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FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES

VIKTORIA HEU AND FRANK LORAY

Abstract. We study the moduli space of trace-free irreducible rank 2 connections over
a curve of genus 2 and the forgetful map towards the (non-separated) moduli space
of underlying vector bundles (including unstable bundles). We draw the geometric
picture of the latter and compute a natural Lagrangian rational section of the forgetful
map. As a particularity of the genus 2 case, such connections are invariant under
the hyperelliptic involution : they descend as rank 2 logarithmic connections over the
Riemann sphere. We establish explicit links between the well-known moduli space
of the underlying parabolic bundles with the classical approaches by Narasimhan-
Ramanan, Tyurin and Bertram. By the hyperelliptic approach, we recover a Poincaré
family on a degree 2 cover of the Narasimhan-Ramanan moduli space, due to Bolognesi.
Moreover, we compare the explicit equations of the Kummer surface and the Hitchin
map for each point of view, allowing us to explain a certain number of geometric
phenomena in the considered moduli spaces.
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Introduction

Let X be a smooth projective curve of genus 2 over C. A rank 2 holomorphic
connection on X is the data (E,∇) of a rank 2 vector bundle E → X together with a
C-linear map ∇ : E → E ⊗ Ω1

X satisfying the Leibniz rule. The trace tr (∇) defines a
holomorphic connection on det (E); we say that (E,∇) is trace-free (or a sl2-connection)
when (det (E) , tr (∇)) is the trivial connection (OX ,dz). From the analytic point of
view, (E,∇) is determined (up to bundle isomorphism) by its monodromy representation,
i.e. an element of Hom (π1 (X) ,SL2) /PGL2 (up to conjugacy). The goal of this paper
is a deeper understanding of the moduli space Con (X) of those connections and in
particular the forgetful map (E,∇) 7→ E towards the moduli spaceBun (X) of flat vector
bundles. Over an open set of the base, the map bun : Con (X) → Bun (X) is known
to be an affine A3-bundle. The former moduli space may be construted by Geometric
Invariant Theory (see [37, 25, 26]) and we get a quasi-projective variety Conss (X) whose
stable locus Cons (X) is open, smooth and parametrizes equivalence classes of irreducible
connections. There, several equivalence classes of reducible connections may be identified
to the same point in the strictly semi-stable locus. Since our initial motivation is to
understand the phase portrait of the isomonodromic flow for connections, we can take
reducible connections apart and deal with by another method.

The moduli space of bundles, even if we restrict to those bundles admitting an
irreducible connection, is however non Hausdorff as a topological space, due to the fact
that some unstable bundles arise in this way. We can start with the classical moduli space
Bunss (X) of semi-stable bundles constructed by Narasimhan-Ramanan (see [35]), but
we have to investigate how to complete this picture with missing flat unstable bundles.

Hyperelliptic descent. The main tool of our study, elaborated in section 2, di-
rectly follows from the hyperellipticity property of such objects. Denote by ι : X → X
the hyperelliptic involution, by π : X → P1 the quotient map and by W the critical
divisor on P1 (projection of the 6 Weierstrass points). We can think of P1 = X/ι as
an orbifold quotient (see [39]) and any representation ρ ∈ Hom

(
πorb
1 (X/ι) ,GL2

)
of the

orbifold fundamental group, i.e. with 2-torsion around points of W , can be lifted on X
to define an element π∗ρ in Hom (π1 (X) ,SL2). As a particularity of the genus 2 case,
both moduli spaces of representations have the same dimension 6 and one can check
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that the map Hom
(
πorb
1 (X/ι) ,GL2

)
→ Hom (π1 (X) ,SL2) is dominant: any irreducible

SL2-representation of the fundamental group of X is in the image, invariant under the
hyperelliptic involution ι and can be pushed down to X/ι.

From the point of view of connections, this means that every irreducible connection
(E,∇) on X is invariant by the hyperelliptic involution ι : X → X. By pushing forward
(E,∇) to the quotient X/ι ≃ P1, we get a rank 4 logarithmic connection that splits into
the direct sum π∗ (E,∇) = (E1,∇1)⊕(E2,∇2) of two rank 2 connections. Precisely, each
Ei has degree −3 and ∇i : Ei → Ei⊗Ω1

P1 (W ) is logarithmic with residual eigenvalues 0

and 1
2 at each pole. Conversely, π∗ (Ei,∇i) is a logarithmic connection on X with only

apparent singular points: residual eigenvalues are now 0 and 1 at each pole, i.e. at each
Weierstrass point of the curve. After performing a birational bundle modification (an
elementary transformation over each of the 6 Weierstrass points) one can make it into a
holomorphic and trace-free connection on X: we recover the initial connection (E,∇).
After deleting some reducible locus, we deduce a (2 : 1) map

Φ : Con (X/ι) −→ Con (X)

where Con (X/ι) denotes the moduli space of logarithmic connections like above. Moduli
spaces of logarithmic connections on P1 have been widely studied by many authors.

One can associate to a connection (E,∇) ∈ Con (X/ι) a parabolique structure p on E

consisting of the data of the residual eigenspace pj ⊂ E|wj associated to the 1
2 -eigenvalue

for each pole wj in the support of W . Denote by Bun (X/ι) the moduli space of such
parabolic bundles

(
E,p

)
, i.e. defined by an irreducible connection (E,∇) ∈ Con (X/ι).

In fact, the descending procedure described above can be already constructed at the
level of bundles (see [7]) and we can construct a (2 : 1) map φ : Bun (X/ι) → Bun (X)
making the following diagram commutative:

Con (X/ι)
2:1

Φ
//

bun
��

Con (X)

bun
��

Bun (X/ι)
2:1

φ
// Bun (X)

Vertical arrows are locally trivial affine A3-bundles in restriction to a large open set of
the bases.

Narasimhan-Ramanan moduli space. Having this picture at hand, we study
in section 3 the structure of Bun (X), partly surveying Narasimhan-Ramanan’s classical
work [35]. They construct a quotient map

NR : Bunss (X)→ P
3
NR := |2Θ|

defined on the open set Bunss (X) ⊂ Bun (X) of semi-stable bundles onto the 3-
dimensional linear system generated by twice the Θ-divisor on Pic1(X). This map is
one-to-one in restriction to the open set Buns (X) of stable bundles; it however iden-
tifies some strictly semi-stable bundles, as usually does GIT theory to get a Hausdorff
quotient. Precisely, the Kummer surface Kum(X) = Jac(X)/±1 naturally parametrizes
the set of decomposable semi-stable bundles, and the classifying map NR provides an
embedding Kum(X) →֒ P3

NR as a quartic surface with 16 nodes. The open set of stable
bundles is therefore parametrized by the complement P3

NR \ Kum(X). Over a smooth
point of Kum(X), the fiber of NR consists in 3 isomorphism classes of semi-stable bun-
dles, namely a decomposable one L0 ⊕ L−1

0 and the two non trivial extensions between
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L0 and L−1
0 ; the latter ones, however, only carry reducible connections, so that we might

delete them from our definition of Bun (X) while focusing on irreducible connections.
Over each singular point of Kum(X), the fiber of NR consists in a decomposable bundle
Eτ (a twist of the trivial bundle by a 2-torsion point τ of Jac(X)) and the (rational)
one-parameter family of non trivial extensions of τ by itself. These latter ones we call
(twists of) unipotent bundles; each of them is infinitesimally close to Eτ in Bun (X). To
complete this classical picture, we have to add flat unstable bundles: by Weil’s criterion,
they are exactly those unique non-trivial extensions κ→ Eκ → κ−1 where κ ∈ Pic1(X)
runs over the 16 theta-characteristics κ2 = KX . We call them Gunning bundles in refer-
ence to [22]: those connections defining a projective PGL2-structure on X (an oper in the
sense of [5]) are defined on these very special bundles Eκ, including the uniformization
equation for X. These bundles occur as non Hausdorff points of Bun (X): the bundles
infinitesimally close to Eκ are precisely those extensions κ−1 → E → κ, which are sent
onto a plane Πκ ⊂ P3

NR by the classifying map. We call them Gunning planes: they are
precisely the 16 planes involved in the classical (16, 6)-configuration of Kummer surfaces
(see [24, 20]). As far as we know, these planes have had no modular interpretation so
far.

For each of these special bundles, we describe the set of connections, and the quotient
of the irreducible ones by the automorphism group. This is resumed in table 1; columns
list for each type of bundle the projective part of the bundle automorphism group, the
affine space of connections and lastly the moduli space of irreducible connections up to
bundle automorphism. The 16-order group of 2-torsion points of Jac(X) is naturally
acting on Bun (X) by tensor product, preserving each type of bundle.

bundle type E PAut(E) connections moduli
stable E 1 A3 A3

decomposable L0 ⊕ L−1
0 Gm A4 C2 × C∗

affine L0 → E → L−1
0 Aff(C) A5 ∅

trivial+twists E0, Eτ PGL2(C) A6 C3
(a,b,c) \ {b2 = 4ac}

unipotent+twists τ → E → τ Ga A4 C2 × C∗

Gunning κ→ Eκ → κ−1 H0(X,Ω1
X) A5 A3

Table 1. Automorphisms and moduli spaces of irreducible connections
on special bundles

We supplement this geometric study with explicit computations of Narasimhan-
Ramanan coordinates, together with the equation of Kum(X), as well as the 16-order
symmetry group. These computations are done for the genus 2 curve defined by an affine
equation y2 = x(x− 1)(x− r)(x− s)(x− t) as functions of the free parameters (r, s, t).

The branching cover φ : Bun (X/ι)
2:1−→ Bun (X). We provide a full description

of this map in section 5 together with a complete dictionary between special bundles E
listed above and special parabolic bundles (E,p) in Bun (X/ι). The map φ is a double
cover (once we have taken the affine bundles off Bun (X)) branching over the locus of
decomposable bundles, including the trivial bundle and its 15 twists. The 16 latter
bundles lift as 16 decomposable parabolic bundles. If we restrict to the complement of
these very special bundles, we can follow the previous work of [2, 29]: the moduli space
Bunu (X/ι) of indecomposable bundes can be constructed by patching together GIT
quotients Bunssµ (X/ι) of µ-semi-stable parabolic bundles for a finite number of weights
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µ ∈ [0, 1]6. These moduli spaces are smooth projective manifolds (where semistable
objects are actually stable) and they are patched together along strict Zariski open
sets, giving Bunu (X/ι) the structure of a non Hausdorff scheme. In the present work,
we mainly study a one-parameter family of weights, namely the diagonal family µ =
(µ, µ, µ, µ, µ, µ). For µ = 1

2 , the restriction map φ : Bunss1
2

(X/ι) → P3
NR is exactly the

2-fold cover of P3
NR ramifying over the Kummer surface Kum(X); it is singular for this

special value. We pay more attention to the chart given by any 1
6 < µ < 1

4 which is a

3-dimensional projective space, that we will denote P3
B : it is naturally isomorphic to a

certain space of extensions studied by Bertram and Bolognesi [6, 11, 12]. The restriction
map φ : P3

B 99K P3
NR is rational and also related to the classical geometry of Kummer

surfaces. Precisely, there is a natural embedding X/ι →֒ P3
B as a twisted cubic and

φ|P3
B

is defined by the linear system of quadrics passing through the 6 conic points of

X/ι. The Galois involution Υ : Bun(X/ι)
∼−→ Bun(X/ι) of φ is defined by elementary

transformations: Υ = OP1 (−3) ⊗ elm+
W . After restriction to the chart P3

B, it is known

as Geiser involution (see Dolgachev [14]); its decomposition as sequence of blow-up and
contraction directly follows from the study of wall-crossing phenomena when weights
varry inside 1

6 < µ < 5
6 . In this picture, unipotent bundles come from those parabolic

bundles parametrized by the cubic X/ι, and twisted unipotent, from those 15 lines
passing through 2 among 6 points. Also Gunning planes with even theta-characteristic
come from those 20 planes passing through 3 among 6 points, while odd Gunning planes
come form the 6 conic points of X/ι, that are indeterminacy points for φ. Finally, the
Kummer surface lifts as the dual Weddle surface (another quartic birational model of
Kum(X)).

Anticanonical subbundles. In order to establish our above dictionary, we study
in section 4 the space of homomorphisms OX (−KX) → E for each type of bundle E.
This is a 2-dimensional vector space for a generic vector bundle E defining a 1-parameter
family of subbundles. This has been used by Tyurin to construct a parametrization of
an open set of Bun (X). Only two of these anti-canonical subbundles are invariant under
the hyperelliptic involution. Once we have choosen one of them, one can associate the
parabolic structure p directed by this line bundle over the set W of Weierstrass points.
After applying a negative elementary transformation to the parabolic bundle (E,p), we
precisely get π∗(E,p) for one of the two preimages φ−1(E,p); the choice of the invariant
anticanonical subbundle (or p) is a descent data. This allows us to link our moduli
space Bun (X/ι) with the space of ι-invariant extensions −KX → E → KX studied by
Bertram and Bolognesi: their moduli space coincides with our chart P3

B.
Universal bundle and Hitchin fibration. There is no universal bundle for P3

NR,
but there is one for the 2-fold cover P3

B. We actually provide an explicit universal
connection for Con(X/ι) as well as a universal Higgs bundle for Higgs (X/ι) in section
6. This allows us to explicitly compute the Hitchin Hamiltonians for the Hitchin system
on Higgs (X/ι). Using the natural identification with the cotangent bundle T ∗Bun(X/ι)
together with the double cover φ : Bun(X/ι)→ Bun(X), we derive the explicit Hitchin
Hamiltonians for Higgs (X) in a very direct way.

