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Convergence analysis of a DDFV scheme for a system describing miscible fluid
flows in porous media I

C. Chainais-Hillairet1, S. Krell1, A. Mouton1

aLaboratoire P. Painlevé, CNRS UMR 8524, Université Lille 1, 59655 Villeneuve d’Ascq Cedex
bLaboratoire J. Dieudonné, CNRS UMR 6621, Université de Nice - Sophia Antipolis

Abstract

In this paper, we prove the convergence of a discrete duality finite volume scheme for a system of partial differential
equations describing miscible displacement in porous media. This system is made of two coupled equations: an
anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration.
We first establish some a priori estimates satisfied by the sequences of approximate solutions. Then, it yields the
compactness of these sequences. Passing to the limit in the numerical scheme, we finally obtain that the limit of the
sequence of approximate solutions is a weak solution to the problem under study.

Keywords:
finite volume method, convergence analysis, porous medium, miscible fluid flows

1. Introduction

The Peaceman model has been introduced by Bear in [6] and Douglas in [1]. It describes the single-phase dis-
placement of one fluid by another in a porous medium; the fluids are assumed incompressible and the gravity is ne-
glected. This model is constituted of an anisotropic diffusion equation on the pressure of the mixture and a convection-
diffusion-dispersion on the concentration of the invading fluid. We refer to the work [2] by Feng for the theoretical
analysis of this system of partial differential equations.

Many different schemes have already been proposed for the Peaceman model, since the beginning of the 1980’s:
finite element schemes for both equations [1, 1, 2], finite element schemes for the pressure combined with method of
characteristics for the concentration [2, 2, 1], or combined with Eulerian Lagrangian Localized Adjoint Method for
the concentration [2, 2]. The first finite volume scheme scheme proposed for the Peaceman model is a Mixed Finite
Volume scheme [7]. In this paper, Chainais-Hillairet and Droniou establish the convergence of the MFV scheme for
the Peaceman model. In [5], Bartels, Jensen and Müller provide the convergence analysis of a combined Mixed Finite
Element method for the pressure and a Discontinuous Galerkin method for the concentration.

As discrete duality finite volume schemes are well adapted for the discretization of anisotropic diffusion operators
(see for instance [1, 4, 1],...), we have proposed in a recent work [8] some discrete duality finite volume schemes for
the Peaceman model. In [8], we have focused on the a priori estimates satisfied by the schemes and on the study of
the numerical efficiency. The numerical experiments showed the good convergence behaviour of the schemes and also
good qualitative results. In the present paper, we will now consider the convergence analysis (when time and space
steps go to 0) of a DDFV scheme for the Peaceman model.

1.1. Presentation of the problem

Let assume that Ω is a connected polygonal domain of R2 and let T > 0. We denote by ∂Ω the boundary of Ω. The
unknowns of the Peaceman model are the pressure in a fluid mixture, p̄, its Darcy velocity Ū and the concentration of
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some invading fluid c̄. As proposed by Chainais-Hillairet and Droniou in [7], we consider a synthesized form of the
Peaceman model. It writes:

div
(
Ū
)

= q+ − q− in ]0,T [×Ω, (1a)

Ū = −A(·, c̄)∇p̄ in ]0,T [×Ω, (1b)

Ū · n = 0 on ]0,T [×∂Ω, (1c)∫
Ω

p̄(·, x) dx = 0 on ]0,T [, (1d)

Φ∂tc̄ − div(D(·, Ū)∇c̄) + div(c̄Ū) + q−c̄ = q+ĉ in ]0,T [×Ω, (2a)

D(·, Ū)∇c̄ · n = 0 on ]0,T [×∂Ω, (2b)
c̄(0, ·) = c0 on Ω. (2c)

In this system, q+ and q− denote the injection and production terms, ĉ the injected concentration, Φ the porosity of
the porous medium. The tensor A contains the effect of the permeability of the porous medium and the viscosity
of the fluid mixture. The tensor D is the diffusion-dispersion tensor; it includes molecular diffusion and mechanical
dispersion. The assumptions on the data are the following:

(q+, q−) ∈ L∞(0,T ; L2(Ω)) are nonnegative functions such that∫
Ω

q+(·, x) dx =

∫
Ω

q−(·, x) dx a.e. on ]0,T [, (3)

A : Ω × R→M2(R) is a Caratheodory matrix-valued function satisfying:
∃αA > 0 such that A(x, s)ξ · ξ ≥ αA|ξ|

2 for a.e. x ∈ Ω, all s ∈ R and all ξ ∈ R2,
∃ΛA > 0 such that |A(x, s)| ≤ ΛA for a.e. x ∈ Ω and all s ∈ R,

(4)

D : Ω × R2 →M2(R) is a Caratheodory matrix-valued function satisfying:
∃αD > 0 s.t. D(x,W)ξ · ξ ≥ αD(1 + |W|)|ξ|2 for a.e. x ∈ Ω, all W ∈ R2 and all ξ ∈ R2,

∃ΛD > 0 such that |D(x,W)| ≤ ΛD(1 + |W|) for a.e. x ∈ Ω and all W ∈ R2,
(5)

Φ ∈ L∞(Ω) and there exists Φ∗ > 0 such that Φ∗ ≤ Φ ≤ Φ−1
∗ a.e. in Ω, (6)

ĉ ∈ L∞(]0,T [×Ω) satisfies: 0 ≤ ĉ ≤ 1 a.e. in ]0,T [×Ω, (7)

c0 ∈ L∞(Ω) satisfies: 0 ≤ c0 ≤ 1 a.e. in Ω. (8)

The following definition (similar to the one in [2]) of weak solution to (1)—(2) makes sense.

Definition 1.1. Under assumptions (3)—(8), a weak solution to (1)—(2) is a triple (p̄, Ū, c̄) satisfying

p̄ ∈ L∞(0,T ; H1(Ω)) , Ū ∈ L∞(0,T ; L2(Ω))2 , c̄ ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)) ,∫
Ω

p̄(t, ·) = 0 for a.e. t ∈]0,T [ , Ū = −A(·, c̄)∇p̄ a.e. on ]0,T [×Ω ,

∀ϕ ∈ C∞([0,T ] × Ω̄) , −

∫ T

0

∫
Ω

Ū · ∇ϕ =

∫ T

0

∫
Ω

(q+ − q−)ϕ , (9)

∀ϕ ∈ C∞c ([0,T [×Ω̄) , −

∫ T

0

∫
Ω

Φc̄∂tϕ +

∫ T

0

∫
Ω

D(·, Ū)∇c̄ · ∇ϕ −
∫ T

0

∫
Ω

c̄Ū · ∇ϕ +

∫ T

0

∫
Ω

q−c̄ϕ

−

∫
Ω

Φc0ϕ(0, ·) =

∫ T

0

∫
Ω

q+ĉϕ.

(10)
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1.2. Aim of the paper and outline

Different development of new finite volume schemes for diffusion equations have been done since twenty years.
Their aim is to reconstruct some discrete gradient which has no serious restriction on meshes and strong enough
convergence for handling the nonlinear coupling of the equations. Let us cite for instance the Multi Points Flux Ap-
proximation schemes by Aavatsmark, Barkve, Boe and Mannseth [1, 2], the Discrete Duality Finite Volume (DDFV)
schemes by Domelevo and Omnes [1, 4], the Mixed Finite Volume schemes by Droniou and Eymard [1, 1], the
Scheme Using Stabilization and Hybrid Interfaces by Eymard, Gallouët and Herbin [2, 2]. We refer to [1] where
Droniou presents a review on finite volume methods for diffusion equations, with a focus on coercivity and minimum-
maximum principles.

In [8], we have proposed a DDFV scheme for the Peaceman system (1)-(2). The DDFV scheme requires unknowns
on both vertices and “centers” of control volumes. These two sets of unknowns allow to define a two-dimensional
discrete gradient (piecewise constant on new geometric elements called diamonds) and a discrete divergence operator.
These two operators satisfy a duality property in a discrete sense, which gives its name to the method.

In order to prove the convergence of the scheme, we need to add a penalization operator in the discretization of the
convection-diffusion-dispersion equation. Such a penalization operator has already been introduced by Andreianov,
Bendahmane and Karlsen in the numerical approximation of a degenerate hyperbolic-parabolic equation [3]. It ensures
that both reconstructions of the concentration, either on the primal mesh or on the dual mesh, converge to the same
limit. It is crucial when passing to the limit in the concentration equation. However, the numerical experiments will
show that the penalization operator is not necessary in practice.

In Section 2, we present the different meshes and the associated notations. After having introduced the different
discrete operators, we present the DDFV scheme in Section 2.5. The main result of the paper (convergence of the
DDFV scheme) is stated in Theorem 2.6.

In order to prove this Theorem, we establish in Section 3 some a priori estimates satisfied by the numerical
solution to the scheme. Then, in Section 4, we prove some properties satisfied by the discrete functional spaces. They
will be useful to apply a discrete counterpart of Aubin-Simon Theorem, proved by Gallouët and Latché in [2]. Thanks
to the a priori estimates and the properties satisfied by the discrete functional spaces, we prove the compactness of
the sequence of approximate solutions. Then, the proof of Theorem 2.6 is concluded by passing to the limit into the
scheme in Section 5. In Section 6, we provide some numerical experiments. The efficiency of the DDFV scheme has
already been shown in [8]. In this last Section, we just show that the penalization operator introduced for the proof of
convergence can be set to 0 in practice.

2. Presentation of the numerical scheme and of the main results

2.1. Meshes and notations

In order to define a DDFV scheme, as for instance in [1, 4], we need to introduce three different meshes – the
primal mesh, the dual mesh and the diamond mesh – and some associated notations.

The mesh construction starts from the partitionM, the partition of the computational domain Ω, with disjoint open
polygonal control volumes K ⊂ Ω such that ∪K̄ = Ω̄. This partitionM is called the interior primal mesh. We denote
by ∂M the set of boundary edges, which are considered as degenerate control volumes. Then, the primal mesh is
composed of M ∪ ∂M, denoted by M. To construct the two others meshes, we need to associate at each primal cell
K ∈ M, a point xK ∈ K , called the center of the primal cell. Notice that for K a degenerate control volume, the point
xK is necessarily the midpoint of K . This family of centers is denoted by X = {xK ,K ∈ M} and these will determine
the two others meshes.

Let X∗ denote the set of the vertices of the primal control volumes inM. Distinguishing the interior vertices from
the vertices lying on the boundary, we split X∗ into X∗ = X∗int ∪X∗ext. To any point xK∗ ∈ X∗int, we associate the polygon
K∗, whose vertices are {xK ∈ X/xK∗ ∈ K̄ ,K ∈ M}. The set of these polygons defines the interior dual mesh denoted by
M∗. To any point xK∗ ∈ X∗ext, we then associate the polygonK∗, whose vertices are {xK∗ }∪{xK ∈ X/xK∗ ∈ K̄ ,K ∈ M}.
The set of these polygons is denoted by ∂M∗ called the boundary dual mesh and the dual mesh isM∗ ∪ ∂M∗, denoted
byM∗.

