesh is obtained by
dividing the domain into 2! x 27! equally sized squares and each square is split into 2 triangles along a diagonal.
The number of cells for the mesh i is 2%*3. We present on Figure 6.1 the meshes obtained for i = 1 and i = 3. We
choose this sequence of structured triangular meshes because they fit together and allow the computation of numerical
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Figure 6.1: Triangular meshes with a refinement level i = 1 on the left and i = 3 on the right.

(@A1=10Candg = 1. (b) 1 =0.

Figure 6.2: Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the structured triangular

mesh i = 5: level sets of the concentration after 3 years.

(@A1=10°andB = 1. (b) 1= 0.

Figure 6.3: Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the structured triangular

mesh i = 5: level sets of the concentration after 10 years.

errors. Let us also mention that, even though many choices are possible, we always assume in this paper that xi is

the mass center of K € M. The time step is ot = 36 days.

Figures 6.2 and 6.3 present the level sets of the concentration obtained with the DDFV scheme, with the penal-
ization term and without a penalization term, on the structured triangular mesh i = 5, at two different times (3 and 10

years). The same qualitative behavior is observed.

The penalization operator is introduced in order to prove that (¢, ) and (c,, 3)m have the same limit (Lemma
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refinement level | error L> | order L?
1 1.08e+03 -
9.39e+02 0.23
7.06e+02 0.45
5.24e+02 0.45
3.93e+02 0.42
2.92e+02 0.44
2.11e+02 0.47

~N O L B W

Table 6.1: The L%-norm llemam — cmwjll 12((0,71x Without penalization term (4 = 0).

3.3). In Table 6.1, we compute the L*-norm (in space and time) of the difference between (c;, ), and (Cm,W)m in the
case where 1 = 0. We observe that without any penalization this difference tends to zero with an order of convergence
close to 0.5. Let us just mention that we obtain similar results using a sequence of square meshes.

In conclusion, we have presented a DDFV scheme for the Peaceman model with a penalization operator and we
have established its convergence. The numerical experiments show good qualitative properties with a small penaliza-
tion or without penalization. We can conclude that the penalization operator can be set to 0 in practice.

Acknowledgement. The authors would like to thank R. Eymard and T. Gallouét for fruitful exchanges and
advices.

7. Appendix

First, to a given vector uq = ((uq()q(eﬁ s (Uges) e Ew) € R” defined on a DDFV mesh 7~ of size h, we associate the
approximate solution on the boundary:

| 1
amuam _ 1 _ 1
u = 2 ugcgng0 + 2 2 ugc- I noq-
T K- cam

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed,

JMUOM™ _ l (u(')‘JJI + MBEJJE* oM and uﬁ‘]ﬁ*

we have u ), where u are two different reconstructions based either on the primal

values or the dual values:
oM oM*
W00 = 3 urlgae(®  and W™ @) = Y e T (0.
KeM KoM=
Let us now define some norms

. 1 . 1
FMUGM oM om
1™ o0 = §||M l1 00 + EHM Il 00-

Theorem 7.1 (Trace inequality). Let Q be a convex polygonal domain of R? and T a DDFV mesh of this domain.
There exists C > 0, depending only on Q, { and 0, such that ¥ uyr € R”:

. 1 . 1
OMUINE oM oM D
™ g = 1™ g+ S 1™ 0 < C (llurlly g + [[V2ur], 5)- 43)

Proof. The calculations are similar to those followed in [2, Lemma 10.5] especially for the primal mesh, the main
difference comes from the dual mesh. As a result we detail only this part in the following.
We have, as in [2, Lemma 10.5], by compactness of the boundary 9Q, the existence of a finite number of open

hyper-rectangles {R;,i = 1--- N}, and normalized vectors of R2, {ni;,i=1--- N}, such that

0Q C UZIR,',

i, ¥(x)) = A>0forall x e R;NIQ,ie{l---N},

{x+tn;,xeR;ﬂ§Q,teR+}ﬂRi c Q,
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where A is some positive number and ¥(x) is the normal vector to dQ at x, inward to Q (see Figure 7.1). Let {4;,i =
N
1--- N} be a family of functions such that Z Ai(x) =1, forall x € 0Q, A; € C;"’(Rz, R,) and A; = 0 outside of R;, for

i=1
alli=1---N. Let 0Q; = R; N 0Q; we will prove that there exists C; > 0 depending only on 4, £, 6 and 4; such that

(f %(x)iufml*(x)Idx) < Ci(llurlly 7 + [[V¥ur], ) -

i

N
Then, we define C = Z C;, depending only on €, ¢ and 6, to get (43).

i=1

Figure 7.1: Properties of the boundary 9Q.