Tyurin parameters. In sections 4 and 6, we investigate the Tyurin point of
view. Anticanonical morphisms provide, for a generic bundle E, a birational morphism
OX (−KX)⊕OX (−KX)→ E, or after tensoring by OX (KX), a birational and minimal
trivialisation E0 → E. Precisely, this birational bundle map consists in 4 elementary
tranformations for a parabolic structure on E0 supported by a divisor belonging to
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the linear system |2KX |. The moduli space of such parabolic structures is a birational
model for Bun(X) (from which we easily deduce the rationality of this moduli space).
We provide explicit change of coordinates between the Tyurin parameters and the other
previous parameters. We also describe connections on E when pulled-back to E0 (con-
nections with 4 apparent singular points). These computations allow us to construct
an explicit rational section Bun (X) 99K Con (X) which is regular over the stable open
subset of Bun (X) and is, moreover, Lagrangian. In other words, over the stable open
set, the Lagrangian fiber-bundle Con (X) → Bun (X) is isomorphic to the cotangent
bundle T ∗Bun (X) (i.e. T ∗P 3

NR) as symplectic manifolds.

1. Preliminaries on connections

1.1. Logarithmic connections. Let X be a smooth projective curve over C and E →
X be a rank r vector bundle. Let D be a reduced effective divisor on X. A logarithmic
connection on E with polar divisor D is a C-linear map

∇ : E → E ⊗ Ω1
X (D)

satifying the Leibniz rule

∇ (f · s) = df ⊗ s+ f · ∇ (s)

for any local section s of E and fonction f on X. Locally, for a trivialization of E, the
connection writes ∇ = dX + A where dX : OX → Ω1

X is the differential operator on X
and A is a r× r matrix with coefficients in Ω1

X (D), thus 1-forms having at most simple
poles located along D. The true polar divisor, i.e. the singular set of such a logarithmic
connection ∇ is a subset of D. Depending on the context, we may assume them to be
equal. At each pole x0 ∈ D, the residual matrix intrinsically defines an endomorphism
of the fiber Ex0 that we denote Resx0∇. Residual eigenvalues and residual eigenspaces
in Ex0 hence are well-defined.

1.2. Twists and trace. As before, let E be a rank r vector bundle endowed with
a logarithmic connection ∇ on a curve X. The connection ∇ induces a logarithmic
connection tr (∇) on the determinant line bundle det (E) over X with

Resx0 tr (∇) = tr (Resx0∇)
for each x0 ∈ D. By the residue theorem, the sum of residues of a global meromorphic
1-form on X is zero. We thereby obtain Fuchs’ relation:

(1) deg (E) +
∑

x0∈D
tr (Resx0∇) = 0.

We can define the twist of the connection (E,∇) by a rank 1 meromorphic connection
(L, ζ) as the rank r connection (E′,∇′) with

(
E′,∇′) = (E,∇)⊗ (L, ζ) := (E ⊗ L,∇⊗ idL + idE ⊗ ζ) .

We have

det
(
E′) = det (E)⊗ L⊗r and tr

(
∇′) = tr (∇)⊗ ζ⊗r.

When L→ X is a line bundle such that L⊗r ≃ OX , then there is a unique (holomorphic)
connection ∇L on L such that the connection ∇⊗r

L is the trivial connection on L⊗r ≃ OX .
The twist by such a r-torsion connection has no effect on the trace: modulo isomorphism,
we have det (E′) = det (E) and tr (∇′) = tr (∇).
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1.3. Projective connections and Riccati foliations. From now on, let us assume
the rank to be r = 2. After projectivizing the bundle E, we get a P1-bundle PE over
X whose total space is a ruled surface S. Since ∇ is C-linear, it defines a projective
connection P∇ on PE and the graphs of horizontal sections define a foliation by curves
F on the ruled surface S. The foliation F is transversal to a generic member of the
ruling S → X and is thus a Riccati foliation (see [13], chapter 4). If the connection
locally writes

∇ :

(
z1
z2

)
7→ d

(
z1
z2

)
+

(
α β
γ δ

)(
z1
z2

)
,

then in the corresponding trivialization (z1 : z2) = (1 : z) of the ruling, the foliation is
defined by the (pfaffian) Riccati equation

dz − βz2 + (δ − α) z + γ = 0.

Tangencies between F and the ruling are concentrated on fibers over the (true) polar
divisor D of ∇. These singular fibers are totally F-invariant. According to the number
of residual eigendirections of ∇, the restriction of F to such a fibre is the union of a leaf
and 1 or 2 points.

Any two connections (E,∇) and (E′,∇′) on X define the same Riccati foliation if,
and only if, (E′,∇′) = (E,∇) ⊗ (L, ζ) for a rank 1 connection (L, ζ). Conversely, a
Riccati foliation (S,F) is always the projectivization of a connection (E,∇): once we
have chosen a lifting E of S and a rank 1 connection ζ on det (E), there is a unique
connection ∇ on E such that trace (E) = ζ and P∇ = F .

1.4. Parabolic structures. A parabolic structure on E supported byD = {x1, . . . , xn} ⊂
X is the data p = (p1, . . . , pn) of a 1-dimensional subspace pi ∈ Exi for each xi ∈ D. A
parabolic connection is the data (E,∇,p) of a logarithmic connection (E,∇) with polar
divisor D and a parabolic structure p supported by D such that, at each pole xi ∈ D,
the parabolic direction pi is an eigendirection of the residual endomorphism Resxi∇. For
the corresponding Riccati foliation, p is the data, on the ruled surface S, of a singular
point of the foliation F for each fiber over D.

1.5. Elementary transformations. Let (E, p) be a parabolic bundle on X supported
by a single point x0 ∈ X. Consider the vector bundle E− defined by the subsheaf of
those sections of E directed by p at x0. A natural parabolic direction on E− is defined
by those sections of E which are vanishing at x0 (and thus belong to E−). If x is a local
coordinate at x0 and E is generated by 〈e1, e2〉 with p directed by e1, then E− is locally
generated by 〈e1, xe2〉 and we define p− to be e′2 = xe2. By identifying the sections of
E and E− outside x0, we obtain a natural birational morphism (see also [30])

elm−
x0

: E 99K E−.

In a similar way, we define the parabolic bundle (E+, p+) by the sheaf of those
meromorphic sections of E having (at most) a single pole at x0, whose residual part is
directed by p. The parabolic p+ is directed by the holomorphic sections of E at x0. In
other words, E+ is generated by 〈 1xe1, e2〉 and p+ defined by e2. The natural morphism

elm+
x0

: E 99K E+

is now regular, but fails to be an isomorphism at x0.
These elementary transformations satisfy the following properties:

• det (E±) = det (E)⊗OX (±[x0]),
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• elm+
x0
◦ elm−

x0
= id(E,p) and elm−

x0
◦ elm+

x0
= id(E,p),

• elm+
x0

= OX ([x0])⊗ elm−
x0
.

In particular, positive and negative elementary transformations coincide for a projec-
tive parabolic bundle (PE, p). It consists, for the ruled surface S, in composing the
blowing-up of p with the contraction of the strict transform of the fiber [19]. This lat-
ter contraction gives the new parabolic p±. Elementary transformations on projective
parabolic bundles are clearly involutive.

More generally, given a parabolic bundle (E,p) with support D, we define the ele-
mentary transformations elm±

D as the composition of the (commuting) single elementary

transformations over all points of D. We define elm±
D0

for any subdivisor D0 ⊂ D in the
obvious way.

Given a parabolic connection (E,∇,p) with support D, the elementary transfor-
mations elm±

D yield new parabolic connections (E±,∇±,p±). In fact, the compatibility
condition between p and the residual eigenspaces of∇ insures that∇± is still logarithmic.
The monodromy is obviously left unchanged, but the residual eigenvalues are shifted as
follows: if λ1 and λ2 denote the residual eigenvalues of ∇ at x0, with p contained in the
λ1-eigenspace, then

• ∇+ has eigenvalues (λ+
1 , λ

+
2 ) := (λ1 − 1, λ2),

• ∇− has eigenvalues (λ−
1 , λ

−
2 ) := (λ1, λ2 + 1),

and p± is now contained in the λ±
2 -eigenspace.

Finally, if the parabolic connections (E,∇,p) and
(
Ẽ, ∇̃, p̃

)
are isomorphic, then

one can easily check that (E±,∇±,p±) and
(
Ẽ±, ∇̃±, p̃±

)
are also isomorphic. This

will allow to define elementary transformations elm±
D on moduli spaces of parabolic

connections.

1.6. Stability and moduli spaces. Given a collection µ = (µ1, · · · , µn) of weights
µi ∈ [0, 1] attached to pi, we define the parabolic degree with respect to µ of a line
subbundle L →֒ E as

degparµ (L) := deg (L) +
∑

pi∈L
µi

(where the summation is taken over those parabolics pi which are directed by L). Setting

degparµ (E) := deg (E) +
n∑

i=1

µi

(where the summation is taken over all parabolics), we define the stability index of L by

indµ (L) := degparµ (E)− 2 degparµ (L) .

The parabolic bundle (E,p) is called semi-stable (resp. stable) with respect to µ if

indµ (L) ≥ 0 (resp. > 0) for each line subbundle L ⊂ E.

For vanishing weights µ1 = . . . = µn = 0, we get the usual definition of (semi-)stability
of vector bundles. Semi-stable parabolic bundles admit a coarse moduli space Bunssµ
which is a normal projective variety; the stable locus Bunsµ is smooth (see [33]).

Note that tensoring by a line bundle does not affect the stability index. In fact, if
S denotes again the ruled surface defined by PE, line bundles L →֒ E are in one to one
correspondence with sections σ : X → S, and for vanishing weights, indµ (L) is precisely
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the self-intersection number of the curve C := σ (X) ⊂ S (see also [31]). For general
weights, we have

indµ (L) = #(C · C) +
∑

pi 6∈C
µi −

∑

pi∈C
µi.

For weighted parabolic bundles (E,p,µ), it is natural to extend the definition of
elementary transformations as follows. Given a subdivisor D0 ⊂ D, define

elm±
D0

: (E,p,µ) 99K
(
E′,p′,µ′)

by setting

µ′
i =

{
1− µi if pi ∈ D0,
µi if pi 6∈ D0.

When L′ →֒ E′ denotes the strict transform of L, we can easily check that

indµ′
(
L′) = indµ (L) .

Therefore, elm±
D0

acts as an isomorphism between the moduli spaces Bunssµ and Bunssµ′

(resp. Bunsµ and Bunsµ′). A parabolic connection (E,∇,p) is said to be semi-stable

(resp. stable) with respect to µ if

indµ (L) ≥ 0 (resp. > 0) for all ∇-invariant line subbundles L ⊂ E.

In particular, irreducible connections are stable for any weight µ ∈ [0, 1]n. Semi-stable
parabolic connections admit a coarse moduli space Conssµ which is a normal quasi-
projective variety; the stable locus Consµ is smooth (see [37]).

2. Hyperelliptic correspondence

Let X be the smooth complex projective curve given in an affine chart of P1 × P1

by

y2 = x (x− 1) (x− r) (x− s) (x− t) .

Denote its hyperelliptic involution, defined in the above chart by (x, y) 7→ (x,−y), by
ι : X → X and denote its hyperelliptic cover, defined in the above chart by (x, y) 7→ x,
by π : X → P1. Denote by W = {0, 1, r, s, t,∞} the critical divisor on P1 and by
W = {w0, w1, wr, ws, wt, w∞} the Weierstrass divisor on X, i.e. the branching divisor
with respect to π. Note that we make no difference in notation between a reduced
effective divisor and its support.

Consider a rank 2 vector bundle E → P1 of degree −3, endowed with a logarithmic
connection ∇ : E → E ⊗ Ω1

P1 (W ) having residual eigenvalues 0 and 1
2 at each pole. We

fix the parabolic structure p attached to the 1
2 -eigenspaces over W . After lifting the

parabolic connection
(
E,∇,p

)
via π : X → P1, we get a parabolic connection on X

(
Ẽ → X, ∇̃, p̃

)
= π∗ (E → P

1,∇,p
)
.

We have det
(
Ẽ
)
≃ OX (−3KX) and the residual eigenvalues of the connection ∇̃ :

Ẽ → Ẽ ⊗ Ω1
X (W ) are 0 and 1 at each pole, with parabolic structure p̃ directed by the

1-eigenspaces. After applying elementary transformations directed by p̃, we get a new
parabolic connection:

elm+
W :

(
Ẽ, ∇̃, p̃

)
99K (E,∇,p)
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which is now holomorphic and trace-free. Let us fix homogenous weights µ
i
= 1

2 for the

original connection
(
E,∇,p

)
. We then get weights µ̃i = 1 for the lift

(
Ẽ, ∇̃, p̃

)
and

finally µi = 0 for the holomorphic connection (E,∇,p) so that we can omit µ and p.
Recall from the introduction that we denote by Con (X/ι) the moduli space of log-

arithmic rank 2 connections on P1 with residual eigenvalues 0 and 1
2 at each pole in W ,

and we denote by Con (X) the moduli space of trace-free holomorphic rank 2 connec-
tions on X. Since to every element (E,∇) of Con (X/ι), the parabolic structure p is
intrinsically defined as above, we have just defined a map

Φ :

{
Con (X/ι) → Con (X)(
E,∇,p

)
7→ (E,∇) .