In order to define the diamond mesh, we first introduce the notion of edges. For all neighboring primal cells
K and L, we assume that ∂K ∩ ∂L is a segment, corresponding to an edge of the mesh M, denoted by σ =
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K|L. Let E be the set of such edges. We similarly define the set E∗ of the edges of the dual mesh M∗: E∗ ={
σ∗, σ∗ = K∗|L∗ with K∗,L∗ ∈ M∗

}
. Let us note that, if K ∈ M, all its edges belong to E and if K∗ ∈ M∗, all its

edges belong to E∗. But, ifK∗ ∈ ∂M∗, then it has edges inside the domain and also on its boundary: the interior edges
belong to E∗ while the boundary edges belong to E.

xL∗

xK∗

xL

xK τK∗,L∗

nσK

τK,L

nσ∗K∗

Vertices of the primal mesh

Centers of the primal mesh

σ = K|L, edge of the primal mesh

σ∗ = K∗|L∗, edge of the dual mesh

DiamondDσ,σ∗ xL∗

xK∗

xL
xK

Figure 2.1: Definition of the diamondsDσ,σ∗

For each couple (σ,σ∗) ∈ E × E∗ such that σ = K|L = (xK∗ , xL∗ ) and σ∗ = K∗|L∗ = (xK , xL), we define the
quadrilateral diamond cellDσ,σ∗ whose diagonals are σ and σ∗. If σ ∈ E∩ ∂Ω, we note that the diamond degenerates
into a triangle. The set of the diamond cells defines the diamond mesh D. It verifies Ω̄ =

⋃
D∈DD. We have as many

diamond cells as primal edges. We can rewrite D = Dext ∪ Dint where Dext is the set of all the boundary diamonds
(associated to the boundary edges) and Dint the set of all the interior diamonds.

Finally, the DDFV mesh is made of the T = (M,M∗) and D. Let us now introduce some notations associated to
the meshes T and D. For each primal or dual cell V (V ∈ M or V ∈ M∗), we define mV the measure of V , EV the
set of the edges of V (it coincides with the edge σ = V if V ∈ ∂M), DV the set of diamonds Dσ,σ∗ ∈ D such that
m(Dσ,σ∗ ∩ V) > 0, and dV the diameter of V .

For a diamond Dσ,σ∗ , whose vertices are (xK , xK∗ , xL, xL∗ ), we define, as shown on Figure 2.1: xD the center of
the diamond cell D: {xD} = σ ∩ σ∗, mσ the length of the primal edge σ, mσ∗ the length of the dual edge σ∗, mD
the measure of D, dD its diameter, θD the angle between (xK , xL) and (xK∗ , xL∗ ). We will also use two direct basis
(τK∗,L∗ ,nσK) and (nσ∗K∗ , τK,L), where nσK is the unit normal to σ, outward K , nσ∗K∗ is the unit normal to σ∗, outward
K∗, τK∗,L∗ is the unit tangent vector to σ, oriented from K∗ to L∗, τK,L is the unit tangent vector to σ∗, oriented from
K to L.

We introduce now the size of the mesh, size(T ) = max
D∈D

dD. We assume that the diamonds cannot be flat: there

exists a unique θT ∈]0, π2 ] such that sin(θT ) := min
D∈D

(| sin(θD)|). We also need some regularity of the mesh, as in [4].

We assume that there exists ζ > 0 such that∑
D∈DK

mσmσ∗ ≤
mK
ζ
,∀K ∈ M, and

∑
D∈DK∗

mσmσ∗ ≤
mK∗
ζ
,∀K∗ ∈ M∗, (11a)

mD ≤
mK∩K∗
ζ

,∀D ∈ D,K ∈ M,K∗ ∈ M∗ such that m(D∩K) , 0 and m(D∩K∗) , 0. (11b)

2.2. Set of discrete unknowns

We need several types of degrees of freedom to represent scalar and vector fields in the discrete setting. Let us
introduce :
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• RT the linear space of scalar fields constant on the cells ofM andM∗ :

RT =
{
uT =

(
(uK )

K∈M
, (uK∗ )K∗∈M∗

)
, with uK ∈ R, ∀K ∈ M, and uK∗ ∈ R, ∀K∗ ∈ M∗

}
.

•
(
R2

)D
the linear space of vector fields constant on the cells of D :(

R2
)D

=
{
ξD =

(
ξD

)
D∈D

, with ξD ∈ R2, ∀D ∈ D
}
.

Similarly, we may define RD, RDext
, R∂M the spaces of scalar fields constant respectively on D, Dext and ∂M and

(R2)D
ext

the space of vector fields constant on Dext. It permits to introduce two trace operators, defined respectively on
RT and

(
R2

)D
. The first one is γT : uT ∈ RT 7→ γT (uT ) =

(
γL(uT )

)
L∈∂M

∈ R∂M, defined by :

γL(uT ) =
uK∗ + 2uL + uL∗

4
, ∀ L = [xK∗ , xL∗ ] ∈ ∂M. (12)

The second one is γD : ϕD ∈ (R2)D 7→ (ϕD)D∈Dext ∈ (R2)Dext .

We define the scalar products J·, ·KT on RT and (·, ·)D on
(
R2

)D
by

JvT , uT KT =
1
2

∑
K∈M

mKuKvK +
∑
K∗∈M∗

mK∗uK∗vK∗

 , ∀uT , vT ∈ RT ,

(
ξD,ϕD

)
D =

∑
D∈D

mD ξD · ϕD, ∀ξD,ϕD ∈
(
R2

)D
.

The corresponding norms are denoted by ‖ · ‖2,T and ‖ · ‖2,D. More generally, we set for all uT ∈ RT , ξD ∈
(
R2

)D
and

1 ≤ p < +∞:

‖uT ‖p,T =

1
2

∑
K∈M

mK |uK |p +
1
2

∑
K∗∈M∗

mK∗ |uK∗ |p


1/p

,
∥∥∥ξD∥∥∥p,D =

∑
D∈D

mD |ξD|
p

1/p

,

‖uT ‖∞,T = max
(
max
K∈M
|uK |, max

K∗∈M∗
|uK∗ |

)
,

∥∥∥ξD∥∥∥∞,D = max
D∈D

∣∣∣ξD∣∣∣ .
(13)

We also define the bilinear form 〈·, ·〉∂Ω on RDext × R∂M by

〈φD, v∂M〉∂Ω =
∑

Dσ,σ∗∈Dext

mσφDvσ, ∀ φD ∈ RDext ,∀v∂M = (vσ)σ∈∂M ∈ R∂M.

To a given vector uT =
(
(uK )

K∈M
, (uK∗ )K∗∈M∗

)
∈ RT defined on a DDFV mesh T of size h, we associate the

approximate solution:

uh =
1
2

∑
K∈M

uK1K +
1
2

∑
K∗∈M∗

uK∗1K∗ . (14)

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed,

we have uh =
1
2

(uh,M + uh,M∗ ), where uh,M and uh,M∗ are two different reconstructions based either on the primal values
or the dual values:

uh,M =
∑
K∈M

uK1K and uh,M∗ =
∑
K∗∈M∗

uK∗1K∗ .

The space of the approximate solutions is denoted by HT :

HT =

uh ∈ L1(Ω) / ∃uT =
(
(uK )

K∈M
, (uK∗ )K∗∈M∗

)
∈ RT such that uh =

1
2

∑
K∈M

uK1K +
1
2

∑
K∗∈M∗

uK∗1K∗

 . (15)
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In the sequel, we will also need some reconstruction of the approximate solutions on the diamond cells. Therefore,
we associate to a given uh ∈ HT the piecewise constant function on diamond cells uh,D, defined by:

uh,D(x) =
∑
D∈D

uD1D with uD =
1

mD

∫
D

uh(y)dy ∀D ∈ D. (16)

2.3. Discrete operators and duality formula
In this section, we recall the definition of the discrete operators: discrete gradient, discrete divergence operator

and discrete convection operator. The discrete gradient has been introduced in [1] and developed in [1]. The discrete
divergence has been introduced in [1].

Definition 2.1. The discrete gradient is a mapping from RT to
(
R2

)D
defined for all uT ∈ RT by ∇DuT =

(
∇DuT

)
D∈D

,
where forD ∈ D :

∇DuT =
1

sin(θD)

(
uL − uK

mσ∗
nσK +

uL∗ − uK∗
mσ

nσ∗K∗
)
.

Definition 2.2. The discrete divergence operator divT is a mapping from
(
R2

)D
to RT defined for all ξD ∈

(
R2

)D
by

divTξD =
(
divMξD, div∂MξD, divM

∗

ξD, div∂M
∗

ξD
)
,

with divMξD =
(
divKξD

)
K∈M, div∂MξD = 0, divM

∗

ξD =
(
divK∗ξD

)
K∗∈M∗ and div∂M

∗

ξD =
(
divK∗ξD

)
K∗∈∂M∗ such that:

∀ K ∈ M, divKξD =
1

mK

∑
D∈DK

D=Dσ,σ∗

mσ ξD · nσK ,

and analogous definitions for divK∗ξD for K∗ ∈ M∗ (see [8]).

Discrete Duality Finite Volume methods are based on the discrete duality formula recalled in Theorem 2.3 and
proved for instance in [1]. This is the discrete counterpart of the Green formula.

Theorem 2.3. For all (ξD, vT ) ∈
(
R2

)D
× RT , we have

JdivTξD, vT KT = −(ξD,∇
DvT )D + 〈γD(ξD) · n, γT (vT )〉∂Ω,

where n is the exterior unit normal to Ω.

The discrete convection operator has been introduced in [8]. It is similar with previous definitions given by
Andreianov, Bendahmane and Karlsen in [3] and by Coudière and Manzini in [9].

Definition 2.4. The discrete convergence operator divcT is a mapping from
(
R2

)D
× RT to RT defined for all ξD ∈(

R2
)D

and vT ∈ RT by

divcT (ξD, vT ) =
(
divcM(ξD, vT ), divc∂M(ξD, vT ), divcM

∗

(ξD, vT ), divc∂M
∗

(ξD, vT )
)
,

with divcM(ξD, vT ) =
(
divcK (ξD, vT )

)
K∈M, divc∂M(ξD, vT ) = 0, divcM

∗

(ξD, vT ) =
(
divcK∗ (ξD, vT )

)
K∗∈M∗ and

divc∂M
∗

(ξD, vT ) =
(
divcK∗ (ξD, vT )

)
K∗∈∂M∗ such that:

∀ K ∈ M, divcK (ξD, vT ) =
1

mK

∑
D∈DK

D=Dσ,σ∗

mσ

((
ξ
D
· nσK

)+ vK −
(
ξ
D
· nσK

)− vL
)
,

where x+ = max(x, 0) and x− = −min(x, 0) for all x ∈ R, and analogous definitions for divcK∗ (ξD, vT ) for K∗ ∈ M∗
(see [8]).
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2.4. A penalization operator

Let us introduce now a penalization operator as in [3]. This operator has not been introduced in our previous work
[8]. However, we will see that it is essential when passing to the limit in the scheme, especially in the convection term
in (2a). Indeed, the penalization operator will ensure that the reconstructions of the concentration on the primal mesh
and on the dual mesh converge to the same limit.

Definition 2.5. Let β ∈]0, 2[. The penalization operator PT : RT → RT is defined for all uT ∈ RT , by:

PTuT =
(
PMuT ,P∂MuT ,PM

∗

uT ,P∂M
∗

uT
)
,

with PMuT = (PKuT )
K∈M, P∂MuT = 0, PM

∗

uT = (PK∗uT )
K∗∈M∗ and P∂M

∗

uT = (PK∗uT )
K∗∈∂M∗ such that

∀ K ∈ M, PKuT =
1

mK

1
size(T )β

∑
K∗∈M∗

mK∩K∗ (uK − uK∗ ),

∀ K∗ ∈ M∗, PK∗uT =
1

mK∗
1

size(T )β
∑
K∈M

mK∩K∗ (uK∗ − uK ).

