Flat rank 2 vector bundles on genus 2 curves - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Flat rank 2 vector bundles on genus 2 curves

Viktoria Heu
Frank Loray

Résumé

We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the (non-separated) moduli space of underlying vector bundles (including unstable bundles). We draw the geometric picture of the latter and compute a natural Lagrangian rational section of the forgetful map. As a particularity of the genus 2 case, such connections are invariant under the hyperelliptic involution : they descend as rank 2 logarithmic connections over the Riemann sphere. We establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. By the hyperelliptic approach, we recover a Poincaré family on a degree 2 cover of the Narasimhan-Ramanan moduli space, due to Bolognesi. Moreover, we compare the explicit equations of the Kummer surface and the Hitchin map for each point of view, allowing us to explain a certain number of geometric phenomena in the considered moduli spaces.
Fichier principal
Vignette du fichier
Genre2janvier2014Vcor.pdf (677.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00927061 , version 1 (10-01-2014)
hal-00927061 , version 2 (15-07-2015)

Identifiants

Citer

Viktoria Heu, Frank Loray. Flat rank 2 vector bundles on genus 2 curves. 2014. ⟨hal-00927061v1⟩
751 Consultations
680 Téléchargements

Altmetric

Partager

More