Roughly counting dimensions, we see that both spaces of connections have same dimen-
sion 6 up to bundle isomorphims. We may expect to obtain most of all holomorphic
and trace-free rank 2 connections on X by this construction. This turns out to be true
and will be proved along this section. In particular, any irreducible holomorphic and
trace-free rank 2 connection (E,∇) on X can be obtained like above. Note that the
stability of E is a sufficient condition for the irreducibility of ∇.

2.1. Topological considerations. By the Riemann-Hilbert correspondence, the two
moduli spaces of connections considered above are in one-to-one correspondence with
moduli spaces of representations. Let us start with Con (X) which is easier. The mon-
odromy of a trace-free holomorphic rank 2 connection (E,∇) on X gives rise to a mon-
odromy representation, namely a homomorphism ρ : π1 (X,w) → SL2. In fact, this
depends on the choice of a basis on the fiber Ew. Another choice will give the conjugate
representation MρM−1 for some M ∈ SL2. The class [ρ] ∈ Hom (π1 (X,w) ,SL2) /PGL2

however is well-defined by (E,∇). Conversely, the monodromy [ρ] characterizes the
connection (E,∇) on X modulo isomorphism, which yields a bijective correspondence

RH : Con (X)
∼−→ Hom (π1 (X,w) ,SL2) /PGL2

which turns out to be complex analytic where it makes sense, i.e. on the smooth part.
Yet this map is highly transcendental, since we have to integrate a differential equation
to compute the monodromy. Note that the space of representations only depends on the
topology of X, not on the complex and algebraic structure.

In a similar way, parabolic connections in Con (X/ι) are in one-to-one correspondence
with representations ρ : πorb

1 (X/ι) → GL2 of the orbifold fundamental group (killing
squares of simple loops around punctures, see the proof below). Thinking of P1 = X/ι
as the orbifold quotient of X by the hyperelliptic involution, these representations can
also be seen as representations

ρ : π1
(
P
1 \W,x

)
→ GL2 (C)

with 2-torsion monodromy around the punctures, having eigenvalues 1 and −1.
If x = π (w), the branching cover π : X → X/ι induces a monomorphism

π∗ : π1 (X,w) →֒ πorb
1 (X/ι, x) ,

whose image consists of words of even length in the alphabet of a system of simple gener-
ators of πorb

1 (X/ι, x) . This allows to associate, to any representation ρ : πorb
1 (X/ι, x)→

GL2 as above, a representation ρ◦π∗ : π1 (X,w)→ SL2. We have thereby defined a map
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Φtop between corresponding representation spaces, which makes the following diagram
commutative

Con (X/ι)
RH
∼

//

Φ
��

Hom
(
πorb
1 (X/ι, x) ,GL2

)
/PGL2

Φtop

��
Con (X)

RH
∼

// Hom (π1 (X,w) ,SL2) /PGL2 .

We now want to describe the map Φtop. The quotient πorb
1 (X/ι, x) / π∗ (π1 (X,w)) ≃ Z2

acts (by conjugacy) as outer automorphisms of π1 (X,w). It coincides with the outer
action of the hyperelliptic involution ι. Since the hyperelliptic involution is an outer
automorphism, it acts non-trivially on Hom (π1 (X) ,SL2) /PGL2 .

Theorem 2.1. Given a representation [ρ] ∈ Hom (π1 (X) ,SL2) /PGL2 , the following
properties are equivalent:

(a) [ρ] is either irreducible or abelian;
(b) [ρ] is ι-invariant;
(c) [ρ] is in the image of Φtop.

In this case, [ρ] has 1 or 2 preimages under Φtop depending on wether it is diagonal or
not.

Proof. We start making explicit the monomorphism π∗ and the involution ι. Let x ∈
P1 \W and w ∈ X one of the two preimages. Choose simple loops around the punctures
to generate the orbifold fundamental group of P1 \W with the standard representation

πorb
1 (X/ι, x) =

〈
γ0, γ1, γr, γs, γt, γ∞

∣∣∣∣
γ20 = γ21 = γ2r = γ2s = γ2t = γ2∞ = 1

and γ0γ1γrγsγtγ∞ = 1

〉
.

Even words in these generators can be lifted as loops based in w on X, generating the
ordinary fundamental group of X. Using the relations, we see that π1 (X,w) is actually
generated by the following pairs

{
α1 := γ0γ1
β1 := γrγ1

{
α2 := γsγt
β2 := γ∞γt

and they provide the standard presentation

(2) π1 (X,w) = 〈α1, β1, α2, β2 | [α1, β1][α2, β2] = 1〉 ,

where [αi, βi] = αiβiα
−1
i β−1

i denotes the commutator. In other words, the monomor-
phism π∗ is defined by α1 7→ γ0γ1 et cetera.
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0 1

α1

∞

α1 β1 α2 β2

β2
α2

t

β1

π

ι

r s

After moving the base point w → wi to a Weierstrass point, the involution ι acts
as an involutive automorphism of π1 (X,wi): it coincides with the outer automorphism
given by γi-conjugacy. For instance, for i = 1, we get

{
α1 7→ α−1

1

β1 7→ β−1
1

{
α2 7→ γα−1

2 γ−1

β2 7→ γβ−1
2 γ−1 with γ = β−1

1 α−1
1 β2α2.

Let us now prove (a)⇔(b). That irreducible representations are ι-invariant already
appears in the last section of [18]. Let us recall the argument given there. There is a
natural surjective map

Ψ : Hom (π1 (X) ,SL2) /PGL2 −→ Hom (π1 (X) ,SL2) //PGL2 =: χ

to the GIT quotient χ, usually called character variety, which is an affine variety. The
singular locus is the image of reducible representations. There can be many different
classes [ρ] over each singular point. The smooth locus of χ however is the geometric
quotient of irreducible representations, which are called stable points in this context.
The above map Ψ is injective over this open subset. The involution ι acts on χ as a
polynomial automorphism and we want to prove that the action is trivial. First note
that the canonical fuchsian representation given by the uniformisation H → X must
be invariant by the hyperelliptic involution ι : X → X. The corresponding point in
χ therefore is fixed by ι. On the other hand, the definition of χ only depends on the
topology of X and, considering all possible complex structures on X, we now get a large
set of fixed points χfuchsian ⊂ χ. Those fuchsian representations actually form an open
subset of Hom (π1 (X) ,SL2R) //SL2R, and thus a Zariski dense subset of χ. It follows
that the action of ι is trivial on the whole space χ. By injectivity of Ψ, any irreducible
representation is ι-invariant.

In other words, if an irreducible representation ρ is defined by matrices Ai, Bi ∈ SL2,
i = 1, 2 with [A1, B1] · [A2, B2] = I2, then there exists M ∈ GL2 satisfying:

(3)

{
M−1A1M = A−1

1

M−1B1M = B−1
1

{
M−1A2M = CA−1

2 C−1

M−1B2M = CB−1
2 C−1 with C = B−1

1 A−1
1 B2A2.



FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES 13

Since the action of ι is involutive, M2 commutes with ρ and is thus a scalar matrix. The
matrix M has two opposite eigenvalues which can be normalized to ±1 after replacing
M by a scalar multiple. There are exactly two such normalizations, namely M and −M .

It remains to check what happens for reducible representations. In the strict re-
ducible case, there is a unique common eigenvector for all matrices A1, B1, A2, B2; the
representation ρ restricts to it as a representation π1 (X)→ C∗ which must be ι-invariant.
This (abelian) representation must therefore degenerate into {±1}. It follows that any
reducible ι-invariant representation is abelian. For abelian representations though, the
action of ι is simply given by

Ai 7→ A−1
i and Bi 7→ B−1

i for i = 1, 2.

But then, up to conjugacy:

• either A1, B1, A2, B2 are diagonal and one can choose M =

(
0 1
1 0

)
,

• or A1, B1, A2, B2 are upper triangular with eigenvalues ±1 (projectively unipo-

tent) and M =

(
1 0
0 −1

)
works.

Let us now prove (b)⇔(c). Given a representation [ρ] ∈ Hom
(
πorb
1 (X/ι) ,GL2

)
/PGL2 ,

its image under Φtop is ι-invariant, i.e. the action of ι coincides in this case with the
conjugacy by ρ (γ1) ∈ GL2. Conversely, let [ρ] ∈ Hom (π1 (X) ,SL2) /PGL2 be ι-invariant,
i.e. ι∗ρ = M−1 · ρ ·M for some M ∈ GL2 as in (3). From the cases discussed above, we
know that M can be chosen with eigenvalues ±1. Then setting




M0 := A1M
M1 := M
Mr := B1M





Ms := B−1
2 A1B1M

Mt := A1B1MA2B2

M∞ := A1B1MA2

we get a preimage of [ρ]. The preimage depends only of the choice of M . Any other
choice writes M ′ := CM with C commuting with ρ. In the general case, i.e. when ρ is
irreducible, we get two preimages given by M and −M . However, when ρ is diagonal, we
get only one preimage, because the anti-diagonal matrices M and −M are conjugated
by a diagonal matrix (commuting with ρ). �

Corollary 2.2. The Galois involution of the double cover Φtop is given by
{

Hom
(
πorb
1 (X/ι) ,GL2

)
/PGL2 −→ Hom

(
πorb
1 (X/ι) ,GL2

)
/PGL2

[ρ] 7→ [−ρ]

}
.

So far, Theorem 2.1 provides an analytic description of the map Φ: although Φtop is
a polynomial branching cover, the Riemann-Hilbert correspondence is only analytic. In
the next section, we will follow a more direct approach providing algebraic informations
about Φ. However, note that we can already deduce the following:

Corollary 2.3. An irreducible trace-free holomorphic connection (E,∇) on X is invari-
ant under the hyperelliptic involution: there exists a bundle isomorphism h : E → ι∗E
conjugating ∇ with ι∗∇. We can moreover assume h ◦ ι∗h = idE and h is unique up to
a sign.

Remark 2.4. Note that h acts as −id on the determinant line bundle det (E) =
det (ι∗E) ≃ O.

Each Weierstrass point w ∈ X is fixed by ι and the restriction of h to the fibre
Ew = ι∗Ew is an automorphism with simple eigenvalues ±1.
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2.2. A direct algebraic approach. Let (E,∇) be a holomorphic trace-free rank 2
connection on X. As in corollary 2.3, let h be a ∇-invariant lift to the vector bundle
E of the action of ι on X. Following [7] and [8], we can naturally associate a parabolic
logarithmic connection

(
E,∇,p,µ

)
on P1 with polar divisor W . Let us briefly recall

this construction. The isomorphism h induces a non-trivial involutive automorphism on
the rank 4 bundle π∗E on P1. The spectrum of such an automorphism is {−1,+1} with
respective multiplicities 2, which yields a splitting π∗E = E ⊕ E′ with E denoting the
h-invariant subbundle.

In local coordinates, the automorphism h acts on π∗E in the following way. If U ⊂ X
is a sufficiently small open set outside of the critical points, we have Γ (π (U) , π∗E) =
Γ (U,E)⊕Γ (ι (U) , E) and h permutes both factors. Locally at a Weierstrass point with
local coordinate y, one can choose sections e1 and e2 generating E such that h (e1) = e1
and h (e2) = −e2 (recall that h has eigenvalues ±1 in restriction to the Weierstrass fiber).
On the corresponding open set of P1, the bundle π∗E is generated by 〈e1, e2, ye1, ye2〉,
and we see that 〈e1, ye2〉 spans the h-invariant subspace. Since the connection ∇ on E
is h-invariant, we can choose the sections e1 and e2 above to be horizontal for ∇. Then
considering the basis e1 = e1 and e2 = ye2 of E, we get

∇e1 = ∇e1 = 0 and ∇e2 = ∇ye2 = dy ⊗ e2 =
dy

y
⊗ e2 =

1

2

dx

x
⊗ e2

so that ∇ is logarithmic with eigenvalues 0 and 1
2 . To each pole in W , we associate the

parabolic pi directed by the eigenspace with eigenvalue 1
2 , with the natural parabolic

weight µi =
1
2 .

However, since we consider the rank 2 case, this general construction can also be
viewed in the following way. Denote by p the parabolic structure on E directed by
the h-invariant directions over W = {w0, w1, wr, ws, wt, w∞} and associate the trivial
homogenous weight µ = 0. In the coordinates above, the basis (e1, e2) generates the
vector bundle E after one negative elementary transformation in that direction. Now
the hyperelliptic involution acts trivially on the parabolic logarithmic connection on X
defined by

(
Ẽ, ∇̃, p̃, µ̃

)
:= elm−

W (E,∇,p,µ)

and we have

(
Ẽ, ∇̃, p̃, µ̃

)
= π∗ (E,∇,p,µ

)
.