The penalization operator clearly satisfies the following property:

JPTuT , uT KT =
1
2

1
size(T )β

∑
K∗∈M∗

∑
K∈M

mK∩K∗ (uK − uK∗ )2 =
1
2

1
size(T )β

‖uh,M − uh,M∗‖
2
L2(Ω). (17)

2.5. The numerical scheme

Let (T ,D) be a DDFV mesh of Ω (as presented in Section 2.1) and δt > 0 be a time step. We set NT = T/δt (we
always choose time steps such that NT is an integer) and we define tn = nδt for n ∈ {0, . . . ,NT }.

First, we discretize all the data of the problem. Therefore, we introduce PK (respectively PK∗ ) the L2 projection
over an interior primal (respectively dual) cell. We then define c0

T
=

(
(PKc0)K∈M , 0, (PK∗c0)

K∗∈M∗

)
∈ RT . and

ΦT =
(
(PKΦ)K∈M , 0, (PK∗Φ)

K∗∈M∗

)
∈ RT . In a similar way, for all n ≥ 1, we define (q+,n

T
, q−,n
T

, ĉn
T

) ∈ (RT )3 by taking
the mean values of q+, q− and ĉ on the primal and dual cells crossed with the time interval (tn−1, tn). For w = q+, q−, ĉ,
it writes:

wn
T

=
1
δt

∫ tn

tn−1

(
(PKw(., t))K∈M , 0, (PK∗w(., t))

K∗∈M∗

)
dt.

At each time step n, the numerical solution will be given by (pn
T
,Un
D
, cn
T

) ∈ RT ×
(
R2

)D
× RT and the computation of

the pressure and the velocity (pn
T
,Un
D

) will be decoupled from the computation of the concentration (cn
T

). Due to the
coupling in the Darcy law (1b), we need to reconstruct some approximate values on the diamond cells cn−1

D
= (cn−1

D
)D∈D

from cn−1
T

following (16). We may also introduce the approximate tensors

AD(s) =
1

mD

∫
D

A(x, s)dx ∀s ∈ R, DD(W) =
1

mD

∫
D

D(x,W)dx, ∀W ∈ R2.

It permits to define AD(cn−1
D

) =
(
AD(cn−1

D )
)
D∈D

and DD
(
Un
D

)
=

(
DD(Un

D)
)
D∈D

.
Then, the scheme for (1) writes:

divT
(
Un
D

)
= q+,n

T
− q−,n

T
, ∀1 ≤ n ≤ NT , (18a)

Un
D

= −AD(cn−1
D

)∇Dpn
T
, ∀1 ≤ n ≤ NT , (18b)

Un
D · n = 0, ∀D ∈ Dext, ∀1 ≤ n ≤ NT , (18c)∑

K∈M

mK pn
K

=
∑
K∗∈M∗

mK∗ pn
K∗

= 0, ∀1 ≤ n ≤ NT , (18d)
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and the scheme for (2) writes:

ΦT
cn
T
− cn−1
T

δt
− divT

(
DD

(
Un
D

)
∇Dcn

T

)
+ divcT

(
Un
D
, cn
T

)
+ q−,n

T
cn
T

+ λPT (cn
T

) = q+,n
T

ĉn
T
, ∀1 ≤ n ≤ NT , (19a)

DD
(
Un
D

)
∇Dcn

T
· n = 0,∀D ∈ Dext, ∀1 ≤ n ≤ NT . (19b)

Note that λ is a positive constant. The scheme (18)–(19) comes down to a resolution of two linear systems: starting
from cn−1

T
, (pn

T
,Un
D

) is obtained by solving the linear system (18a)–(18d) and then cn
T

is computed by solving the
linear system (19a)-(19b). Existence and uniqueness of a solution to each linear system has been proved in [8] in the
case where λ = 0. This result is based on the a priori estimates satisfied by the discrete pressure and the discrete
concentration. It remains true in the case where λ > 0 because the same a priori estimates on the pressure and the
concentration still hold (see Lemma 3.1 and Lemma 3.2 in Section 3).

2.6. Definition of the functional spaces for approximate solutions
As we are interested in the numerical analysis of the scheme (and particularly in its convergence analysis), we

need to define some functional spaces for the approximate solutions.
We have already defined in (15) the space of approximate solutions HT . For a function uh ∈ HT , we define its

approximate gradient ∇huh by
∇huh =

∑
D∈D

∇DuT 1D.

This approximate gradient is a piecewise constant function on each diamond. The space of such functions is denoted
by HD:

HD =

{
Uh ∈ (L1(Ω))2 / ∃UD ∈

(
R2

)D
such that Uh =

∑
D∈D

UD1D
}
.

Then, we define the space-time approximation spaces HT ,δt and HD,δt based respectively on HT and HD:

HT ,δt =
{
uh,δt ∈ L1([0,T ] ×Ω) such that uh,δt(t, x) = un

h(x) ∀t ∈ [tn−1, tn), with un
h ∈ HT , ∀1 ≤ n ≤ NT

}
,

HD,δt =
{
Uh,δt ∈ (L1([0,T ] ×Ω))2 such that Uh,δt(t, x) = Un

h(x) ∀t ∈ [tn−1, tn), with Un
h ∈ HD, ∀1 ≤ n ≤ NT

}
.

We still keep the notation ∇h to define the approximate gradient of uh,δt ∈ HT ,δt:

∇huh,δt(x, t) = ∇hun
h(x) ∀t ∈ [tn−1, tn).

Therefore, for all uh,δt ∈ HT ,δt, we have ∇huh,δt ∈ HD,δt. Furthermore, we introduce the following reconstructions

uh,δt,M(t, x) = un
h,M(x) =

∑
K∈M

un
K

1K (x), ∀t ∈ [tn−1, tn), (20a)

uh,δt,M∗ (t, x) = un
h,M∗

(x) =
∑
K∗∈M∗

un
K∗

1K∗ (x), ∀t ∈ [tn−1, tn), (20b)

uh,δt,D(t, x) = un
h,D(x) =

∑
D∈D

un
D 1D(x), ∀t ∈ [tn−1, tn). (20c)

We may now define some norms on HT , HT ,δt. First, we define some discrete W1,p-norms (1 ≤ p ≤ +∞) and a
discrete W1,−1-norm on HT . For all uh ∈ HT , we set

‖uh‖1,p,T =
(
‖uT ‖

p
p,T +

∥∥∥∇DuT
∥∥∥p

p,D

)1/p
, ∀1 ≤ p < +∞,

‖uh‖1,∞,T = ‖uT ‖∞,T +
∥∥∥∇DuT

∥∥∥
∞,D

,

‖uh‖1,∞?,T = ‖uh‖1,∞,T + JPTuT , uT K
1
2
T
,

‖uh‖1,−1,T = max
{
JvT , uT KT ,∀vh ∈ HT verifying ‖vh‖1,∞?,T ≤ 1

}
,
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where the norms ‖·‖p,T and ‖·‖p,D have been defined by (13) and the penalization operatorPT is given in Definition 2.5.
Then, we define some discrete L1(0,T ; W1,p(Ω)) (1 ≤ p < +∞), L∞(0,T ; W1,∞(Ω)) and L∞(0,T ; Lp(Ω))-norms on
HT ,δt. For all uh,δt ∈ HT ,δt, we set:

∥∥∥uh,δt

∥∥∥
1;1,p,T =

NT∑
n=1

δt
∥∥∥un

h

∥∥∥
1,p,T , ∀1 ≤ p < +∞,∥∥∥uh,δt

∥∥∥
∞;1,∞,T = max

n∈{1,··· ,NT }

∥∥∥un
h

∥∥∥
1,∞,T ,

∥∥∥uh,δt

∥∥∥
∞;0,p,T = max

n∈{1,··· ,NT }

1
2

∑
K∈M

mK |un
K
|p +

1
2

∑
K∗∈M∗

mK∗ |un
K∗
|p


1/p

, ∀1 ≤ p < +∞.

Let us also remark that, for all Uh,δt ∈ HD,δt and for 1 ≤ p < +∞, we have

‖Uh,δt‖(L∞(0,T ;Lp(Ω)))2 = max
n∈{1,··· ,NT }

∑
D∈D

mD|Un
h|

p

1/p

,

‖Uh,δt‖(Lp((0,T )×Ω))2 =

 NT∑
n=1

δt
∑
D∈D

mD|Un
h|

p


1/p

.

2.7. Main result

We may now state the main result of the paper.

Theorem 2.6. Let Ω be an open bounded connected polygonal domain of R2 and T > 0. Assume (3)–(8) hold, λ > 0
and β ∈]0, 2[. Let (Tm)m≥1 be a sequence of DDFV meshes such that hm = size(Tm) −→

m→∞
0 while the regularity

parameters ζm and θm verifying:

∃θ > 0, ζ > 0 such that,∀m, θm ≥ θ and ζm ≤ ζ. (21)

Let (δtm)m≥1 be a sequence of time steps such that T/δtm is an integer and δtm −→
m→∞

0. Then, the scheme (18)–(19)
defines a sequence of approximate solutions (pm = phm,δtm ,Um = Uhm,δtm , cm = chm,δtm ) ∈ HTm,δtm × HDm,δtm × HTm,δtm ,
there exists p̄ ∈ L∞(0,T ; H1(Ω)),Ū ∈ L∞(0,T ; L2(Ω))2 and c̄ ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H1(Ω)), and, up to a
subsequence, we have the following convergence results when m→ ∞:

pm → p̄ weakly-∗ in L∞(0,T ; L2(Ω)) and strongly in Lp(0,T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm pm → ∇p̄ weakly-∗ in (L∞(0,T ; L2(Ω)))2 and strongly in(L2((0,T ) ×Ω))2;

Um → Ū weakly-∗ in (L∞(0,T ; L2(Ω)))2 and strongly in (L2((0,T ) ×Ω))2;

cm → c̄ weakly-∗ in L∞(0,T ; L2(Ω)) and strongly in Lp(0,T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm cm → ∇c̄ weakly in (L2((0,T ) ×Ω))2.

Moreover, ( p̄, Ū, c̄) is a weak solution to (1)-(2).

In order to prove this result, we split the proof in different steps. Firstly, we establish some a priori estimates sat-
isfied by the scheme (Section 3). Then, thanks to these estimates and to some properties of the spaces of approximate
solution (Section 4), we show the compactness of the sequences of approximate concentrations and of approximate
pressures. Then we can pass to the limit in the scheme for the pressure and in the scheme for the concentration.

For the sake of simplicity, we will restrict the proof of Theorem 2.6 to the case where the porosity Φ is constant
on the whole domain (Φ = Φ∗). Indeed, in this case, the proof of the compactness of the sequence of approximate
concentration is simpler and based on the paper by Gallouët-Latché [2].
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3. A priori estimates

In this Section, we prove a priori estimates satisfied by a solution to the scheme. Lemma 3.1 gives a priori
estimates on the pressure, the gradient of the pressure and the Darcy’s velocity at the discrete level, while Lemma
3.2 gives a priori estimates on the approximate concentration and its approximate gradient. Thanks to these two
lemmas, we get the existence and uniqueness of a solution to the scheme, as in [8]. Then, Lemma 3.3 shows that the
reconstructions of the concentration on the primal and dual meshes will necessarily converge to the same limit (when
convergence occurs). In Lemma 3.4, we give an a priori estimate on the discrete time derivatives of the approximate
concentration.

Lemma 3.1. Under the hypotheses of Theorem 2.6, we assume that the scheme (18)–(19) defines an approximate
solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt ×HD,δt ×HT ,δt. Then, there exists C > 0 depending only on Ω, ζ, θ, αA and ΛA such
that: ∥∥∥ph,δt

∥∥∥
∞;0,2,T +

∥∥∥∇h ph,δt

∥∥∥
(L∞(0,T ;L2(Ω)))2 +

∥∥∥Uh,δt

∥∥∥
(L∞(0,T ;L2(Ω)))2 ≤ C‖q+ − q−‖L∞(0,T ;L2(Ω)). (22)

Proof. Inequality (22) is a direct consequence of Lemma 3.2 in [8].