As in [2] we introduce a function which determine the successive neighbours of a cell ug- : we define, for x,y € Q
and o € &,

1 si[x,ylno* #0,
l//a*(x»)’) = . «
0 si[x,ylno* =0,
and for K* € M*
1 sifx,y]nK*+0,
l//'l(*(x’ }’) = . ”
0 si[x,y]nK* =0.
Leti e {l,---,N} and x € 0Q;. There exists a unique ¢ > 0 such that x + f1; € dR;, let y(x) = x + tn;. For o™ € &7,

when [x,y(x)] N o # 0, the intersection is either reduced to a point let then z,-(x) = [x,y(x)] N o™, or a segment

[x,y(x)]No* = [a(x), b(x)] with (a(x)b(x),n;) > 0 and then let z,-(x) = b(x). For K* € M, let &x(X), Ny (x) such that
. —_—

[x, ()] N K" = [Ex (X), N ()], 1 [x, y(x)] N K™ # 0 and (€= (0)14(x), 17;) > 0.

Furthermore, let x € K and y(x) € L3 such that oy = Kj|.L; (see Figure 7.2), we have two cases. Note that in the
two cases we have x = & (x) and y(x) = 1, (x) we get n.(x) € OR;, and deduce (1. (x)) = 0.

1. [x,y(x)] N oy is reduced to a point then we have nq(a(x) = zga(x) =¢ L(*)(x). ‘We obtain

At | = (A (0) = AiC1y () It | + (A& (60) = A1) |

+ i 1 () (s | = luaz ).
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X =éx () X = () = £,

=& (0) = 205(%)

Figure 7.2: (On the left) [x, y(x)] N 0'3 is reduced to a point 2oy (x). (On the right) [x, y(x)] N 0'("J is the segment [x, y(x)].

2. [x,y(x)] N oy is a segment, then we have nq(a(x) = y(x) and /l,-(n,,(;(x)) = 0. We obtain

i@l | = (A (1) = i, (1)) lits |-
This point is the main difference with [2, Lemma 10.5]. In the two cases we get the same estimates
(D)l | < A(x) + B(x),

where

A(x) = Z Yo (%, Y(0) Ai(ze () g | = ugel

DeD
and

B(x) = Z 4i(€x (%)) = i CON uage= | e (X, y(X)).
KreMm*
We begin with the estimate of A. Using the fact that 4; is bounded, we get

A <Al D o (6, y(0) Nl | = a1

DeD

The following inequality
1
f Yo (x, y(x))dx < mg- -,
a0, 7

implies that

A= fa Adx < il Y ( fa 'ﬁcr*(X,)’(X))dX) s = ez < € " mige e | = a1
Q; Q;

DeD DeD

Since |lal — [bl| < |a — bl, we obtain

2 Uges — UL

Z mg*||u7(*| - lub” = sin(6;) Z mp :

DeD 77 Ded
Noting that

M‘ < |VD”7'" (44)
me
we deduce 5
D D
> mgusel = lupl| < ——— " mp|V2ur| < CIV urlh o + lurll 7
sin(6;)

Ded DeD
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Finally, we obtain

D
A < CillVZugllho + Cillugllr

Now the bound of B is as follows. Since the function A; is smooth, we have

B(x) < [IVAille Z €5 (X) = e (O e | e (x, y(X)).

Kem*

Furthermore, we have on one hand

g (X) = Ny (X)| < dice,

on the other hand

f Y- (x, y(x))dx < dl
o0 A

It implies that

L 5 Y (X, Y(0)) | (%) = e ()] dx < Cage-,

with C depending on £, § and 1. We obtain

8= Bor<Cy Y] me bl < Collurlhyr
o KeM*

Finally, we deduce
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