2.3. Galois involution and symmetry group. With the notations above, let (E′,∇′)
be the connection on P1 we obtain for the other possibility of a lift of the hyperelliptic
involution on (E → X,∇), namely for h′ = −h. It is straightforward to check that
the map from (E′,∇′,p′) to (E,∇,p) and vice-versa is obtained by the elementary
transformations elm+

W over P1, followed by the tensor product with a certain logarithmic

rank 1 connection
√

d log (W ) over P1 defined below.
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(
Ẽ, ∇̃, p̃

)
oo
elm−

W
___ (E,∇,p) oo h ///o/o/o/o/o/o (E,∇)

π∗

��

(E,∇,p′)//−hoo o/ o/ o/ o/ o/ o/
(
Ẽ′, ∇̃′, p̃′

)
//

elm−
W

_ _ _

(
E,∇,p

)
oo
eig 1

2 ///o/o/o/o

π∗

OO

kk

√
d log(W )⊗elm+

W

33X X Y Y Z [ [ \ \ ] ] ^ ^ _ ` ` a a b b c c d e e f f
(E,∇) � � // (E,∇)⊕ (E′,∇′) (E ′,∇′)? _oo

(
E ′,∇′,p′)

π∗

OO

//
eig 1

2oo o/ o/ o/ o/

There is a unique rank 1 logarithmic connection (L, ζ) on P1 having polar divisor
W and eigenvalues 1; note that L = OP1 (−6). We denote by d log (W ) this connection

and by
√

d log (W ) its unique square root. In a similar way, define
√

d log (D) for any
even order subdivisor D ⊂W .

The Galois involution of our map Φ : Con (X/ι)→ Con (X) is therefore given by
√

d log (W )⊗ elm+
W : Con (X/ι)→ Con (X/ι) .

There is a 16-order group of symmetries on Bun (X) (resp. Con (X)) consisting
of twists with 2-torsion line bundles (resp. rank 1 connections). It can be lifted as a
32-order group of symmetries on Bun (X/ι) (resp. Con (X/ι)), namely those transfor-

mations
√

d log (D) ⊗ elm+
D with D ⊂ W even. For instance, if D = wi + wj, then

its action on Con (X/ι) corresponds via Φ to the twist by the 2-torsion connection on
OX (wi + wj −KX). In particular, it permutes the two parabolics (of p and p′) over wi

and wj .

3. Flat vector bundles over X

In this section, we provide a description of the space of trace-free holomorphic con-
nections on a given flat rank 2 vector bundle E over the genus 2 curve X. We review
the classical construction of the moduli space of these bundles due to Narasimhan and
Ramanan, where the classical geometry of Kummer surfaces arises.

3.1. Flatness criterion. Recall the well-known flatness criterion for vector bundles
over curves [42, 1].

Theorem 3.1 (Weil). A holomorphic vector bundle on a compact Riemann surface
is flat, i.e. it admits a holomorphic connection, if and only if it is the direct sum of
indecomposable bundles of degree 0.

In our case of rank 2 vector bundles E over a genus 2 curve X with trivial determi-
nant bundle det (E) = OX , Weil’s criterion demands that either E is indecomposable,
or it is the direct sum of degree 0 line bundles. We get the following list of flat bundles:

• stable bundles (forming a Zariski-open subset of the moduli space),
• decomposable bundles of the form E = L⊕ L−1 where L ∈ Jac (X) is a degree
0 line bundle,
• strictly semi-stable indecomposable bundles,
• Gunning bundles.

We recall that a Gunning bundle over X is an unstable indecomposable rank 2
vector bundle with trivial determinant bundle. There are precisely 16 such bundles: for
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each of the 16 line bundles L ∈ Pic1 (X) such that L⊗2 = O (KX) there is a unique
indecomposable extension 0→ L→ E → L−1 → 0 of L by L−1.

Given a flat bundle E, and a sl2-connection ∇ on E, any other sl2-connection writes

∇′ = ∇+ θ

where θ ∈ Hom
(
sl (E)⊗ Ω1

X

)
is a Higgs field. Here, sl (E) denotes the vector bundle

whose sections are trace-free endomorphisms of E. On the other hand, by the Riemann-
Roch Theorem and Serre Duality we have

(4) h0
(
sl (E)⊗ Ω1

X

)
= 3 · genus (X)− 3 + h0 (sl (E))

(sl (E) is self-dual). Since there is no natural choice for the initial connection ∇, the
set of connections on E is an affine space. We will see in the following that for generic
bundles we have h0 (sl (E)) = 0 and the moduli space of sl2-connections on E is A3 in
this case. There are, however, flat bundles with non-trivial automorphisms for which
the moduli space of sl2-connections will be a quotient of some An by the automorphism
group, yet the dimension of this quotient is always 3, as suggested by (4).

3.2. Semi-stable bundles and the Narasimhan-Ramanan theorem. Two semi-
stable vector bundles of same rank and degree over a curve are called S-equivalent, if the
graded bundles associated to Jordan-Hölder filtrations of these bundles are isomorphic.
In our case, i.e. rank 2 and determinant-free bundles, we get that

• two stable bundles are S-equivalent if and only if they are isomorphic;
• two strictly semi-stable bundles are S-equivalent if and only if there is a line
bundle L ∈ Jac (X) such that each of the two bundles is an extension either of
L by L−1 or of L−1 by L.

To a semi-stable bundle E, we associate (following [35]) the set

CE = {L ∈ Pic1 (X) | h0 (X,E ⊗ L) > 0}.
Equivalently, L ∈ CE if and only if there is a non-trivial homomorphism L−1 → E. For
stable bundles, such a homomorphism is an embedding and CE then parametrizes line
subbundles of maximal degree.

Narasimhan and Ramanan proved that this set CE is the support of a uniquely
defined effective divisor DE on Pic1 (X) linearly equivalent to 2Θ, where

Θ = {[p] | p ∈ X} ⊂ Pic1 (X)

is the subset of effective divisors, naturally parametrized by the curveX itself. Moreover,
for strictly semi-stable bundles, the divisor DE only depends on the Jordan-Hölder
filtration, i.e. on the S-equivalence class of E. We thus get a map

NR : MNR → P
(
H0

(
Pic1 (X) ,O (2Θ)

))

from the moduli space of S-equivalence classes to the linear system |2Θ| on Pic1 (X).

Theorem 3.2 (Narasimhan-Ramanan). The map NR defined above is an isomorphism.
Let π : E → T be an algebraic family of semi-stable rank 2 vector bundles with trivial
determinant over X. Then the map φ : T →MNR associating to t ∈ T the S-equivalence
class of Et = π−1 (t) is a morphism.

In particular, the moduli space of stable bundles naturally identifies with an open
subset of MNR ≃ P3. A stable bundle has no non-trivial automorphism: we have
Aut (E) = C∗ acting by scalar multiplication in the fibres (see [21], thm 29). Therefore,



FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES 17

the moduli space of holomorphic connections ∇ : E → E ⊗ Ω1
X on a given stable bundle

E is an A3-affine space. Note that all holomorphic connections on a stable bundle are
irreducible.

We now list special flat bundles and explain how they arise in the Narasimhan-
Ramanan moduli space.

3.3. Semi-stable decomposable bundles. Let E = L0 ⊕ L−1
0 with L0 ∈ Jac (X).

Given L ∈ Pic1 (X), non-trivial sections of E ⊗ L come from non-trivial sections of
L0 ⊗ L or L−1

0 ⊗ L. We promtly deduce that

DE = L0 ·Θ+ L−1
0 ·Θ

where L0 · Θ denotes the translation of Θ by L0 for the group law on Pic (X). A
special case occurs for the 16 torsion points L2

0 = OX for which L0 = L−1
0 and hence

DE = 2 (L0 ·Θ) is not reduced.
The moduli space of semi-stable decomposable bundles naturally identifies with the

Kummer variety

Kum(X) := Jac (X) /ι,

the quotient of the Jacobian Jac (X) by the involution ι : L0 7→ ι∗L0 = L−1
0 . The

Narasimhan-Ramanan classifying map provides a natural embedding

NR : Kum(X) := Jac (X) /ι →֒ MNR

and the image is a quartic surface in MNR ≃ P3. The moduli space of stable bundles
identifies with the complement of this surface. The 16 torsion points L2

0 = OX of the
Jacobian are precisely the fixed points of the involution ι and yield 16 conic singularities
on Kum(X).

3.3.1. The 2-dimensional family of decomposable bundles. When L2
0 6= OX , the corre-

sponding rank 2 bundle E = L0 ⊕L−1
0 lies on the smooth part of Kum(X). Non-trivial

automorphisms come from the independant action of Gm on the two factors: we get a
Gm-action on P (E).

Given a connection on L0, we easily deduce a totally reducible connection ∇0 on E
(preserving both factors). Any other connection will differ from ∇0 by a Higgs bundle:
∇ = ∇0 + θ where θ : E → E ⊗ Ω1

X is OX -linear and may be represented in the matrix
way

θ =

(
α β
γ −α

)
with





α : L0 → L0 ⊗ Ω1
X ,

β : L−1
0 → L0 ⊗ Ω1

X ,

γ : L0 → L−1
0 ⊗ Ω1

X .

Under our assumption that L2
0 6= OX , our space of connections is parametrized by

C2
α × C1

β × C1
γ . Since E has no degree 0 subbundle distinct from L0 and L−1

0 , reducible
connections on E are precisely those for which one of the two factors is invariant, i.e.
β = 0 or γ = 0. The Gm-action is trivial on α but not on the two other coefficients:
the quotient C1

β ×C1
γ/Gm is C∗ after deleting reducible connections (for which β = 0 or

γ = 0). The moduli space of irreducible connections on E is thus given by C2 × C∗.
The involution ι preserves those connections that are irreducible or totally reducible.

The moduli space of ι-invariant connections is C2 ×C.
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3.3.2. The trivial bundle and its 15 twists. All 16 special decomposable bundles are
equivalent to the trivial one after twisting by a convenient line bundle. Let us study the
case E = OX ⊕OX which admits the trivial connection ∇0 = d. Any other connection
is obtained by adding a Higgs bundle of the matrix form

θ =

(
α β
γ −α

)
with α, β, γ ∈ H0

(
X,Ω1

X

)

(here, a trivialization of E is chosen). Our space of connections is parametrized by
C2
α × C2

β × C2
γ but now the group acting is Aut (PE) = PGL2.

Since the trivial connection is PGL2-invariant, the data of a connection ∇ = d + θ
is equivalent to the data of the Higgs field θ itself. Moreover, the determinant map

det : H0
(
End (E)⊗ Ω1

X

)
→ H0

(
Ω1
X ⊗ Ω1

X

)
; θ 7→ − (α⊗ α+ β ⊗ γ)

is invariant under the PGL2-action. Through this map, we claim the following.

Proposition 3.3. The moduli space of irreducible trace-free connections on the triv-
ial bundle of rank 2 over X coincides with the open set in H0

(
X,Ω1

X ⊗ Ω1
X

)
of those

quadratic differentials that are not the square ω ⊗ ω of a holomorphic 1-form ω.

Proof. Note that in our usual coordinates on X, we have

H0
(
X,Ω1

X

)
= VectC

(
dx

y
, x

dx

y

)
.

The eigendirections of θ define a curve C on the total spaceX×P1 of the projectivized
bundle (for eigendirections to make sense, we have to compose θ by local isomorphisms
E ⊗ Ω1

X → E; the resulting curve C does not depend on this choice). In a concrete
way, for each vector v ∈ E, we compute the determinant v ∧ θ(v). Under trivializing
coordinates (1 : z) ∈ P1 we find that C is defined by

C : −γ + 2zα + z2β = 0.

It follows that C has bidegree (2, 2) in X × P1 (i.e. with respect to the variables (y, z))
and is invariant by the hyperelliptic involution ι. Hence it defines a bidegree (1, 2) curve
C ⊂ P1 × P1 (i.e. with respect to the variables (x, z)). It is easy to check that C is
reducible if and only if ∇ is reducible. In the irreducible case, the curve C defines a
(2 : 1)-map P1

z → P1
x whose Galois involution may be normalized to z 7→ −z under the

PGL2-action. After this normalization, we get that α = 0 and the involution ι lifts
as (x, y, z) 7→ (x,−y,−z). in particular, z = 0 and z = ∞ are the two ι-invariant
subbundles. This normalization is unique up to the dihedral group D∞ (preserving
z ∈ {0,∞}). Clearly, the determinant −β ⊗ γ is invariant and determines ∇ up to this
action since, in genus 2, any quadratic form splits as a product det (θ) = −β⊗γ. Finally,
one can easily check that the following properties are equivalent:

• ∇ (or θ) is reducible,
• the (1, 2) curve C splits,
• the determinant det (θ) viewed on P1

x has a double zero,
• the determinant det (θ) (viewed on X) is a square.

�

It may be of interest to pursue the discussion of the proof above in the reducible
case. In this case, C is reducible and has a bidegree (0, 1)-factor which is ∇-invariant.
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We can normalize

θ =

(
α β
0 −α

)
.

The gauge freedom is given by the group of upper-triangular matrices and we are led to
the following cases

(1) α 6= 0 and β is not proportional to α (in particular 6= 0); the monodromy is
affine but non-abelian and the curve C splits as a union of irreducible bidegree
(0, 1) and (1, 1) curves.

(2) α 6= 0 and β is proportional to α: we can normalize β = 0; the monodromy is
diagonal and the curve C splits as a union of two bidegree (0, 1) curves and one
(1, 0) curve located at the vanishing point of α.

(3) α = 0 and β 6= 0; the monodromy is unipotent but non-trivial and the curve
C splits as a union of a bidegree (0, 1) curve with multiplicity 2 and a bidegree
(1, 0) curve located at the vanishing point of β.