Lemma 3.2. Under the hypotheses of Theorem 2.6, we assume that the scheme (18)–(19) defines an approximate
solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt × HD,δt × HT ,δt. Then, there exists C > 0 depending only on Ω, T , ζ, θ, Φ∗ and αD

such that:∥∥∥ch,δt

∥∥∥2
∞;0,2,T +

∥∥∥∇hch,δt

∥∥∥2
(L2((0,T )×Ω))2 +

∥∥∥∥|Uh,δt |
1
2∇hch,δt

∥∥∥∥2

(L2((0,T )×Ω))2
≤ C

(
‖c0‖

2
L2(Ω) + ‖q+‖2L∞(0,T,L2(Ω))

)
. (23)

λ

NT∑
n=1

δtJPT (cn
T

), cn
T
KT ≤ C

(
‖c0‖

2
L2(Ω) + ‖q+‖2L∞(0,T,L2(Ω))

)
. (24)

Proof. The proof is very close to the proof of Lemma 3.3 in [8]. We multiply the scheme (19a) by cn
T

. It yields

t

ΦT
cn
T
− cn−1
T

δt
, cn
T

|

T

−

r
divT

(
DD

(
Un
D

)
∇Dcn

T

)
, cn
T

z

T
+

r
divcT

(
Un
D
, cn
T

)
, cn
T

z

T
+

q
q−,n
T

cn
T
, cn
T

y
T

+ λJPT (cn
T

), cn
T
KT =

q
q+,n
T

ĉn
T
, cn
T

y
T
.

Following the same computations as in [8], we get

1
2δt

(q
ΦT , (cn

T
)2y
T
−

q
ΦT , (cn−1

T
)2y
T

)
+ αD

(∥∥∥∇Dcn
T

∥∥∥2
2,D +

∥∥∥∥|Un
D
|

1
2∇Dcn

T

∥∥∥∥2

2,D

)
+ λJPT (cn

T
), cn
T
KT ≤

∥∥∥q+,n
T

∥∥∥
2,T

∥∥∥cn
T

∥∥∥
2,T .

Multiplying by 2δt and summing over n = 1, . . . ,N with 1 ≤ N ≤ NT , we get

Φ∗
∥∥∥cN
T

∥∥∥2
2,T + 2αD

N∑
n=1

δt
(∥∥∥∇Dcn

T

∥∥∥2
2,D +

∥∥∥∥|Un
D
|

1
2∇Dcn

T

∥∥∥∥2

2,D

)
+ 2λ

N∑
n=1

δtJPT (cn
T

), cn
T
KT

≤ Φ−1
∗ ‖c0‖

2
L2(Ω) +

2T 2

Φ∗
‖q+‖2L∞(0,T,L2(Ω)) +

Φ∗

2
sup

1≤n≤NT

‖cn
T
‖22,T . (25)

Thanks to (17), the contribution of the penalization is positive and therefore we conclude the proof of (23) by taking
the supremum over 1 ≤ N ≤ NT . Then, restarting from (25), we obtain (24).

Thanks to Lemma 3.1 and 3.2, we have the existence and uniqueness of a solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt ×
HD,δt × HT ,δt to the scheme (18)–(19) as in [8].

10



Lemma 3.3. Under the hypotheses of Theorem 2.6, there exists C > 0 depending only on Ω, T , ζ, θ, Φ∗ and αD such
that the solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt × HD,δt × HT ,δt to the scheme (18)–(19) verifies

‖ch,δt,M − ch,δt,M∗‖
2
L2(0,T ;L2(Ω)) ≤

C
λ

hβ
(
‖c0‖

2
L2(Ω) + ‖q+‖2L∞(0,T,L2(Ω))

)
. (26)

Moreover,
NT∑
n=1

δt
∑
D∈D

mD|cn
D
− cn
K
|2 → 0,

NT∑
n=1

δt
∑
D∈D

mD|cn
D
− cn
K∗
|2 → 0, when h, δt → 0. (27)

Proof. The property (17) of the penalization operator yields

NT∑
n=1

δtJPT (cn
T

), cn
T
KT =

1
2hβ

NT∑
n=1

δt
∑
K∈M

∑
K∗∈M∗

mK∩K∗ (cn
K
− cn
K∗

)2 =
1

2hβ
‖ch,δt,M − ch,δt,M∗‖

2
L2(0,T ;L2(Ω)).

Then, we deduce (26) from Lemma 3.2. In order to prove (27), let us rewrite cn
D
:

cn
D

=
1

mD

∫
D

cn
h(x)dx =

mD∩K
2mD

cn
K

+
mD∩K∗
2mD

cn
K∗

+
mD∩L
2mD

cn
L

+
mD∩L∗
2mD

cn
L∗

Therefore, we have

cn
D
− cn
K

=
mD∩L
2mD

(cn
L
− cn
K

) +
mD∩L∗
2mD

(cn
L∗
− cn
K∗

) +
1
2

(cn
K∗
− cn
K

).

Using the fact that cn
L
− cn
K

= mσ∗ (∇Dcn
T

) · τK,L and cn
L∗
− cn
K∗

= mσ(∇Dcn
T

) · τK∗,L∗ , we obtain:∑
D∈D

mD|cn
D
− cn
K
|2 ≤

3
2

h2
∑
D∈D

mD|∇Dcn
T
|2 +

3
4

∑
D∈D

mD|cn
K∗
− cn
K
|2.

Thanks to the regularity of the mesh (11b), we get:∑
D∈D

mD|cn
K∗
− cn
K
|2 ≤

1
ζ

∑
D∈D

mK∩K∗ |cn
K∗
− cn
K
|2 ≤

1
ζ
‖cn

h,M − cn
h,M∗
‖2L2(Ω).

We deduce that
NT∑
n=1

δt
∑
D∈D

mD|cn
D
− cn
K
|2 ≤

3
2

h2‖∇hch,δt‖
2
(L2((0,T )×Ω))2 +

3
4ζ
‖ch,δt,M − ch,δt,M∗‖

2
L2(0,T ;L2(Ω)).

It yields the first part of (27), thanks to (26) and (23). The second part of (27) is obtained similarly.

The a priori estimates given in Lemma 3.1 and Lemma 3.2 will lead to compactness in space of the sequences of
approximate solutions. But, as the problem is evolutive in time, we also need compactness in time for the sequence of
approximate concentration. Therefore, we need an a priori estimate on the discrete time derivatives of the approximate
concentration.

For a given function uh,δt ∈ HT ,δt, we recall that we have uh,δt(·, t) = un
h(·) ∈ HT for all t ∈ [tn−1, tn). Let us define

the discrete time derivative ∂t,T uh,δt ∈ HT ,δt by

∂t,T uh,δt(·, t) =
un

h(·) − un−1
h (·)

δt
, ∀t ∈ [tn−1, tn).

Then, we note ∂t,T un
h,δt =

un
h − un−1

h

δt
∈ HT , associated to the vector of values

∂t,T un
T

=

un
K
− un−1

K

δt


K∈M

,

un
K∗
− un−1

K∗

δt


K∗∈M∗

 .
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Lemma 3.4. Under the hypotheses of Theorem 2.6, there exists C > 0 depending only on T , Ω, ζ, θ, q+, q−, c0, αA,
ΛA, ΛD, Φ∗ and αD such that the approximate solution (ph,δt,Uh,δt, ch,δt) ∈ HT ,δt×HD,δt×HT ,δt to the scheme (18)–(19)
satisfies:

NT∑
n=1

δt
∥∥∥ΦT ∂t,T cn

h,δt

∥∥∥
1,−1,T

≤ C. (28)

Proof. Let wh ∈ HT and n ∈ {1, · · · ,NT }. Multiplying the scheme (19a) by wT , we get :

t

ΦT
cn
T
− cn−1
T

δt
,wT

|

T

=
r

divT
(
DD

(
Un
D

)
∇Dcn

T

)
,wT

z

T
−

r
divcT

(
Un
D
, cn
T

)
,wT

z

T
−

q
q−,n
T

cn
T
,wT

y
T

− λJPT (cn
T

),wT KT +
q

q+,n
T

ĉn
T
,wT

y
T
.

We will now bound separately each term, denoted by Ti for 1 ≤ i ≤ 5, of the right-hand-side of this equality.
Using the discrete duality formula (Theorem 2.3) and the boundary conditions, we first obtain that

T1 =
r

divT
(
DD

(
Un
D

)
∇Dcn

T

)
,wT

z

T
= −

(
DD

(
Un
D

)
∇Dcn

T
,∇DwT

)
D

= −
∑
D∈D

mDDD
(
Un
D

)
∇Dcn

T
· ∇DwT .

Then, the hypothesis (5) on D implies :

|T1| ≤ ΛD ‖wh‖1,∞,T

∑
D∈D

mD
(
1 +

∣∣∣Un
D

∣∣∣) ∣∣∣∇Dcn
T

∣∣∣ . (29)

The second term T2 = −
r

divcT
(
Un
D
, cn
T

)
,wT

z

T
can be split into the sum of a primal term T2,p and a dual term T2,d.

Let us consider the primal term

T2,p = −
1
2

∑
K∈M

mKdivcK (Un
D
, cn
T

)wK = −
1
2

∑
K∈M

∑
D∈DK

D=Dσ,σ∗

mσ

((
Un
D · nσK

)+
cn
K
−

(
Un
D · nσK

)−
cn
L

)
wK .

Rewriting T2,p as a sum on all the primal edges of the mesh and using the relations x = x+ − x−, we get:

T2,p = −
1
2

∑
Dσ,σ∗∈D

mσ

(
Un
D · nσK

)
cn
K

(wK − wL) −
1
2

∑
Dσ,σ∗∈D

mσ(Un
D · nσK)−(cn

K
− cn
L

)(wK − wL). (30)

But, by definition, we have (wK − wL) = mσ∗∇
DwT · τK,L and therefore |wK − wL| ≤ ‖wh‖1,∞,T mσ∗ . It yields:∣∣∣∣∣∣∣∣

∑
Dσ,σ∗∈D

mσ

(
Un
D · nσK

)
cn
K

(wK − wL)

∣∣∣∣∣∣∣∣ ≤ ‖wh‖1,∞,T

∑
Dσ,σ∗∈D

mσ∗mσ|Un
D| |c

n
K
|.

For the second term in T2,p, we use the bound |wK − wL| ≤ 2 ‖wh‖1,∞,T to get:∣∣∣∣∣∣∣∣
∑

Dσ,σ∗∈D

mσ(Un
D · nσK)−(cn

K
− cn
L

)(wK − wL)

∣∣∣∣∣∣∣∣ ≤ 2 ‖wh‖1,∞,T

 ∑
Dσ,σ∗∈D

mσmσ∗ |Un
D| |∇

Dcn
T
|

 .
As we may treat similarly the dual term T2,d =

1
2

NT∑
n=1

δt
∑
K∗∈M∗

mK∗divcK∗ (Un
D
, cn
T

)wK∗ , we deduce that

|T2| ≤ ‖wh‖1,∞,T

 ∑
Dσ,σ∗∈D

mσ∗mσ|Un
D| |c

n
K
| + 2

∑
Dσ,σ∗∈D

mσmσ∗ |Un
D| |∇

Dcn
T
|

 . (31)
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Let us now consider

T3 = −λJPT (cn
T

),wT KT = −
λ

2

∑
K∈M

∑
K∗∈M∗

1
hβ

mK∩K∗ (cn
K
− cn
K∗

)(wK − wK∗ ).

Using Cauchy-Schwarz inequality, equality (17) and the definition of ‖wh‖1,∞?,T , we obtain

|T3| ≤
λ

2hβ
‖wh,M − wh,M∗‖L2(Ω)‖c

n
h,M − cn

h,M∗
‖L2(Ω) (32)

≤
λ
√

2h
β
2

‖wh‖1,∞?,T ‖c
n
h,M − cn

h,M∗
‖L2(Ω). (33)

We focus now on the last two terms T4 = −
q

q−,n
T

cn
T
,wT

y
T

and T5 =
q

q+,n
T

ĉn
T
,wT

y
T

. They verify :

|T4| ≤ ‖wh‖1,∞,T ‖q
−,n
T
‖2,T

∥∥∥cn
T

∥∥∥
2,T , (34)

|T5| ≤ ‖wh‖1,∞,T ‖q
+,n
T
‖2,T

∥∥∥ĉn
T

∥∥∥
2,T . (35)

Finally, due to (29), (31), (33), (34) and (35), we obtain that, for all wh ∈ HT ,

t

ΦT
cn
T
− cn−1
T

δt
,wT

|

T

≤ ‖wh‖1,∞?,T

(
ΛD

∑
D∈D

mD
(
1 +

∣∣∣Un
D

∣∣∣) ∣∣∣∇Dcn
T

∣∣∣ +
∑

Dσ,σ∗∈D

mσ∗mσ|Un
D| |c

n
K
|

+ 2
∑

Dσ,σ∗∈D

mσmσ∗ |Un
D| |∇

Dcn
T
| +

λ
√

2h
β
2

‖cn
h,M − cn

h,M∗
‖L2(Ω) + ‖q−,n

T
‖2,T

∥∥∥cn
T

∥∥∥
2,T + ‖q+,n

T
‖2,T

∥∥∥ĉn
T

∥∥∥
2,T

)
.

It gives the bound for
∥∥∥ΦT ∂t,T cn

h,δt

∥∥∥
1,−1,T

. Multiplying by δt and summing over n, we obtain that

NT∑
n=1

δt
∥∥∥ΦT ∂t,T cn

h,δt

∥∥∥
1,−1,T

≤ ΛD

NT∑
n=1

δt
∑
D∈D

mD
(
1 +

∣∣∣Un
D

∣∣∣) ∣∣∣∇Dcn
T

∣∣∣ +

NT∑
n=1

δt
∑

Dσ,σ∗∈D

mσ∗mσ|Un
D| |c

n
K
|

+ 2
NT∑
n=1

δt
∑

Dσ,σ∗∈D

mσmσ∗ |Un
D| |∇

Dcn
T
| +

λ
√

2h
β
2

NT∑
n=1

δt‖cn
h,M − cn

h,M∗
‖L2(Ω)

+

NT∑
n=1

δt‖q−,n
T
‖2,T

∥∥∥cn
T

∥∥∥
2,T +

NT∑
n=1

δt‖q+,n
T
‖2,T

∥∥∥ĉn
T

∥∥∥
2,T .

Applying Cauchy-Schwarz inequality and using the a priori estimates (22), (23) and (26), we conclude the proof of
(28).

4. Spaces of approximate solutions

In order to prove the convergence of a sequence of approximate solutions given by the scheme, we need some
compactness properties on the space of approximate solutions HT .

Proposition 4.1. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm) → 0 when m → ∞ and (21).
We consider a sequence of functions (wm)m with wm = whm ∈ HTm . If the sequence (‖wm‖1,1,Tm

)m is bounded, then there
exists w ∈ L1(Ω) such that, up to a subsequence,

wm →
m→∞

w in L1(Ω).

13



Proof. The convergence result of Proposition 4.1 is a consequence of an estimate on the space translates of the
sequence of approximate solutions. Such an argument is classical in the finite volume framework since [2].

Let us consider one function wh of the given sequence (wh = whm but we omit the subscript m for ease of presen-

tation). We are looking for an upper bound of ‖wh(· + η) − wh(·)‖L1(R2). But, by construction, wh =
1
2

(wh,M + wh,M∗ ).

Therefore, we first focus on
∥∥∥wh,M(· + η) − wh,M(·)

∥∥∥
L1(R2). The calculations are similar to those followed in [4, Lemma

3.8]; the main difference comes from the fact that we do not impose boundary conditions.
For each primal edge σ = K|L and for all x, η ∈ R2, we define

ψσ(x, η) =

{
1 where [x, x + η] ∩ σ , ∅,
0 elsewhere.

Then, for x ∈ R2 and η ∈ R2 \ {0}, we have

|wh,M(x + η) − wh,M(x)| ≤
∑

Dσ,σ∗∈Dint

ψσ(x, η)|wL − wK | +
∑

Dσ,σ∗∈Dext

ψσ(x, η)|wK |. (36)

We treat the first term of the right hand side as in [4, Lemma 3.8]:

T1(x) :=
∑

Dσ,σ∗∈Dint

ψσ(x, η)|wL − wK | ≤
∑

Dσ,σ∗∈D

mσ∗ψσ(x, η)
∣∣∣∣∣wL − wK

mσ∗

∣∣∣∣∣ .
As

∫
R2
ψσ(x, η)dx ≤ mσ|η|, we obtain that

∫
R2

T1(x)dx ≤ |η|
∑

Dσ,σ∗∈D

mσ∗mσ

∣∣∣∣∣wL − wK
mσ∗

∣∣∣∣∣ ≤ 2
sin(θT )

|η|
∑
D∈D

mD|∇DwT | ≤
2

sin(θT )
|η| ‖wh‖1,1,T .

For the second term of the right hand side in (36), T2(x) :=
∑

Dσ,σ∗∈Dext

ψσ(x, η)|wK |, we have

∫
R2

T2(x)dx ≤ |η|
∑

Dσ,σ∗∈Dext

mσ|wK | ≤ |η|C‖wh‖1,1,T ,

thanks to the trace Theorem 7.1 proving in Section 7. Therefore, we get:∥∥∥wh,M(· + η) − wh,M(·)
∥∥∥

L1(R2) ≤ C|η| ‖wh‖1,1,T ,

with C depending only on Ω and the regularity parameters θ and ζ. With the same calculations on the dual mesh, we
also get ∥∥∥wh,M∗ (· + η) − wh,M∗ (·)

∥∥∥
L1(R2)

≤ C|η| ‖wh‖1,1,T .

Therefore, since ‖wm‖1,1,Tm is bounded, there exists C not depending on m such that

‖wm(· + η) − wm(·)‖L1(R2) ≤ C|η|, ∀η ∈ R2.

We conclude thanks to Kolmogorov Theorem: there exists a subsequence of (wm) which converges towards w ∈
L1(R2). Furthermore, as wm vanishes outside Ω for all m, w also vanishes outside Ω: w ∈ L1(Ω).

Proposition 4.2. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm) → 0 when m → ∞ and (21).
We consider a sequence of functions (wm)m with wm = whm ∈ HTm . If

wm →
m→∞

w in L1(Ω) and ‖wm‖1,−1,Tm
→

m→∞
0,

then w = 0.
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Proof. Let us consider one function wh of the given sequence (wh = whm but we omit the subscript m for ease of
presentation). Let ψ ∈ C∞c (Ω). We define

ψK =
1

mK

∫
K

ψ(x)dx ∀K ∈ M and ψK = 0 ∀K ∈ ∂M,

ψK∗ =
1

mK∗

∫
K∗
ψ(x)dx ∀K∗ ∈ M∗,

and ψT =
(
(ψK )

K∈M
, (ψK∗ )K∗∈M∗

)
. By this way, we can associate to each function ψ ∈ C∞c (Ω) a vector ψT and a

function ψh ∈ HT . For allDσ,σ∗ ∈ D, the Taylor’s theorem implies:

|ψK − ψL| ≤ (dK + dL)‖∇ψ‖L∞(Ω) and |ψK∗ − ψL∗ | ≤ (dK∗ + dL∗ )‖∇ψ‖L∞(Ω),

|ψK − ψK∗ | ≤ (dK + dK∗ )‖∇ψ‖L∞(Ω).

Using the regularity of the mesh, we deduce that there exists C only depending on θ and ζ such that

‖ψh‖1,∞,T ≤ C ‖ψ‖W1,∞(Ω) ,

and
‖ψh,M − ψh,M∗‖L2(Ω) ≤ Ch ‖ψ‖W1,∞(Ω) . (37)

Then, as β < 2, we deduce, thanks to (17), that

‖ψh‖1,∞?,T ≤ C ‖ψ‖W1,∞(Ω) .

But, for wh ∈ HT , we have the following inequality:

JwT , ψT KT ≤ ‖wh‖1,−1,T ‖ψh‖1,∞?,T ≤ C ‖wh‖1,−1,T ‖ψ‖W1,∞(Ω) .

Therefore, if ψ ∈ C∞c (Ω) and the sequence (wm) satisfies ‖wm‖1,−1,Tm
→

m→∞
0, it yields:

JwTm , ψTmK
Tm
→ 0 as m→ ∞.

Yet, by definition, we have

JwTm , ψTmK
Tm

=
1
2

∑
K∈Mm

wK

∫
Ω

ψ(x)1K (x)dx +
1
2

∑
K∗∈M∗m

wK∗
∫

Ω

ψ(x)1K∗ (x)dx

=

∫
Ω

wm(x)ψ(x)dx.

(38)

As a consequence, as wm →
m→∞

w in L1(Ω), we obtain
∫

Ω

w(x)ψ(x)dx = 0 for all ψ ∈ C∞c (Ω), hence w = 0.

Proposition 4.3. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm)→ 0 when m→ ∞ and (21). We
consider a sequence of functions (vm)m with vm = vhm ∈ HTm such that the sequence

(
‖vm‖1,2,Tm

)
m

is bounded. Then,
there exists v ∈ H1(Ω) such that, up to a subsequence, we have the following convergence results when m→ ∞:

vm → v strongly in L2(Ω),

∇hm vm → ∇v weakly in (L2(Ω))2.

Proof. Let us set wm = vm|vm|. An adaptation of the proof of Proposition 4.1, with the ideas of [4, Lemma 3.8], leads
to

‖wm(· + η) − wm(·)‖L1(R2) ≤ C|η|,∀η ∈ R2.
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It proves the convergence of (wm) in L1(Ω) and the existence of v ∈ L2(Ω) such that

vm →
m→∞

v strongly in L2(Ω).

As ‖∇hm vm‖2 ≤ C, there exists χ ∈ (L2(Ω))2 such that, up to a subsequence:

∇hm vm →
m→∞

χ weakly in (L2(Ω))2.

It remains to prove that χ = ∇v, which will also imply v ∈ H1(Ω).
Let ψ ∈ (C∞c (Ω))2, we define

Im :=
∫

Ω

∇hm vm(z) · ψ(z)dz +

∫
Ω

vm(z)div(ψ(z))dz −→
m→∞

∫
Ω

χ(z) · ψ(z)dz +

∫
Ω

v(z)div(ψ(z))dz.

For D = Dσ,σ∗ , we define ψD, ψσ and ψσ∗ respectively as the mean values of ψ over D, σ and σ∗. We consider also
ψ̃D defined by

ψ̃D · nσK = ψσ · nσK , ψ̃D · nσ∗K∗ = ψσ∗ · nσ∗K∗ .

We have :∫
Ω

∇hm vm(z) · ψ(z)dz =
∑
D∈Dm

mD∇DvTm · ψD =
∑
D∈Dm

mD∇DvTm · ψ̃D +
∑
D∈Dm

mD∇DvTm · (ψD − ψ̃D).