(4) α = 0 and β = 0 and we get the trivial connection (the curve C has vanishing
equation and is not defined).

The determinant map det defined above takes values in the set of quadratic differentials
over X. Those are of the form

ν =
ν0 + ν1x+ ν2x

2

x (x− 1) (x− r) (x− s) (x− t)
dx⊗ dx.

It is a square, say det (θ) = −α⊗α, if and only if ν21 = 4ν0ν2. In this case, α is uniquely
defined up to a sign. It follows that a fiber det−1 (ν) of the determinant map above is

• a unique irreducible connection (up to PGL2-isomorphism) if ν21 6= 4ν0ν2;
• the union of two reducible connections of type (1) (upper and lower triangular
once α is fixed) and a reducible connection of type (2) over a smooth point of
the cone ν21 = 4ν0ν2;
• the union of the trivial connection (4) and a 1-parameter family of reducible
connections of type (3) over the singular point ν0 = ν1 = ν2 = 0.

The moduli space of connections on the trivial bundle thus is not separated. Yet it
is possible to define a separated moduli space of connections by excluding reducible
connections of type (1) and (3) for example: consider the (real-algebraic) family of
connections of the form

d +

(
0 β
γ 0

)

such that

|β| = |γ|,
where | · | is defined as

∣∣∣∣λ0
dx

y
+ λ1x

dx

y

∣∣∣∣ =
√
|λ0|2 + |λ1|2.

This family defines a moduli space of connections on the trivial bundle which can be
identified via the determinant map with

H0
(
Ω1
X ⊗ Ω1

X

)
≃ C

3.
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3.4. Semi-stable indecomposable bundles. In this case, the bundle is a non-trivial
extension 0 → L0 → E → L−1

0 → 0 for some L0 ∈ Jac (X). It is identified with the
corresponding trivial extension by the Narasimhan-Ramanan classifying map. For fixed
L0, the moduli space of those extensions is isomorphic to PH1

(
X,L2

0

)
which, by Serre

duality, identifies with PH0
(
X,L−2

0 ⊗ Ω1
X

)
. Again, the discussion splits into two cases.

3.4.1. Affine bundles. When L2
0 6= OX , then PH0

(
X,L−2

0 ⊗ Ω1
X

)
reduces to a single

point: there is only one non-trivial extension up to isomorphism. For such a bundle
E, a curious phenomenon occurs: all connections on E are reducible, none of them is
totally reducible. Indeed, L0 is the unique subbundle of degree 0, but is not invariant
by the hyperelliptic involution. Therefore, the vector bundle E itself is not ι-invariant.
This implies that the monodromy of a connection ∇ on E can be neither irreducible,
nor totally reducible. We don’t want to consider further this kind of bundle. Note that
this phenomenon does not occur for higher genus (see [23], Prop. (3.3), p.70).

3.4.2. The 1-dimensional family of unipotent bundles and its 15 twists. When L2
0 = OX ,

the moduli space of non-trivial extensions 0→ OX → E → OX → 0 is parametrized by
PH1 (X,OX) ≃ PH0

(
X,Ω1

X

)
≃ P1; we call unipotent bundles such bundles E. Following

[32], the automorphism group of E is Aut (E) = Gm ⋉Ga. The action of Ga is faithfull
in restriction to each fiber Ew, unipotent and fixing the unique subbundle OX ⊂ E; the
action of Gm is scalar as usual.

For a convenient open covering (Ui) of X, the bundle E is defined by a matrix
cocycle of the form

Mij =

(
1 bij
0 1

)

where (bij) ∈ H1(X,OX ) is a non trivial scalar cocycle. Moreover, from the short exact
sequence

0→ H0(X,Ω1
X)→ H1(X,C)→ H1(X,OX )→ 0,

(bij) may be lifted to H1(X,C), so that E is flat: the local connections dX over Ui glue
together to form a global connection (non-canonical) ∇0 with unipotent monodromy.
Conversely, if a connection (E,∇) has unipotent monodromy, defined by say

A1 =

(
1 a1
0 1

)
, B1 =

(
1 b1
0 1

)
, A2 =

(
1 a2
0 1

)
, B2 =

(
1 b2
0 1

)

(with respect to the standard basis (2)), then E is either the trivial bundle, or a unipotent
bundle; in fact, we are in the former case if, and only if, (a1, b1, a2, b2) is the period data
of a holomorphic 1-form on X.

Proposition 3.4. Let ∇0 be a unipotent connection on E like above. Then the general
connection on E can be described as

∇ = ∇0 + λ1θ1 + λ2θ2 + λ3θ3 + λ4θ4

with (λi) ∈ C4 so that the Ga-action is given by

 c ,




λ1

λ2

λ3

λ4





 −→




λ1

λ2 − cλ1

λ3 + 2cλ2 − c2λ1

λ4




Moreover, reducible (resp. unipotent) connections are given by λ1 = 0 (resp. λ1 = λ2 =
0). The moduli space of irreducible connections on E identifies with C∗ × C2.
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Proof. A general trace-free connection on E is defined by a collection

d + θi where θi =

(
αi βi
γi −αi

)

are matrices of holomorphic 1-forms on Ui satisfying the compatibility condition

θj = M−1
ij θiMij +M−1

ij dMij

on Ui ∩ Uj or, equivalently,

(5)





αi − αj = bijγi
βi − βj = −2bijαi + b2ijγi
γi − γj = 0

When αi = γi = 0, we precisely obtain all those connections with unipotent monodromy
on E; the second equation (5) then tells us that (βi) defines a global holomorphic 1-form
β ∈ H0(X,Ω1

X).
When γi = 0, we get all reducible connections on E. The first equation (5) tells

us that (αi) defines a global holomorphic 1-form α ∈ H0(X,Ω1
X ). To solve the second

equation (5), we need that the image under Serre duality

H1(X,OX )×H0(X,Ω1
X) → H1(X,Ω1

X)
∼→ C

( (bij) , α ) 7→ (bijα)

is the zero cocycle. In other words, α must belong to the orthogonal (bij)
⊥ (with respect

to Serre duality). In this case, we can solve (βi), and the solution is unique up to addition
by a global holomorphic 1-form β.

Irreducible connections occur for γ 6= 0 (note that the third equation (5) states
that (γi) is a global 1-form). Then, the first equation (5) imposes that γ ∈ (bij)

⊥ (the
orthogonal for Serre duality). Then, the collection (αi) solving the cocycle (bijγ) is
unique up to the addition of a global holomorphic 1-form α ∈ H0(X,Ω1

X). Finally, to
solve the second equation in (βi), we have to insure that the cocycle

(
−2bijαi + b2ijγ

)
∈ H1(X,Ω1

X)

is zero, which can be achieved by conveniently using the freedom α when solving the
first equation. Precisely, if we add some global 1-form α to the collection (αi), then
we translate the previous cocycle by (−2bijα); for a convenient choice of α (or (αi)),
the cocycle becomes trivial. Note that we still have the freedom to add any 1-form α
belonging to the orthogonal (bij)

⊥. Finally, we can find a solution (βi) which is unique
up to addition by a global holomorphic 1-form β ∈ H0(X,Ω1

X).
Finally, given an irreducible connection as above, defined by (αi), (βi) and γ 6= 0,

and given a global holomorphic 1-form β 6∈ (bij)
⊥, it follows from above case-by-case

discussion that any connection ∇ on E takes the form

dX + λ1

(
αi βi
γ −αi

)
+ λ2

(
γ −2αi

0 −γ

)
+ λ3

(
0 γ
0 0

)
+ λ4

(
0 β
0 0

)

over charts Ui, for convenient scalars λi. Unipotent bundle automorphisms are given in

these charts by a constant matrix

(
1 c
0 1

)
, with c ∈ C not depending on Ui, and it is

straightforward to check that the action on λi is the one of the statement. �
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3.5. Unstable and indecomposable: the 6 + 10 Gunning bundles. There are 16
theta characteristics, i.e. square-roots of Ω1

X = OX(KX). They split into

• 6 odd theta characteristics OX ([wi]), i = 0, 1, r, s, t,∞;
• 10 even theta characteristics OX ([wi] + [wj ]− [w∞]), i 6= j 6=∞.

Given a theta characteristic κ, there is a unique non-trivial extension 0 → κ → Eκ →
κ−1 → 0 up to isomorphism, which is called the Gunning bundle Eκ associated to κ.
We talk about even or odd Gunning bundle depending on the nature of κ. We have
Aut (Eκ) ≃ Gm ⋉H0

(
X,Ω1

X

)
(see [32]); the group H0

(
X,Ω1

X

)
is acting by unipotent

bundle automorphisms on fibers E|w, fixing the subbundle κ.
The Narasimhan-Ramanan modular map is not well-defined on those bundles, but

is in the closure: there are deformations of E such that all neighbouring bundles are
stable. Precisely, the bundle E is arbitrarily close to semi-stable extensions 0→ κ−1 →
E′ → κ → 0 (see Proposition 3.5). Those latter ones are such that the corresponding
divisor DE′ ∼ 2Θ (see section 3.2) passes through the point κ on Pic1 (X). They define
a 2-plane inMNR which we will call Gunning plane and denote it by Πκ.

The intersection of Πκ with the Kummer surface is easily described as

Πκ ∩Kum(X) = {L0 ⊕ L−1
0 | L0 ∈ κ−1 ·Θ}.

In fact, these 16 planes Πκ are well-known; each of them is tangent to the Kummer
surface along a conic passing through 6 of the 16 nodes. The above description gives
a natural parametrization of the hyperelliptic cover of this marked conic by the curve
X itself (via the Θ divisor). Precisely, for each Πκ, the 6 corresponding nodes are
those parametrized by the 2-torsion points κ−1 ⊗ O ([wi]) where wi runs over the six
Weierstrass points. Conversely, through each node pass 6 of the 16 planes. This so-
called (16, 6) configuration is classical (see [24, 20]) as well as the interpretation in terms
of the moduli space of vector bundles (see [35, 11]). However, the interpretation of Πκ

in terms of accessible points for Gunning bundles seems to be new so far.

Proposition 3.5. Given two extensions

0→ L→ E0 → L′ → 0 and 0→ L′ → E′
0 → L→ 0

of the same (but permuted) line bundles, there are two deformations Et and E′
t of these

bundles (parametrized by A1) such that Et ≃ E′
t for t 6= 0.

Proof. The vector bundles E0 and E′
0 are respectively defined by a cocycle of the form

(6)

(
aij bij
0 dij

)
and

(
aij 0
cij dij

)

for a convenient open covering (Ui) of X. Here, (aij) and (dij) are cocycles respectively
defining L and L′. We claim that this can be succeeded with only two Zariski open sets
X = U1 ∪U2 so that we can neglect the cocycle condition. Before proving this claim, let
us show how to conclude the proof. Consider the deformations Et and E′

t respectively
defined by (

aij bij
tcij dij

)
and

(
aij tbij
cij dij

)
.

They define the same vector bundle up to isomorphism for t 6= 0 since these cocycles are

conjugated by the automorphism of L ⊕ L′ defined in the matrix way by

(
t 0
0 1

)
. On

the other hand, we clearly have Et → E0 and E′
t → E′

0 when t→ 0. For a general open
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covering, these matrices fail to satisfy the cocycle condition AijAjkAki = I; this is why
we need to work with only two open sets.

Although it might be standard, let us prove the claim. Up to tensoring by a very

ample line bundle L̃ = OX

(
D̃
)
, we may assume that L, L′, E0 and E′

0 are all generated

by global holomorphic sections. Choose one such section s1 for L; it is then easy to
construct another section s2 such that the corresponding (effective) divisors D1 and
D2 have disjoint support. Indeed, given any non-zero section s2, for any common zero
with s1 one can find some section s non-vanishing at that point: one can then perturbate
s2 := s2+ǫ·s. This means that L may be trivialized on each open set Ui = X \supp (Di),
i = 1, 2, and therefore defined with respect to this covering by a single cocycle a12. In a
similar way, we can construct sections σ1 and σ2 of E0 such that the two sections si ∧σi
of det (E0) have disjoint zeroes. In other words, possibly by deleting more points in the
open sets Ui, the vector bundle E0 can simultaneously be trivialized on each of these
open sets, and is therefore defined by a cocycle of the above form. To deal simultaneously
with L′ and E′

0, the easiest way is to consider the zero set of sections si ∧ σi ∧ s′i ∧ σ′
i of

det (E0 ⊕ E′
0). Finally, the same manipulation can be done with sections s̃i of the ample

bundle L̃: considering the zeros of sections si ∧ σi ∧ s′i ∧ σ′
i ∧ s̃i of det

(
E0 ⊕ E′

0 ⊕ L̃
)

we can assume that the sections σi, si, s
′
i and s̃i have no common zeroes for i = 1, 2.

Tensoring with L̃⊗−1 we have constructed bases (si, σi) (resp. (σ′
i, s

′
i)) of E|Ui (resp.

E′|Ui) with i = 1, 2 such that the corresponding cocyles of E and E′ respectively are of
the form (6). �

A connection ∇ on E necessarily satisfies Griffiths transversality with respect to the
flag 0 ⊂ κ ⊂ Eκ and defines an ”oper” (see [5]). Following [22], the data of ∇ up to
automorphism of E is equivalent to the data of a projective structure on X. Moreover,
any two projective structures differ on X by a quadratic differential: once a projective
structure has been chosen, the moduli space identifies with H0 (X,OX (2KX)). However,
there is no natural choice of ”origin”, i.e. there is no canonical projective structure on X
from an algebraic point of view (see [28]). The moduli space of (irreducible) connections
on Eκ is therefore an A3-affine space.

3.6. Computation of a system of coordinates. For all computations, the curve X
is the smooth compactification of the affine complex curve defined by

X : y2 = x(x− 1)(x− r)(x− s)(x− t)

where 0, 1, r, s, t ∈ C are pair-wise distinct; we denote by ∞ the point at infinity.
Let us first calculate a basis of H0(Pic1(X),OX (2Θ)) in order to introduce explicit

projective coordinates on the three-dimensional projective space

P
3
NR := PH0(Pic1(X),OX (2Θ)).

Since Pic1(X) is birationally equivalent to the symmetric product X(2), rational func-
tions on Pic1(X) can be conveniently expressed as symmetric rational functions onX×X.

X ×X // // X(2) φ(2)

// Pic2(X) ∼
−[∞]

// Pic1(X)
{P,Q} � // [P ] + [Q]

The pull-back of the divisor Θ ⊂ Pic1(X) (resp. Θ + [∞] ⊂ Pic2(X)) to X × X is
∆ +∞1 +∞2, where
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• ∆ is the anti-diagonal {(P,Q) ∈ X ×X | Q = ι(P )},
• ∞1 is the divisor {∞} ×X and
• ∞2 the divisor X × {∞}.

Pic2(X)
X ×X

∞1

∞2

X (2)

∞

∆

KX Θ + [∞]

∆

The pull-back to X ×X of 2Θ, viewed as a divisor on Pic1(X) is then

2∆ + 2∞1 + 2∞2.

Lemma 3.6. Let (P1, P2) = ((x1, y1), (x2, y2)) be coordinates of X ×X. Then

H0
(
X ×X,Osym

X (2∆ + 2∞1 + 2∞2)
)
= VectC(1, Sum,Prod,Diag)

with

(7)

1 : (P1, P2) 7→ 1

Sum : (P1, P2) 7→ x1 + x2

Prod : (P1, P2) 7→ x1x2,

Diag : (P1, P2) 7→
(

y2−y1
x2−x1

)2
− (x1 + x2)

3 + (1 + σ1)(x1 + x2)
2 +

+x1x2(x1 + x2)− (σ1 + σ2)(x1 + x2)

where σ1, σ2 and σ3 are the following constants: σ1 = r+s+t, σ2 = rs+st+tr, σ3 = rst.

Proof. We have h0(X×X,Osym
X (2∆+2∞1+2∞2)) = h0

(
Pic1(X),O(2Θ)

)
= 4 (see [35]

or [34]). The function Diag can be rewritten as

(8)
Diag = 1

(x1−x2)2
·

[
−2y1y2 − 2(1 + σ1)x

2
1x

2
2 − (σ2 + σ3)(x

2
1 + x22)

+(x1 + x2) ·
(
x21x

2
2 + (σ1 + σ2)x1x2 + σ3

)]

The expression of Diag in (7) shows that it has no poles off the anti-diagonal and the
infinity (and in particular no poles on the diagonal). From the expression (8) follows
easily that Diag has polar divisor 2∆+2∞1+2∞2. Indeed, if u1 is the local parameter
for X1 near ∞1 defined by x1 = 1

u2
1
, then the principal part of the generating functions

is given by

1, Sum =
1

u21
+ x2, P rod =

x2
u21

and Diag ∼ x22
u21
− y2

u1
+ · · ·

As a section of H0(Pic1(X),OX (2Θ)), the function 1 vanishes twice along Θ while the
other ones do not vanish identically. �

In the sequel, denote by (v0 : v1 : v2 : v3) the projective coordinate on P3
NR repre-

senting the function

v0 + v1 · Sum+ v2 · Prod+ v3 ·Diag.
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In order to compute the strictly semi-stable locus, namely the Kummer surface
embedded in MNR, it is enough to consider the image in P3

NR of decomposable semi-

stable bundles. Let L = OX([P 1] + [P 2] − [∞]) ∈ Pic1(X) be a line bundle such that

L2 6= O(KX) and denote by L̃ the associated degree 0 bundle L̃ = OX([P 1]+[P 2]−2[∞]).
Let us now calculate the explicit coordinates of the corresponding Narasimhan-Ramanan

divisor L̃ · Θ + L̃−1 · Θ on Pic1(X), which is linearly equivalent to the divisor 2Θ (see

section 3.3). The first component L̃ ·Θ is parametrized by

X → Pic1(X) ; Q 7→ [P 1] + [P 2] + [Q]− 2[∞].

Setting [P 1]+ [P 2]+ [Q]−2[∞] ∼ [P1]+ [P2]− [∞], we get that [P 1]+ [P 2]+ [Q] belongs
to the linear system [P1]+ [P2]+ [∞]. This latter one is generated by the two functions 1

and f(P ) := y+y1
x−x1

− y+y2
x−x2

on the curve. Therefore, [P1] + [P2]− [∞] ∈ L̃ ·Θ (the support

of) if, and only if, f(P 1) = f(P 2); this gives the following equation for P1 = (x1, y1) and
P2 = (x2, y2):

y
1
+ y1

x1 − x1
−

y
1
+ y2

x1 − x2
=

y
2
+ y1

x2 − x1
−

y
2
+ y2

x2 − x2
.

The equation for the other component L̃−1 ·Θ is deduced by changing signs y
i
→ −y

i
for

i = 1, 2. Taking into account the two equations, we get an equation for L̃ ·Θ+ L̃−1 ·Θ:
(

y
1
+y1

x1−x1
− y

1
+y2

x1−x2
− y

2
+y1

x2−x1
+

y
2
+y2

x2−x2

)(−y
1
+y1

x1−x1
− −y

1
+y2

x1−x2
− −y

2
+y1

x2−x1
+

−y
2
+y2

x2−x2

)
= 0

which, after reduction, writes

(9) −Diag(P 1, P 2) · 1 + Prod(P 1, P 2) ·Sum − Sum(P 1, P 2) ·Prod + 1 ·Diag = 0

Remark 3.7. The symmetric form of this equation is due to the fact that for any vector
bundle E ∈ MNR and any line bundle L ∈ Pic1(X) such that h0(X,E ⊗ L) > 0, the

divisor DE associated to E and the divisor L̃ ·Θ+ L̃−1 ·Θ associated to L̃⊕ L̃−1 intersect
precisely in L and ι(L) on Pic1(X).

Hence, according to equation (9), the Kummer embedding

Jac(X) → Kum(X) ⊂ P3
NR

OX ([P 1] + [P 2]− 2[∞]) 7→ (v0 : v1 : v2 : v3)

is explicitely given by

(10) (v0 : v1 : v2 : v3) = (−Diag(P 1, P 2) : Prod(P 1, P 2) : −Sum(P 1 : P 2) : 1)

One can now eliminate parameters P 1 and P 2 from (10) as follows: express y
1
y
2
in terms

of functions x1 + x2 and x1x2 and variable v0/v3, so that the square can be replaced by

(
y
1
y
2

)2
=

∏

w=0,1,r,s,t

(
w2 − (x1 + x2)w + x1x2

)
;
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then replace x1x2 and x1 + x2 by v1/v3 and −v2/v3 respectively. We get

Kum(X) :
0 = (v0v2 − v21)

2 · 1

−2
[
[(σ1 + σ2)v1 + (σ2 + σ3)v2](v0v2 − v21)

+ 2(v0 + σ1v1)(v0 + v1)v1 + 2(σ2v1 + σ3v2)(v1 + v2)v1] · v3

−2σ3(v0v2 − v21) +
[[
(σ1 + σ2)

2v1 + (σ2 + σ3)
2v2

]
(v1 + v2)

−(σ1 + σ3)
2v1v2 + 4[(σ2 + σ3)v0 − σ3v2]v1

]
· v23

−2σ3 [(σ1 + σ2)v1 − (σ2 + σ3)v2] · v33

+σ2
3 · v43 .

Here, we see that v3 = 0 is a (Gunning-) plane tangent to Kum(X) along a conic.
Following formula (10), we can compute the locus of the trivial bundle E0

and its 15 twists Eτ := E0 ⊗OX (τ), where τ = [wi]− [wj ] with i 6= j.

Eτ (v0 : v1 : v2 : v3)

E0 (1 : 0 : 0 : 0)
E[w0]−[w∞] (0 : 0 : 1 : 0)

E[w1]−[w∞] (1 : −1 : 1 : 0)

E[wr]−[w∞] (r2 : −r : 1 : 0)

E[ws]−[w∞] (s2 : −s : 1 : 0)

E[wt]−[w∞] (t2 : −t : 1 : 0)

Eτ (v0 : v1 : v2 : v3)

E[w0]−[w1] (rs+ st+ rt : 0 : −1 : 1)

E[w0]−[wr] (r(st+ s+ t) : 0 : −r : 1)
E[w0]−[ws] (s(rt+ r + t) : 0 : −s : 1)
E[w0]−[wt] (t(rs+ r + s) : 0 : −t : 1)
E[w1]−[wr] ((1 + r)st : r : −1− r : 1)

E[w1]−[ws] ((1 + s)rt : s : −1− s : 1)

E[w1]−[wt] ((1 + t)rs : t : −1− t : 1)

E[wr]−[ws] ((r + s)t : rs : −r − s : 1)

E[wr]−[wt] ((r + t)s : rt : −r − t : 1)

E[ws]−[wt] ((s+ t)r : st : −s− t : 1)

The Gunning planes Πκ are the planes passing through 6 of these 16 singular points.
Precisely, the odd Gunning plane with κ = [wi] is passing through all Eτ with τ =
[wi] − [wj ] (including the trivial bundle E0 for i = j); for an even Gunning plane with
κ = [wi] + [wj ]− [wk] ∼ [wl] + [wm]− [wn], where {i, j, k, l,m, n} = {0, 1, r, s, t,∞}, we
get

E[wi]−[wj], E[wj ]−[wk], E[wi]−[wk]

E[wl]−[wm], E[wm]−[wn], E[wl]−[wn]

}
∈ Π[wi]+[wj ]−[wk] = Π[wl]+[wm]−[wn].

In particular, we can derive explicit equations, for instance:

Π[w0] v1 = 0

Π[w1] v1 + v2 + v3 = 0

Π[w∞] v3 = 0

Π[w0]+[w1]−[w∞] v0 + v1 = (rs+ st+ rt)v3}

We can also compute the 16-order linear group given by twisting the general bun-
dle E by a 2-torsion line bundle OX (τ), τ = [wi] − [wj ], by looking at the induced
permutation on Kummer’s singular points. For instance, we get

(v0 : v1 : v2 : v3)
⊗E[w0]−[w∞] // ((σ2 + σ3)v1 + σ3v2 : σ3v3 : v0 − (σ2 + σ3)v3 : v1)



FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES 27

(v0 : v1 : v2 : v3)
⊗E[w1]−[w∞] // (v0 : v1 : v2 : v3) ·




1 σ1 + σ3 σ2 0
−1 −1 0 σ2
1 0 −1 −(σ1 + σ3)
0 1 1 1




T

One can find in [24, 20] classical equations for Kummer surfaces which are nicer
than the above one, but no more rational in (r, s, t). For instance, we can choose E0,
E[w0]−[w1], E[w1]−[w∞] and E[w0]−[w∞] as a projective frame so that Gunning bundles Π[w0],
Π[w1], Π[w∞] and Π[w0]+[w1]−[w∞] become coordinate hyperplanes. The Kummer equation
therefore becomes quadratic in each coordinate. However, to reach the nice form given in
§54 (page 83) of [24], we must choose square roots λ2 = rst and µ2 = (r−1)(s−1)(t−1).
Then, setting

(u0 : u1 : u2 : u3) = (λµ(v0 + v1 − (rs+ st+ rt)v3) : λv1 : µ(v1 + v2 + v3) : v3),

we get the new equation

Kum(X) :
0 =

(
λµv1v2 + λµ2v0v2 + λ2µv0v1

)
· 1

+2
[
λ3µ3v0(v

2
1 − v22) + λ3µ2v1(v

2
2 − v20) + λ2µ3v2(v

2
0 − v21)

+ λ2µ2(2− σ1 − σ2 + 2σ3)u0u1u2
]
· v3

(λµv20 + λµ2v21 + λ2µv22 − 2λ3µ3v1v2 − 2λ3µ2v0v2 − 2λ2µ3v0v1) · v23 .

In these coordinates, the translations computed above simply become:

(u0 : u1 : u2 : u3)
⊗E[w0]−[w∞] // (u2 : u3 : u0 : u1)

(u0 : u1 : u2 : u3)
⊗E[w1]−[w∞] // (u1 : −u0 : −u3 : u2).