But, ∑
D∈Dm

mD∇DvTm · ψ̃D = −
1
2

∑
K∈Mm

vK
∑
D∈DK

D=Dσ,σ∗

mσψ̃D · nσK −
1
2

∑
K∗∈M∗m

vK∗
∑
D∈DK∗

D=Dσ,σ∗

mσ∗ ψ̃D · nσ∗K∗ .

Using the definition of ψ̃D and the fact that ψ has a compact support, we get, thanks to Stokes formula,∑
D∈Dm

mD∇DvTm · ψ̃D = −
1
2

∑
K∈Mm

vK

∫
K

divψ(z)dz −
1
2

∑
K∗∈M∗m

vK∗
∫
K∗

divψ(z)dz = −

∫
Ω

vm(z)divψ(z)dz.

It implies that
Im =

∑
D∈Dm

mD∇DvTm · (ψD − ψ̃D).

Since ψ is a smooth function, we have

|ψD − ψ̃D| ≤
1

sin(θT )
(|ψD − ψσ∗ | + |ψD − ψσ|) ≤

2
sin(θT )

hm‖∇ψ‖L∞(Ω),

and we deduce that ∣∣∣∣∣∣∣ ∑
D∈Dm

mD∇DvTm · (ψD − ψ̃D)

∣∣∣∣∣∣∣ ≤ ‖∇hm vm‖L2(Ω)
√

mΩ

2
sin(θT )

hm‖∇ψ‖L∞(Ω),

so that Im tends to 0. We conclude that∫
Ω

χ(z) · ψ(z)dz = −

∫
Ω

v(z)div(ψ(z))dz,∀ψ ∈ (C∞c (Ω))2,

which ends the proof.
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Proposition 4.4. Let (Tm)m be a sequence of DDFV meshes satisfying hm = size(Tm) → 0 when m → ∞ and (21).
Let (δtm)m≥1 be a sequence of time steps such that T/δtm is an integer and δtm −→

m→∞
0. We consider a sequence of

functions (vm)m with vm = vhm,δtm ∈ HTm,δtm when m→ ∞ such that:

vm → v weakly in L2((0,T ) ×Ω) (respectively weakly-∗ in L∞(0,T ; L2(Ω)));

∇hm vm → χ weakly in (L2((0,T ) ×Ω))2 (respectively weakly-∗ in L∞(0,T ; L2(Ω)));

then, we have
∇v = χ and v ∈ L2(0,T ; H1(Ω)) (respectively L∞(0,T ; H1(Ω))).

Proof. An adaptation of the proof of Proposition 4.3, leads to prove that ∇v = χ in the distribution sense on ]0,T [×Ω,
and therefore v ∈ L2(0,T ; H1(Ω)) or v ∈ L∞((0,T ) ×Ω).

5. Proof of the convergence of the numerical scheme

5.1. Compactness of the concentration
Proposition 5.1. Under the assumptions of Theorem 2.6 and the fact that Φ is a constant Φ∗, the sequence (cm)m

defined by the scheme (18)–(19) is relatively compact in L1(0,T ; L1(Ω)). Let us note by c̄ its limit up to a subsequence.
Then, c̄ lies in L2(0,T ; H1(Ω)). Furthermore, up to a subsequence, we have, when m→ ∞

cm → c̄ weakly-∗ in L∞(0,T ; L2(Ω)) and strongly in Lp(0,T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm cm → ∇c̄ weakly in (L2(0,T ; L2(Ω)))2.

Proof. The key of the proof is the discrete Aubin-Simon lemma proved by Gallouët and Latché [2, Theorem 3.4]. The
family (HTm )m is a family of finite dimensional subspaces of L1(Ω). Each space HTm can be equipped with the norm
‖·‖1,1,Tm

or with the norm ‖·‖1,−1,Tm
. The following properties are satisfied:

• Let consider a sequence (wm)mwith wm = whm ∈ HTm . If the sequence (‖wm‖1,1,Tm
)m is bounded, then there exists

w ∈ L1(Ω) such that, up to a subsequence, (wm)m converges to w in L1(Ω). See Proposition 4.1.

• Let consider a sequence (wm)m with wm = whm ∈ HTm . If wm converges towards w in L1(Ω) while (‖wm‖1,−1,Tm
)m

tends to 0, then w = 0. See Proposition 4.2.

The sequence (cm)m verifies cm(·, t) = cn
m ∈ HTm for all t ∈ [(n − 1)δtm, nδtm). Furthermore Lemma 3.2 (with

Cauchy-Schwarz inequality) ensures that (cm)m verifies, for all m,

NT (m)∑
n=1

δtm
∥∥∥cn

m

∥∥∥
1,1,Tm

≤ C,

and Lemma 3.4 gives, for all m,
NT (m)∑
n=1

δtm
∥∥∥∂t,Tm cn

m

∥∥∥
1,−1,Tm

≤ C, (39)

with C depending only on the data of the problem. Then, Theorem 3.4 in [2] implies that, up to a subsequence, (cm)
converges in L1(0,T, L1(Ω)) to a function c̄. Furthermore, Lemma 3.2 implies that there exists w ∈ (L2(0,T ; L2(Ω)))2,
such that, up to a subsequence, we have, when m→ ∞

cm → c̄ weakly-∗ in L∞(0,T ; L2(Ω)), weakly in L2(0,T ; L2(Ω)) and strongly in Lp(0,T ; Lq(Ω)),∀p < ∞, q < 2,

∇hm cm → w weakly in (L2(0,T ; L2(Ω)))2.

We conclude, applying Proposition 4.4:

c̄ ∈ L2(0,T ; H1(Ω)), and ∇c̄ = w.
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Remark 5.2. We have used the fact that Φ is a constant function in order to get (39). Therefore the compactness of
the sequence of approximate concentration is obtained thanks to [2, Theorem 3.4]. If Φ is not a constant, we need to
establish some estimates on the time translates of the approximate concentration, as for instance in [7], in order to
get the compactness. As the proof is rather technical, we have restricted the proof to the case Φ∗.

Proposition 5.3. Under the assumptions of Theorem 2.6 and the fact that Φ is a constant Φ∗, the sequences (cm,M)m,
(cm,M∗ )m and (cm,D)m, defined by the scheme (18)–(19) and (20), are relatively compact in L1(0,T ; L1(Ω)) and converge
to the same limit c̄ ∈ L2(0,T ; H1(Ω)), defined in Proposition 5.1.

Proof. We have

‖cm,M − c̄‖L1(]0,T [×Ω) ≤ ‖cm − c̄‖L1(]0,T [×Ω) +

√
TmΩ

2

∥∥∥cm,M − cm,M∗
∥∥∥

L2(]0,T [×Ω)
.

Lemma 3.3 and Proposition 5.1 imply that

‖cm,M − c̄‖L1(]0,T [×Ω) −→ 0, when m→ ∞.

We do similarly for the convergence of cm,M∗ .
For the last convergence, we have

‖cm,D − c̄‖L1(]0,T [×Ω) ≤

∫ T

0

∑
D∈D

∫
D

∣∣∣∣∣∣ 1
mD

∫
D

cm(s, y)dy − c̄(s, x)

∣∣∣∣∣∣ dxds

≤

∫ T

0

∑
D∈D

∫
D

|cm(s, y) − c̄(s, y)| dyds

+

∫ T

0

∑
D∈D

1
mD

∫
D

∫
D

|c̄(s, y)dy − c̄(s, x)| dydxds.

Proposition 5.1 implies that the first term in the right hand side tends to 0. Using the regularity of the mesh and of c̄,
we have for the second term:∫ T

0

∑
D∈D

1
mD

∫
D

∫
D

|c̄(s, y)dy − c̄(s, x)| dydxds ≤ hmC
∫ T

0

∑
D∈D

∫
D

|∇c̄(s, y)| dyds,

term which tends to 0. We deduce that when m→ ∞

‖cm,D − c̄‖L1(]0,T [×Ω) −→ 0.

5.2. Convergence of the pressure

Proposition 5.4. Under the assumptions of Theorem 2.6, and the fact that Φ is a constant Φ∗, there exists p̄ ∈
L∞(0,T ; H1(Ω)) and Ū ∈ L∞(0,T ; L2(Ω))2, such that the sequences (pm)m, (Um)m defined by the scheme (18)–(19)
have the following convergence result when m→ ∞:

pm → p̄ weakly-∗ in L∞(0,T ; L2(Ω)) and strongly in Lp(0,T ; Lq(Ω)),∀p < ∞, q < 2;

∇hm pm → ∇p̄ weakly-∗ in (L∞(0,T ; L2(Ω)))2 and strongly in(L2((0,T ) ×Ω))2;

Um → Ū weakly-∗ in (L∞(0,T ; L2(Ω)))2 and strongly in (L2((0,T ) ×Ω))2;

and (p̄, Ū) is a weak solution to (1), with c̄ defined in Proposition 5.1.
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Proof. Lemma 3.1 implies that up to a subsequence, we have when m→ ∞:

pm → p̄ weakly-∗ in L∞(0,T ; L2(Ω));

∇hm pm → v weakly-∗ in (L∞(0,T ; L2(Ω)))2

and Proposition 4.4 implies
p̄ ∈ L∞(0,T ; H1(Ω)), with ∇p̄ = v.

Furthermore, we have
∫

Ω
pm(t, .)dx = 0 for all t ∈]0,T [, it gives that

∫
Ω

p̄(t, .)dx = 0 for all t ∈]0,T [. We introduce a
new sequence (čm)m defined by

čm(t, x) =c0
hm

(x) ∈ [0, 1], if t ∈ [0, δt[,

čm(t, x) =cm,D(t − δt, x), on [δt,T [×Ω,

Thanks to Proposition 5.3, (cm,D)m converges to c̄ in L1(0,T ; L1(Ω)). It implies that (čm)m converges also to c̄ in
L1(0,T ; L1(Ω)). As in [7, Section 5.2] (working on the diamond mesh instead of the primal mesh), we obtain

Um = −Am(., čm)∇hm pm →
m→∞

Ū = −A(·, c̄)∇p̄ weakly in (L2(]0,T [×Ω))2.

Let us remark that the a priori estimates (Lemma 3.1) gives

Um →
m→∞

Ū weakly-∗ in (L∞(0,T ; L2(Ω))2.

It remains to prove (9). Let ϕ ∈ C∞([0,T ] × Ω̄), we define ϕn
Tm

associated to the discrete values:

ϕn
K

=
1

mKδt

∫ tn

tn−1

∫
K

ϕ(s, x)dxds,∀K ∈ Mm and ϕn
K

= 0,∀K ∈ ∂Mm, ∀n ∈ {1, · · · ,N},

ϕn
K∗

=
1

mK∗δt

∫ tn

tn−1

∫
K∗
ϕ(s, x)dxds, ∀K∗ ∈ M∗m, ∀n ∈ {1, · · · ,N}.

We define also the corresponding function ϕm and Ψm = ∇hmϕm. Since pm is the solution of (18a), the discrete duality
formula (Theorem 2.3) gives

NT∑
n=1

δtJq+,n
Tm
− q−,n

Tm
, ϕn
Tm

KTm =

NT∑
n=1

δt(ADm (cn−1
Dm

)∇Dm pn
Tm
,∇Dmϕn

Tm
)Dm .

But, on one hand, thanks to (38), we have

NT∑
n=1

δtJq+,n
Tm
− q−,n

Tm
, ϕn
Tm

KTm =

∫ T

0

∫
Ω

(q+ − q−)ϕm,

and on the other hand,
NT∑
n=1

δt(ADm (cn−1
Dm

)∇Dm pn
Tm
,∇Dmϕn

Tm
)Dm = −

∫ T

0

∫
Ω

Um · Ψm.