Another classical presentation of the Kummer surface consists in normalizing the
finite translation group. For the coordinates




t0
t1
t2
t3


 =




σ2 + σ3
√
σ3 σ2 + σ3 −√σ3√

σ3 0 −√σ3 0
0 1 0 1
1 0 1 0


 ·




a b 0 0
c d 0 0

0 0 1 b̃

0 0 γ d̃


 ·




v0
v1
v2
v3




with

a = − r(r+γ)−√
σ3√

r(r−1)(r−s)(r−t)

b =
1+γ−√

σ3√
−1+σ1−σ2+σ3

b̃ =
r(s+t+γ)−(r+1+γ)

√
σ3√

r(r−1)(r−s)(r−t)

c =
(r2+

√
σ3)γ+r(σ2−σ1+2(r−st))√
r(r−1)(r−s)(r−t)

γ = root of Γ(X)

d = −σ1−σ2+(
√
σ3+1)γ√

−1+σ1−σ2+σ3
d̃ =

r(2r−(σ1+σ2)−(s+t)γ)+(σ1−σ2+2r(s+t)+(r+1)γ)
√
σ3√

r(r−1)(r−s)(r−t)

where
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Γ(X) =
[
s(r + t)− (s+ 1)

√
σ3

]
·X4

+2
[
s(σ2 + r + t+ 3rt)− (σ1 + s(r + t+ 3))

√
σ3

]
·X3

+6
[
s2(r + t+ rt) + rst(2 + σ1)− (2σ2 + rt(s− 1) + s(s+ 1))

√
σ3

]
·X2

+2
[
rs

(
s+ r(−1 + 2s) + s2(1− r)

)
+ st

(
−t+ s(1 + 2t) + s2(1− t)

)

+
(
3(σ1 + σ2) + 2 + 5s + 2s2 + rt

)
σ3

−[st(−st+ 2t+ 3s) + sr(−rs+ 2r + 3s) + rt(r + t)
+2σ2 + sσ1 − t2 − r2 + 3s2 + σ3(8 + σ1 + s)]

√
σ3

]
·X

+4σ2
3 + σ3

(
σ1 + 3s+ 4s2 + (s2 + rt)(r + t) + 4σ2

)
− (r3 + t3)(s − 1)2s

+(r + t)s3 +
[(
(r − t)2 − 1

)
s3 −

(
(r − t)2 + 1 + 4(r + t) + 2rt

)
s2

−(r2 + t2 + r2t2)s+ (t− r)2 − 4σ3(σ1 + 1)− r2t2
]√

σ3 ·1
we get the following very nice equation of the Kummer surface (see §53 page 80-81 of
[24])

(11)
(t20 + t21 + t22 + t23) + 2D(t0t1t2t3)

+A(t20t
2
3 + t21t

2
2) +B(t21t

2
3 + t20t

2
2) + C(t22t

2
3 + t20t

2
1) = 0

where coefficients A,B,C,D depend on (r, s, t) (in an algebraic way) and satisfy the
following relation

4−A2 −B2 − C2 +ABC +D2 = 0.

Here the 16-order translation group is generated by double-transpositions of variables
and double changes of signs:

τ (t0 : t1 : t2 : t3)⊗ Eτ

0 (t0 : t1 : t2 : t3)
[w0]− [w∞] (t0 : t1 : −t2 : −t3)
[w1]− [w∞] (t3 : −t2 : t1 : −t0)
[wr]− [w∞] (t2 : −t3 : t0 : −t1)
[ws]− [w∞] (t2 : t3 : −t0 : −t1)
[wt]− [w∞] (t3 : t2 : t1 : t0)

The five t-polynomials occuring in the Kummer equation (11) are fundamental in-
variants for the action of the translation group and define a natural map P3

NR → P4

whose image is a quartic hypersurface (see [15], Proposition 10.2.7).

Corollary 3.8. The quartic in P4 defined by the natural map P3
NR → P4 is a coarse

moduli space of S-equivalence classes of semi-stable P1-bundles over X.

Remark 3.9. Recall that a P1-bundle P over X is called semi-stable if #(s, s) ≥ 0 for
every section s : X → P . If E is a rank 2 vector bundle over X such that P(E) = P ,
then the (semi-)stability of P is equivalent to the semi-stability of E [4].

Proof. Let T be a smooth parameter space and P → X × T a family of P1-bundles over
X. Denote by πT the projection X × T → T . The P1-bundle P lifts to a rank 2 bundle
E → X × T such that det(E) = π∗

TOX and P(P) = E . This vector bundle is unique up
to tensor product with π∗

T (L) where L is a 2-torsion line bundle on X. According to
theorem 3.2, the classification map T →MNR then is a morphism as is its composition
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with the natural map P3
NR → P4. The resulting morphism T → P4 no longer depends

on the choice of E . �

4. Anti-canonical subbundles

Before describing the moduli spaceBun (X/ι) and the 2-fold ramified coverBun (X/ι)→
Bun (X) in detail, let us give another interpretation and recall the classical approaches
of Tyurin [41] and Bertram [6], as well as related works of Bolognesi [11, 12].

Let E be a flat vector bundle with trivial determinant bundle on X. Given an irre-
ducible connection ∇ on E, corollary 2.3 provides a lift h : E → ι∗E of the hyperelliptic
involution ι : X → X whose action on the Weierstrass fibers is non-trivial, with two dis-
tinct eigenvalues ±1. We want to understand which are the subbundles O (−KX) →֒ E
and how h acts on this set. In section 4.1, we will prove that a generic E ∈ Bun (X)
carries a 1-parameter family of such subbundles, only two of them being h-invariant:

• L+ ⊂ E on which h acts as idL+,
• L− ⊂ E on which h acts as −idL− .

The two parabolic structures p and p′ discussed in sections 2.2 and 2.3 are therefore
respectively directed (over the Weierstrass points) by L+ and L−.

By our main construction (section 2), we can reinterpret Bun (X/ι) as the moduli
space of hyperelliptic parabolic bundles (E,p) together with the forgetful mapBun (X/ι)→
Bun (X) ; (E,p) 7→ E. Another point of view arises from the moduli space of hyperellip-
tic flags (E,L) with E ⊃ L ≃ O (−KX): Bertram considered in [6] the projective space
of non-trivial extensions

0 −→ O (−KX) −→ E −→ O (KX) −→ 0

on which the hyperelliptic involution acts naturally. The invariant hyperplane, the set of
hyperelliptic extensions, is a P3, naturally birational to Bun (X/ι). We will see that this
P3 naturally identifies with Bunssµ (X/ι) for 1

6 < µ < 1
4 and we thereby recover the nice

description of Kumar and Bolognesi in [27, 11, 12]. Moreover, we explain the approach
of Tyurin and deduce a parametrization of an open chart of Con (X) (a finite cover).

4.1. Tyurin subbundles. Let (E,∇) be an irreducible trace-free connection over X,
and let h : E → ι∗E be the lift of the hyperelliptic involution ι : X → X given
by corollary 2.3. Recall that h acts non-trivially with two distinct eigenvalues on
each Weierstrass fiber E|w. The involution ι acts linearly on O (−KX) and there-
fore h acts on Hom (O (−KX) , E). Since it is involutive, this action induces a split-
ting Hom (O (−KX) , E) = H+ ⊕ H− into eigenspaces (relative to ±1 eigenvalues).
We call Tyurin subbundle of E the subbundles generated by non-trivial elements ϕ ∈
Hom (O (−KX) , E).

Proposition 4.1. Let E and h be as above. The space of morphisms Hom (O (−KX) , E)
is 2-dimensional except in the following cases

• E is either unipotent, or an odd Gunning bundle, and then the dimension is 3,
• E is the trivial bundle, and then the dimension is 4.

If E is not an even Gunning bundle, the images of these morphisms span the vector
bundle E at a generic point. The two eigenspaces H+ and H− then have positive di-
mension; they correspond to morphisms into two distinct h-invariant subbundles, L+

and L−. There are no other h-invariant Tyurin subbundles.
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Remark 4.2. As we shall see in section 4.1.5, in the case of even Gunning bundles,
the eigenspaces H+ and H− still have positive dimension, but the associated h-invariant
subbundles L+ and L− are equal.

Proof. First we have Hom (O (−KX) , E) ≃ H0 (E ⊗O (KX)) and by the Riemann-Roch
formula h0 (E ⊗O (KX)) − h0 (E) = 2. Here, we use Serre duality and the fact that
E is selfdual (because rank (E) = 2 and det (E) = OX). We promptly deduce that
h0 (E ⊗O (KX)) ≥ 2 and > 2 if and only if E has non-zero sections or, equivalently,
if it contains a subbundle L of the form L = OX , OX ([p]) or deg (L) > 1. Because of
flatness (see section 3), the only possibilities are actually L = OX or OX ([w]) for some
Weierstrass point w ∈ X.

When the image of a 2-dimensional subspace of Hom (O (−KX) , E) is degenerate,
i.e. contained in a strict subbundle L ⊂ E, then h0 (L⊗O (KX)) = 2 which implies
L = OX or L = κ, a theta characteristic. Yet in the cases when L is trivial or an odd
theta characteristic, we have dim (Hom (O (−KX) , E)) > 2 = dim (Hom (O (−KX) , L))
and thus not all morphisms take values into L: we get enough freedom to span E at a
generic point.

Now, given two morphisms ϕi : O (−KX)→ E for i = 1, 2, taking value into two dif-
ferent subbundles Li ⊂ E, L1 6= L2, we get a morphism ϕ1⊕ϕ2 : O (−KX)⊕O (−KX)→
E whose image spans the vector bundle E at all fibers but those corresponding to the
(effective) zero divisor of ϕ1 ∧ ϕ2 : O (−2KX) → O. Such a divisor takes the form
[P1]+ [ι (P1)]+ [P2]+ [ι (P2)] for some P1, P2 ∈ X. We thus get an isomorphism between
the 2-dimensional vector space VectC (ϕ1, ϕ2) ⊂ Hom (O (−KX) , E) and the fiber of E
over each point of X \ {P1, ι (P1) , P2, ι (P2)}. In particular, over a Weierstrass point
w 6= P1, P2, we have E|w ≃ VectC (ϕ1, ϕ2) and since the action h on Hom (O (−KX) , E)
is non-trivial, neither H+ nor H− is reduced to {0}. Moreover, ϕ1 and ϕ2 cannot belong
to a common eigenspace of the action of h on Hom (O (−KX) , E). In other words, any
two morphisms belonging to the same eigenspace H± take image in the same subbundle,
say L±.

Let now L be a Tyurin subbundle distinct from L+ and L−: L is generated by
ϕ = ϕ1 + ϕ2 for some ϕ1 ∈ H+ and ϕ2 ∈ H−. Again, there is a Weierstrass point w
where ϕ1 ∧ ϕ2 does not vanish: the action of h is homothetic on the ϕi with opposite
eigenvalues and cannot fix the direction C · ϕ (w). Thus L is not h-invariant. �

Mind that a Tyurin subbundle L ⊂ E may be degenerate, i.e. L 6≃ O (−KX). This
so happens when the corresponding morphism ϕ ∈ Hom (O (−KX) , E) is not injective.
Note that if the line bundles L± are non-degenerate, they define the parabolic structures
p±. As we shall see, any flat vector bundle E has degenerate Tyurin subbundles; some
of them can be h-invariant, even in the stable case.

In the following paragraphs, we will study the Tyurin subbundles for each type of
bundle, following the list of section 3.

4.1.1. Stable bundles. When E is stable, any holomorphic connection is irreducible.
Since the only bundle automorphisms of E are homothecies, the same bundle isomor-
phism h : E → ι∗E works for all connections and it therefore only depends on the
bundle (up to a sign). The two h-invariant Tyurin bundles L+ and L− depend (up to
permutation) only on E.

Consider two elements ϕ+, ϕ− ∈ Hom (O (−KX) , E) generating L+ and L− (at a
generic point) and consider the divisor div (ϕ+ ∧ ϕ−) = [P ]+ [ι (P )]+ [Q]+ [ι (Q)]. This
divisor DT

E ∈ |2KX | is an invariant of the bundle, we call it the Tyurin divisor. Let
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bundle type
degenerate invariant
Tyurin subbundles

#





parabolic
structures p±

(up to autom.)
determined by L±





stable off Gunning planes ∅ 2 out of 2
generic on Π[wi] L+ = OX(−[wi]) 1 out of 2
stable on Π[wi] ∩Π[wj ] L+ = OX(−[wi]), L

− = OX(−[wj]) 0 out of 2

generic decomposable ∅ 1 out of 1
L0 ⊕ L0 with L2 = OX L+ = L0, L

− = L0 1 out of 1
generic unipotent L+ = OX 2 out of 2
special unipotent L+ = OX , L− = O(−[wi]) 1 out of 2
twists of unipotent L+ = OX([wi]− [wj ]) 1 out of 2
even Gunning L+ = L− = OX(κ) 2 out of 2
odd Gunning L+ = OX(κ) 2 out of 2

Table 2. Summary of the Tyurin subbundles for the different types of
bundles. Recall that non-degenerate invariant subbundles are by defini-
tion isomorphic to OX(−KX).

DE ∈ |2Θ| be the divisor on Pic1 (X) defined by Narasimhan-Ramanan (see section
3.2).

Proposition 4.3. Let E be stable. Then the divisor DT
E is the intersection between the

divisor DE and the natural embedding X → Θ;P 7→ [P ] on Pic1 (X):

DT
E = DE ·Θ.

For each point P of the support of DT
E, there is exactly one subbundle LP ≡ OX (−[P ])

of E. These are precisely the degenerate Tyurin subbundles. Such a degenerate Tyurin
subbundle LP is h-invariant if, and only if, P = w is a Weierstrass point. This so
happens precisely when E lies on the odd Gunning plane Π[w].

Proof. First note that DT
E = div (ϕ1 ∧ ϕ2) for any basis (ϕ1, ϕ2) of Hom (O (−KX) , E).