We deduce ∫ T

0

∫
Ω

(q+ − q−)ϕm = −

∫ T

0

∫
Ω

Um · Ψm. (40)

The function ϕ is smooth and then we have the uniform convergence of ϕm and Ψm to ϕ and ∇ϕ, respectively. There-
fore, the weak convergence of Um to Ū = −A(·, c̄)∇ p̄ in (L2((0,T ) ×Ω))2 implies (9). As in [7, Section 5.2], using the
Minty trick, we deduce the strong convergence of ∇hm pm, Um and finally of pm.
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5.3. Convergence of the concentration

Proposition 5.5. Under the assumptions of Theorem 2.6, and the fact that Φ is a constant Φ∗, the function c̄, intro-
duced in Proposition 5.1, and Ū, introduced in Proposition 5.4, satisfy (10).

Proof. Let ϕ ∈ C∞([0,T ] × Ω̄), we use the same notation as in the proof of Proposition 5.4 in order to define ϕn
Tm

, ϕm

and Ψm. Since cm is the solution of (19a), we obtain

NT∑
n=1

δt
r

Φ∗∂t,Tm cn
hm
− divTm

(
DDm

(
Un
Dm

)
∇Dm cn

Tm

)
, ϕn
Tm

z

Tm

+

NT∑
n=1

δt
r

divcTm
(
Un
Dm
, cn
Tm

)
+ λPTm cn

Tm
+ q−,n

Tm
cn
Tm
, ϕn
Tm

z

Tm

=

NT∑
n=1

δt
r

q+,n
Tm

ĉn
Tm
, ϕn
Tm

z

Tm

.

We will pass to the limit separately in each term, denoted by Ti for 0 ≤ i ≤ 5. We start with

T0 :=
NT∑
n=1

δtΦ∗J∂t,Tm cn
Tm
, ϕn
Tm

KTm .

It rewrites

T0 = −

NT−1∑
n=1

δtΦ∗
t

cn
Tm
,
ϕn+1
Tm
− ϕn

Tm

δt

|

Tm

− Φ∗Jc0
Tm
, ϕ1
Tm

KTm ,

since ϕNT
T

= 0. Applying (38), we get

T0 = −

∫ T

0

∫
Ω

Φ∗cm(s, x)
ϕ(s + δt, x) − ϕ(s, x)

δt
dxds −

∫
Ω

Φ∗c0(x)ϕm(δt, x)dx.

The function ϕ is smooth and then we have the uniform convergence of
ϕ(. + δt, .) − ϕ(., .)

δt
and ϕm(δt, .) respectively

to ∂tϕ and ϕ(0, ·). Therefore, the weak convergence of cm to c̄ in L∞(0,T ; L2(Ω)) implies that

T0 −→ −

∫ T

0

∫
Ω

Φ∗c̄∂tϕ −

∫
Ω

Φ∗c0ϕ(0, ·).

Using the discrete duality formula (Theorem 2.3), T1 rewrites

T1 := −
NT∑
n=1

δt
r

divTm
(
DDm

(
Un
Dm

)
∇Dm cn

Tm

)
, ϕn
Tm

z

Tm

=

NT∑
n=1

δt
(
DDm

(
Un
Dm

)
∇Dm cn

Tm
,∇Dmϕn

Tm

)
Dm
.

We deduce

T1 =

∫ T

0

∫
Ω

∇hm cm ·
(

tD(·,Um)Ψm

)
.

We have the uniform convergence of Ψm to ∇ϕ. Furthermore, we have Um → Ū = −A(·, c̄)∇ p̄ in (L2((0,T ) × Ω))2,
then we get D(·,Um)→ D(·, Ū) in (L2((0,T ) ×Ω))2×2. It implies that tD(·,Um)Ψm →

tD(·, Ū)∇ϕ in (L2((0,T ) ×Ω))2.
And finally, the weak convergence of ∇hm cm to ∇c̄ in (L2((0,T ) ×Ω))2 implies that

T1 −→

∫ T

0

∫
Ω

∇c̄ ·
(

tD(·, Ū)∇ϕ
)

=

∫ T

0

∫
Ω

(
D(·, Ū)∇c̄

)
· ∇ϕ.
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As in the proof of Lemma 3.4, T2 :=
NT∑
n=1

δt
r

divcTm
(
Un
Dm
, cn
Tm

)
, ϕn
Tm

z

Tm

can be split into the sum of a primal term T2,p

and a dual term T2,d. Using the relation ϕn
K
− ϕn

L
= mσ∗∇

Dϕn
Tm
· τK,L, x+ = x + x− and (30), the primal part rewrites

T2,p =
1
2

NT∑
n=1

δt
∑
D∈Dm

mσmσ∗ (Un
D · nσK)cn

K
∇Dϕn

Tm
· τK,L

+
1
2

NT∑
n=1

δt
∑
D∈Dm

mσmσ∗ (Un
D · nσK)−(cn

K
− cn
L

)∇Dϕn
Tm
· τK,L.

Let set T ∗2 =

∫ T

0

∫
Ω

cm,DUm · Ψm. Using the convergence results, we remark that

T ∗2 −→
∫ T

0

∫
Ω

c̄Ū · ∇ϕ.

Moreover, T ∗2 can also be split into the sum of a primal term T ∗2,p and a dual term T ∗2,d. The primal term is

T ∗2,p =

NT∑
n=1

δt
∑
D∈Dm

mD
sin(θD)

cn
D
(Un
D · nσK)(∇Dϕn

Tm
· τK,L),

since we have Un
D =

1
sin(θD)

(Un
D · nσK)τK,L +

1
sin(θD)

(Un
D · nσ∗K∗ )τK∗,L∗ . Let us prove that T ∗2,p − T2,p tends to 0. We

obtain

T ∗2,p − T2,p =

NT∑
n=1

δt
∑
D∈Dm

mD
sin(θD)

(Un
D · nσK)(∇Dϕn

Tm
· τK,L)(cn

D
− cn
K

)

−

NT∑
n=1

δt
∑
D∈Dm

mD
sin(θD)

(Un
D · nσK)−(∇Dϕn

Tm
· τK,L)(cn

K
− cn
L

).

(41)

For the second term in the right hand side of (41), the relation cn
K
− cn

L
= mσ∗∇

Dcn
Tm
· τK,L and Cauchy-Schwarz

inequality imply∣∣∣∣∣∣∣
NT∑
n=1

δt
∑
D∈Dm

mD
sin(θD)

(Un
D · nσK)−(∇Dϕn

Tm
· τK,L)(cn

K
− cn
L

)

∣∣∣∣∣∣∣
≤ C
√

Thm‖∇
Dmϕn

Tm
‖∞,Dm‖Um‖(L∞(0,T ;L2(Ω)))2‖∇hm cm‖(L2((0,T )×Ω))2 . (42)

The a priori estimates (23) and Lemma 3.5 of [4] give∣∣∣∣∣∣∣
NT∑
n=1

δt
∑
D∈Dm

mD
sin(θD)

(Un
D · nσK)−(∇Dϕn

Tm
· τK,L)(cn

K
− cn
L

)

∣∣∣∣∣∣∣ ≤ Chm.

This term tends to 0. For the first term in the right hand side of (41), we have similarly∣∣∣∣∣∣∣
NT∑
n=1

δt
∑
D∈Dm

mD
sin(θD)

(Un
D · nσK)(∇Dϕn

Tm
· τK,L)(cn

D
− cn
K

)

∣∣∣∣∣∣∣ ≤ C

 NT∑
n=1

δt
∑
D∈Dm

mD|cn
D
− cn
K
|2


1
2

.

We apply Lemma 3.3 to get that this term tends to 0 and finally T ∗2,p − T2,p −→ 0. The same convergence result is
obtained for the dual part and

T2 −→

∫ T

0

∫
Ω

c̄Ū · ∇ϕ.
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As in the proof of Lemma 3.4, using (32), the penalization term T3 :=
NT∑
n=1

δt
q
PTm cn

Tm
, ϕn
Tm

y
Tm

verifies

|T3| ≤
1
2

1

hβm
‖cm,M − cm,M∗‖L2(0,T ;L2(Ω))‖ϕm,M − ϕm,M∗‖L2(0,T ;L2(Ω)).

Inequality (26) and (37) imply that:

|T3| ≤ Ch1− β
2

m −→ 0,

since β < 2.

Thanks to (38), T4 :=
NT∑
n=1

δt
r

q−,n
Tm

cn
Tm
, ϕn
Tm

z

Tm

rewrites

T4 =
1
2

∫ T

0

∫
Ω

cm,M(s, x)ϕm,M(s, x)q−(s, x)dxds +
1
2

∫ T

0

∫
Ω

cm,M∗ (s, x)ϕm,M∗ (s, x)q−(s, x)dxds

The uniform convergence of ϕm,M and ϕm,M∗ to ϕ, the weak convergence of cm,M and cm,M∗ to the same c̄ lying in
L∞(0,T ; L2(Ω)) imply that

T4 −→

∫ T

0

∫
Ω

q−c̄ϕ.

Similarly, T5 :=
NT∑
n=1

δt
r

q+,n
Tm

ĉn
Tm
, ϕn
Tm

z

Tm

rewrites

T5 =
1
2

∫ T

0

∫
Ω

ĉ(s, x)ϕm,M(s, x)q+
m,M(s, x)dxds +

1
2

∫ T

0

∫
Ω

ĉ(s, x)ϕm,M∗ (s, x)q+
m,M∗ (s, x)dxds.

The uniform convergence of ϕm,M and ϕm,M∗ to ϕ and the weak convergence of q+
m,M and q+

m,M∗ to q+ in L2((0,T ) ×Ω)
imply that

T5 −→

∫ T

0

∫
Ω

q+ĉϕ.

Passing to the limit in each term, we have proved (10).

Remark 5.6. The penalization term in the scheme is useful in order to prove that the sequences (cm,M)m, (cm,M∗ )m and
(cm,D)m converge to the same limit c̄ ∈ L2(0,T ; H1(Ω)) (Lemma 3.3). This is essential when passing to the limit in the
convection term T2 and the reaction term T4.

6. Numerical experiments

In this section, we provide some numerical experiments to illustrate the influence of the penalization operator in the
behavior of DDFV scheme. The efficiency of the DDFV scheme has already been shown in [8] without penalization.

The spatial domain is Ω = (0, 1000) × (0, 1000) ft2 and the time period is [0, 3600] days. The injection well is
located at the upper-right corner (1000, 1000) with an injection rate q+ = 30 ft2/day and an injection concentration
ĉ = 1.0. The production well is located at the lower-left corner (0, 0) with a production rate q− = 30 ft2/day. It means
that q− and q+ are Dirac masses, which can be taken into account with the scheme. The porosity of the medium is
specified as Φ(x) = 0.1 and the initial concentration is c0(x) = 0. The viscosity of the oil is µ(0)=1.0 cp and M = 41.
We choose Φdl = 5 ft and Φdt = 0.5 ft and there is no molecular diffusion Φdm = 0 ft2/day. We choose a constant
permeability K = 80 I.

We introduce a sequence of triangular meshes. For a refinement level i ∈ {1, · · · , 8}, the mesh is obtained by
dividing the domain into 2i+1 × 2i+1 equally sized squares and each square is split into 2 triangles along a diagonal.
The number of cells for the mesh i is 22i+3. We present on Figure 6.1 the meshes obtained for i = 1 and i = 3. We
choose this sequence of structured triangular meshes because they fit together and allow the computation of numerical
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Figure 6.1: Triangular meshes with a refinement level i = 1 on the left and i = 3 on the right.

(a) λ = 10−6 and β = 1. (b) λ = 0.

Figure 6.2: Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the structured triangular
mesh i = 5: level sets of the concentration after 3 years.

(a) λ = 10−6 and β = 1. (b) λ = 0.

Figure 6.3: Comparison of the concentration obtained with the DDFV schemes, with the penalization term and without, on the structured triangular
mesh i = 5: level sets of the concentration after 10 years.

errors. Let us also mention that, even though many choices are possible, we always assume in this paper that xK is
the mass center of K ∈ M. The time step is δt = 36 days.

Figures 6.2 and 6.3 present the level sets of the concentration obtained with the DDFV scheme, with the penal-
ization term and without a penalization term, on the structured triangular mesh i = 5, at two different times (3 and 10
years). The same qualitative behavior is observed.

The penalization operator is introduced in order to prove that (cm,M)m and (cm,M∗ )m have the same limit (Lemma
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refinement level error L2 order L2

1 1.08e+03 -
2 9.39e+02 0.23
3 7.06e+02 0.45
4 5.24e+02 0.45
5 3.93e+02 0.42
6 2.92e+02 0.44
7 2.11e+02 0.47

Table 6.1: The L2-norm ‖cm,M − cm,M∗ ‖L2([0,T ]×Ω)without penalization term (λ = 0).

3.3). In Table 6.1, we compute the L2-norm (in space and time) of the difference between (cm,M)m and (cm,M∗ )m in the
case where λ = 0. We observe that without any penalization this difference tends to zero with an order of convergence
close to 0.5. Let us just mention that we obtain similar results using a sequence of square meshes.

In conclusion, we have presented a DDFV scheme for the Peaceman model with a penalization operator and we
have established its convergence. The numerical experiments show good qualitative properties with a small penaliza-
tion or without penalization. We can conclude that the penalization operator can be set to 0 in practice.

Acknowledgement. The authors would like to thank R. Eymard and T. Gallouët for fruitful exchanges and
advices.

7. Appendix

First, to a given vector uT =
(
(uK )

K∈M
, (uK∗ )K∗∈M∗

)
∈ RT defined on a DDFV mesh T of size h, we associate the

approximate solution on the boundary:

u∂M∪∂M
∗

=
1
2

∑
K∈M

uK1
K∩∂Ω

+
1
2

∑
K∗∈∂M∗

uK∗1K∗∩∂Ω
.

With this definition, we use simultaneously the values on the primal mesh and the values on the dual mesh. Indeed,

we have u∂M∪∂M
∗

=
1
2

(u∂M + u∂M
∗

), where u∂M and u∂M
∗

are two different reconstructions based either on the primal
values or the dual values:

u∂M(x) =
∑
K∈M

uK1
K∩∂Ω

(x) and u∂M
∗

(x) =
∑
K∗∈∂M∗

uK∗1K∗∩∂Ω
(x).

Let us now define some norms
‖u∂M∪∂M

∗

‖1,∂Ω =
1
2
‖u∂M

∗

‖1,∂Ω +
1
2
‖u∂M‖1,∂Ω.

Theorem 7.1 (Trace inequality). Let Ω be a convex polygonal domain of R2 and T a DDFV mesh of this domain.
There exists C > 0, depending only on Ω, ζ and θ, such that ∀ uT ∈ RT :

‖u∂M∪∂M
∗

‖1,∂Ω =
1
2
‖u∂M

∗

‖1,∂Ω +
1
2
‖u∂M‖1,∂Ω ≤ C

(
‖uT ‖1,T +

∥∥∥∇DuT
∥∥∥

1,D

)
. (43)

Proof. The calculations are similar to those followed in [2, Lemma 10.5] especially for the primal mesh, the main
difference comes from the dual mesh. As a result we detail only this part in the following.

We have, as in [2, Lemma 10.5], by compactness of the boundary ∂Ω, the existence of a finite number of open
hyper-rectangles {Ri, i = 1 · · ·N}, and normalized vectors of R2, {ηi, i = 1 · · ·N}, such that

∂Ω ⊂ ∪N
i=1Ri,

(ηi, ~ν(x)) ≥ λ > 0 for all x ∈ Ri ∩ ∂Ω, i ∈ {1 · · ·N},
{x + tηi, x ∈ Ri ∩ ∂Ω, t ∈ R+} ∩ Ri ⊂ Ω,
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where λ is some positive number and ~ν(x) is the normal vector to ∂Ω at x, inward to Ω (see Figure 7.1). Let {λi, i =

1 · · ·N} be a family of functions such that
N∑

i=1

λi(x) = 1, for all x ∈ ∂Ω, λi ∈ C∞c (R2,R+) and λi = 0 outside of Ri, for

all i = 1 · · ·N. Let ∂Ωi = Ri ∩ ∂Ω; we will prove that there exists Ci > 0 depending only on λ, ζ, θ and λi such that(∫
∂Ωi

λi(x)|u∂M
∗

(x)|dx
)
≤ Ci

(
‖uT ‖1,T +

∥∥∥∇DuT
∥∥∥

1,D

)
.

Then, we define C =

N∑
i=1

Ci, depending only on Ω, ζ and θ, to get (43).

Ri

x + tηi

x

ν(x)
ηi

Γ = ∂Ω

Ri

Figure 7.1: Properties of the boundary ∂Ω.

As in [2] we introduce a function which determine the successive neighbours of a cell uK∗ : we define, for x, y ∈ Ω

and σ∗ ∈ E∗,

ψσ∗ (x, y) =

 1 si [x, y] ∩ σ∗ , ∅,
0 si [x, y] ∩ σ∗ = ∅,

and for K∗ ∈ M∗

ψK∗ (x, y) =

 1 si [x, y] ∩ K∗ , ∅,
0 si [x, y] ∩ K∗ = ∅.

Let i ∈ {1, · · · ,N} and x ∈ ∂Ωi. There exists a unique t > 0 such that x + tηi ∈ ∂Ri, let y(x) = x + tηi. For σ∗ ∈ E∗,
when [x, y(x)] ∩ σ∗ , ∅, the intersection is either reduced to a point let then zσ∗ (x) = [x, y(x)] ∩ σ∗, or a segment
[x, y(x)]∩σ∗ = [a(x), b(x)] with (

−−−−−−−→
a(x)b(x), ηi) > 0 and then let zσ∗ (x) = b(x). ForK∗ ∈ M∗, let ξK∗ (x), ηK∗ (x) such that

[x, y(x)] ∩ K∗ = [ξK∗ (x), ηK∗ (x)], if [x, y(x)] ∩ K∗ , ∅ and (
−−−−−−−−−−→
ξK∗ (x)ηK∗ (x), ηi) > 0.

Furthermore, let x ∈ K∗0 and y(x) ∈ L∗0 such that σ∗0 = K∗0 |L
∗
0 (see Figure 7.2), we have two cases. Note that in the

two cases we have x = ξK∗0 (x) and y(x) = ηL∗0 (x) we get ηL∗0 (x) ∈ ∂Ri, and deduce λi(ηL∗0 (x)) = 0.

1. [x, y(x)] ∩ σ∗0 is reduced to a point then we have ηK∗0 (x) = zσ∗0 (x) = ξL∗0 (x). We obtain

λi(x)|uK∗0 | =
(
λi(ξK∗0 (x)) − λi(ηK∗0 (x))

)
|uK∗0 | +

(
λi(ξL∗0 (x)) − λi(ηL∗0 (x))

)
|uL∗0 |

+ λi(zK∗0 |L∗0 (x))(|uK∗0 | − |uL∗0 |).
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K∗0

L∗0

x = ξK∗0 (x)

y(x) = ηL∗0 (x)

ηK∗0 (x) = ξL∗0 (x) = zσ∗0 (x)
σ∗0 y(x) = ηK∗0 (x) = ηL∗0 (x) = zσ∗0 (x)

x = ξK∗0 (x) = ξL∗0 (x)

K∗0

L∗0

σ∗0

Figure 7.2: (On the left) [x, y(x)] ∩ σ∗0 is reduced to a point zσ∗0 (x). (On the right) [x, y(x)] ∩ σ∗0 is the segment [x, y(x)].

2. [x, y(x)] ∩ σ∗0 is a segment, then we have ηK∗0 (x) = y(x) and λi(ηK∗0 (x)) = 0. We obtain

λi(x)|uK∗0 | =
(
λi(ξK∗0 (x)) − λi(ηK∗0 (x))

)
|uK∗0 |.

This point is the main difference with [2, Lemma 10.5]. In the two cases we get the same estimates

λi(x)|uK∗0 | ≤ A(x) + B(x),

where
A(x) =

∑
D∈D

ψσ∗ (x, y(x))λi(zσ∗ (x)) ||uK∗ | − |uL∗ || ,

and
B(x) =

∑
K∗∈M∗

|λi(ξK∗ (x)) − λi(ηK∗ (x))| |uK∗ |ψK∗ (x, y(x)).

We begin with the estimate of A. Using the fact that λi is bounded, we get

A(x) ≤ ‖λi‖∞

∑
D∈D

ψσ∗ (x, y(x)) ||uK∗ | − |uL∗ || .

The following inequality ∫
∂Ωi

ψσ∗ (x, y(x))dx ≤ mσ∗
1
λ
,

implies that

A =

∫
∂Ωi

A(x)dx ≤ ‖λi‖∞

∑
D∈D

(∫
∂Ωi

ψσ∗ (x, y(x))dx
)
||uK∗ | − |uL∗ || ≤ C

∑
D∈D

mσ∗ ||uK∗ | − |uL∗ || .

Since
∣∣∣|a| − |b|∣∣∣ ≤ |a − b|, we obtain∑

D∈D

mσ∗
∣∣∣|uK∗ | − |uL∗ |∣∣∣ ≤ 2

sin(θT )

∑
D∈D

mD
∣∣∣∣∣uK∗ − uL∗

mσ

∣∣∣∣∣ .
Noting that ∣∣∣∣∣uK∗ − uL∗

mσ

∣∣∣∣∣ ≤ ∣∣∣∇DuT
∣∣∣, (44)

we deduce ∑
D∈D

mσ∗
∣∣∣|uK∗ | − |uL∗ |∣∣∣ ≤ 2

sin(θT )

∑
D∈D

mD
∣∣∣∇DuT

∣∣∣ ≤ C‖∇DuT ‖1,D + ‖uT ‖1,T .
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Finally, we obtain
A ≤ C1‖∇

DuT ‖1,D + C1‖uT ‖1,T .

Now the bound of B is as follows. Since the function λi is smooth, we have

B(x) ≤ ‖∇λi‖∞

∑
K∗∈M∗

|ξK∗ (x) − ηK∗ (x)| |uK∗ |ψK∗ (x, y(x)).

Furthermore, we have on one hand
|ξK∗ (x) − ηK∗ (x)| ≤ dK∗ ,

on the other hand ∫
∂Ωi

ψK∗ (x, y(x))dx ≤
dK∗
λ
.

It implies that ∫
∂Ωi

ψK∗ (x, y(x)) |ξK∗ (x) − ηK∗ (x)| dx ≤ CmK∗ ,

with C depending on ζ, θ and λ. We obtain

B =

∫
∂Ωi

B(x)dx ≤ C2

∑
K∗∈M∗

mK∗ |uK∗ | ≤ C2‖uT ‖1,T .

Finally, we deduce ∫
∂Ωi

λi(x)|u∂M
∗

(x)|dx ≤ A + B ≤ Ci(‖∇DuT ‖1,D + ‖uT ‖1,T ).
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