A point P ∈ X belongs to the support of DT
E if and only if ι (P ) does. This is equivalent

to the fact that ϕ+ and ϕ− are colinear at ι (P ). Equivalently, there is a morphism ϕP ∈
Hom (O (−KX) , E) which vanishes at ι (P ) (and can be completed to a basis with ϕ+

or ϕ−). By stability of the vector bundle E, the morphism ϕP cannot vanish elsewhere.
Denote by LP the line subbundle corresponding to ϕP . Finally, we have P ∈ DT

E if and
only if there is a line subbundle LP of E such that LP ≃ O ([ι (P ])−KX) = O (−[P ]).
On the other hand, P belongs to the support of DE.Θ if and only if there is a line
subbundle LP ≃ O (−[P ]) of E. Since these divisors are generically reduced, we can
conclude by continuity that DT

E = DE.Θ.
Now suppose E has two line subbundles LP . A linear combination of the two

corresponding homomorphisms in Hom (O (−KX) , E) then would have a double zero at
P , which is impossible by stability of E. So for each point P in the support of DT

E,
we get a unique subbundle LP ≃ OX (−[P ]) and there are no other degenerate Tyurin
subbundles.

Finally, note that the finite set of (at most 4) degenerate Tyurin subbundles must
be h-invariant. Thus such a bundle LP is invariant if, and only if, P is ι-invariant. �
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Corollary 4.4. When E is stable and outside of odd Gunning planes Π[wi], there are

exactly two h-invariant subbundles L+, L− ≃ O (−KX) in E that are invariant under
the hyperelliptic involution h. The two parabolic structures p and p′ defined in sections
2.2 and 2.3 are directed by these two subbundles.

Another important consequence of the proposition above is the Tyurin parametriza-
tion of the moduli space of stable bundles which relies on the following

Corollary 4.5. When E is stable and the Tyurin divisor DT
E = [P ]+[ι (P )]+[Q]+[ι (Q)]

is reduced (4 distinct points), then the natural map

ϕ+ ⊕ ϕ− : O (−KX)⊕O (−KX)→ E

is a positive elementary transformation for the parabolic structure defined over DT
E =

[P ] + [ι (P )] + [Q] + [ι (Q)] by generators of LP , Lι(P ), LQ and Lι(Q).

We thus get a full set of invariants for generic bundles by considering the Tyurin
divisor DT

E ∈ |2KX | and taking into account the cross-ratio of degenerate Tyurin sub-
bundles.

Remark 4.6. When E belongs to an odd Gunning plane Π[w], then one of the two h-

invariant Tyurin subbundles is degenerate, say L− = OX (−[w]), and fails to determine
the parabolic structure p− over the Weierstrass point w. When E ∈ Π[wi]∩Π[wj ], then the

two h-invariant Tyurin subbundles are degenerate and neither p+, nor p− are determined
by these bundles.

4.1.2. Generic decomposable bundles. Let E = L0⊕L−1
0 , where L0 = O ([P ] + [Q]−KX)

is not 2-torsion: L2
0 6= OX . There is (up to scalar multiple) a unique morphism ϕ :

O (−KX) → L0 (resp. ϕ′ : O (−KX) → L−1
0 ) vanishing at [P ] + [Q] (resp. [ι (P )] +

[ι (Q)]). They generate all Tyurin subbundles and they are the only degenerate ones.
Clearly, neither L0 nor L−1

0 is invariant. The projective part Gm of the automorphism

group Aut (E) fixes both L0 and L−1
0 and acts transitively on the remaining part of the

family. Any involution h interchanges L0 and L−1
0 while it fixes two generic members

L+ and L− of the family. The parabolic structures are directed by these two bundles.
Another choice of lift h′ = g ◦ h ◦ g−1, g ∈ Aut (E), just translates the two subbundles
L± by g. Finally, up to automorphism, there is a unique invariant Tyurin bundle, and
thus a unique parabolic structure.

4.1.3. The trival bundle and its 15 twists. When E is the trivial bundle, Hom (O (−KX) , E)
is 4-dimensional and generated by 2-dimensional subspaces Hom (O (−KX) ,OX) for two
distinct embeddingsOX →֒ E. We get a 3-dimensional family of Tyurin subbundles, that
contains the 1-parameter family of degenerate ones formed by all embeddings OX →֒ E.
Given any irreducible connection, the corresponding lift h fixes only two subbundles,
two degenerate ones (see section 3.3.2). The two parabolic structures are directed by
these two embeddings OX →֒ E. Therefore, up to automorphism, there is exactly one
parabolic structure on the trivial vector bundle.

When E = L0⊕L0 with L0 = O ([wi] + [wj ]−KX), i 6= j, then Hom (O (−KX) , E)
is 2-dimensional and all Tyurin subbundles are degenerate in this case: they form the
1-parameter family of subbundles L0 →֒ E. Still Aut (E) = GL2 (C) acts transitively
on them. Remind that the two parabolic structures can be deduced from the previ-
ous case just by permuting the two parabolics over wi and wj (see section 2.3). Each
parabolic structure is thus distributed on two embeddings L0 →֒ E; since Aut (E) acts
2-transitively on them, there is a unique parabolic structure up to automorphisms.
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4.1.4. Unipotent bundles and their 15 twists. Let 0 → OX → E → OX → 0 be a non-
trivial extension. Here the space of morphisms Hom (O (−KX) , E) has dimension 3 and
the subbundle OX ⊂ E is responsible for this extra dimension: Hom (O (−KX) ,OX)
has dimension 2. There are many lifts h of the hyperelliptic involution ι since there are
non-trivial automorphisms on E: any other lift is, up to a sign, given by g ◦ h ◦ g−1 for
some g ∈ Aut (E). But once h is fixed, we can apply Proposition 4.1 and get that there
are exactly two h-invariant Tyurin subbundles L±, one of them is the unique embedding
OX →֒ E; maybe replacing h by −h, we may assume L+ = OX .

Let ϕ+ be a non-zero element of Hom (O (−KX) , L+), vanishing at say [P ]+ [ι (P )];
mind that we can choose P arbitrarily on X. Let ϕ− be a section of Hom (O (−KX) , L−)
(unique up to a constant) and consider the divisor defined by zeroes of ϕ+ ∧ ϕ−: as an
element of the linear system |2KX |, it takes the form [P ]+[ι (P )]+[Q]+[ι (Q)] including
the vanishing divisor of ϕ+. Clearly, [Q] + [ι (Q)] is an invariant of the bundle (while
[P ] + [ι (P )] can be chosen arbitrarily by switching to another ϕ+).

Proposition 4.7. The divisor [Q]+ [ι (Q)] characterizes the extension E: we thus get a
natural identification between the space PHom (O (KX))∨ parametrizing extensions and
PHom (O (KX)) parametrizing those divisors [Q] + [ι (Q)].

The bundle L− is degenerate if, and only if, [Q] + [ι (Q)] = 2[wi] where wi is a
Weierstrass point. In this case, L− = OX (−[wi]) (and ϕ− vanishes at wi).

Proof. The morphism ϕ− defines a natural morphism

id|L+ ⊕ ϕ− : OX ⊕O (−KX)→ E

whose determinantial map vanishes at [Q] + [ι (Q)]. When Q 6= ι (Q), this is a positive
elementary transformation for a parabolic structure defined over [Q] + [ι (Q)] neither
directed by OX , nor by O (−KX) (otherwise E would be decomposable). One can easily
check that, up to automorphism of the bundleOX⊕O (−KX), there is a unique parabolic
structure over [Q] + [ι (Q)], and E is well determined by this divisor. This provides a
natural identification as stated, outside of the 6 special bundles for whichQ = ι (Q) = wi;
it extends by continuity at those points.

Since E is semi-stable and indecomposable, we have deg (L−) < 0. In the degenerate
case, the only possibility is that ϕ− has a single zero, at say Q, and L− = OX (−[ι (Q)]).
But L− being h-invariant, Q = ι (Q) has to be a Weierstrass point, wi say. On the other
hand, when Q = wi, choosing P 6= wi we get two sections ϕ+ and ϕ− colinear at Q; if ϕ−

does not vanish, then a linear combination will vanish, producing some OX (−[ι (Q)]) ⊂
E which is invariant. Yet L± are the only h-invariant Tyurin subbundles, so we obtain
a contradiction. �

The two hyperelliptic parabolic structures associated to h are directed by these
two bundles, except for the 6 special extensions E for which L− is degenerate. The
h′-invariant Tyurin subbundles for h′ = g ◦ h ◦ g−1 are L+ and g (L−) (Aut (E) is
fixing the subbundle L+ ≃ OX and the Ga-part is moving all other directions in each
fiber). Therefore, there are exactly two hyperelliptic parabolic structures on E up to
automorphism.

Remark 4.8. In the geometric picture, the 1-parameter family of extensions (Et)t∈P1

of the trivial line bundle can be seen as the tangent cone to the Kummer surface after
blowing up the singular point corresponding to the trivial bundle. The strict transform
of the Gunning plane Π[wi] then intersects this P1 in a unique point which is the bundle

satisfying L− ≃ O (−[wi]) as above.
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Let L0 = O ([wi] + [wj ]−KX) be a non-trivial 2-torsion point of Pic0 (X), i 6= j, and
consider a non-trivial extension 0→ L0 → E → L0 → 0. This time, Hom (O (−KX) , E)
has dimension 2 and generates a 1-parameter family of Tyurin subbundles. One of them
is L0, the only one having degree 0. It is degenerate and must be invariant, say L+.
The group Aut (E) is acting transitively on the remaining part of the family and, like
for unipotent bundles, h fixes one of them, say L−. The intersection L+ ∩L− has to be
[wi] + [wj ] and L− is therefore non-degenerate, characterizing the parabolic structure.

4.1.5. The 6 + 10 Gunning bundles. Let κ ∈ Pic1 (X) be a theta characteristic and Eκ

be the associated Gunning bundle. The subbundle κ ⊂ Eκ is the unique one having
degree > −1; it is a degenerate h-invariant Tyurin subbundle.

When κ is an even theta characteristic κ = [wi] + [wj ] + [wk]−KX , we have

dim (Hom (OX (−KX) , κ)) = dim (Hom (OX (−KX) , Eκ)) = 2

and all morphisms ϕ : OX (−KX)→ Eκ factor through the subbundle κ ⊂ Eκ: there is
a unique Tyurin bundle in this case. Through the identification Hom (O (−KX) , κ) ≃
H0(X,OX ([wi] + [wj ] + [wk])), the space of morphisms is generated by the two sections

1,
(x− xl) (x− xm) (x− xn)

y
∈ H0 (X,O ([wi] + [wj ] + [wk])) ,

where {i, j, k, l,m, n} = {1, . . . , 6} and wi = (xi, 0) ∈ X. The hyperelliptic involution
acts as id on the first one and −id on the second one. There are two types of hyperelliptic
parabolic structures on Eκ:

• parabolics corresponding to wi, wj and wk lying on κ →֒ Eκ, the others outside;
• parabolics corresponding to wl, wm and wn lying on κ →֒ Eκ, the others outside.

This implies that up to automorphism, there are exactly two parabolic structures on a
Gunning bundle Eκ with even theta characteristic.

Let us now consider the case where κ is an odd theta characteristic κ = OX([wi]).
The h-invariant Tyurin subbundles L+ and L− are distinct and one of them is the
maximal subbundle of Eκ, say L+ = κ, which is the only degenerate Tuyrin subbundle
of Eκ. Note that in particular, the parabolic p−

i is directed by L+|wi = L−|wi and p+
i is

elsewhere. Since Aut (Eκ) fixes L
+ and acts transitively on the set of line subbundles of

the form O (−KX), there are, up to automorphism, exactly two parabolic structures on
a Gunning bundle Eκ with odd theta characteristic.

4.2. Extensions of the canonical bundle. Here, we recall some results obtained by
Bertram in [6], completed in the genus 2 case by Bolognesi in [11, 12] (see also [27]).

The space of non trivial extensions 0→ O (−KX)→ E → O (KX)→ 0 is PH1 (−2KX)
which identifies, by Serre duality, to PH0 (3KX)∨. This space naturally parametrizes the
moduli space of those pairs (E,L) where L ⊂ E is a non-degenerate Tyurin bundle. The
hyperelliptic involution ι acts naturally on H0 (3KX) and thus on its dual: the invariant
subspace is an hyperplane P3

B ⊂ PH0 (3KX)∨ ≃ P4 that naturally parametrizes those
pairs (E,L) that are invariant under the involution. As we have seen in section 4.1, most
stable bundles E admit exactly two invariant and non-degenerate Tyurin subbundles and
most decomposable bundles E admit only one. This suggests that P3

B is a birational
model for the 2-fold cover of P3

NR ramified over the Kummer surface.

A cubic differential ω ∈ H0 (3KX) writes ω =
(
a0 + a1x+ a2x

2 + a3x
3 + a4y

) (
dx
y

)⊗3

uniquely so that the coefficients ai provide a full set of coordinates. Let (b0 : b1 : b2 : b3 : b4)
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be dual homogeneous coordinates for P4
B := PH0 (3KX)∨. We have the following descrip-

tion (see introductions of [6, 27] and §5 of [11])
The locus of unstable bundles is given by the natural embedding of the curve X:

X →֒ P
4
B; (x, y) 7→

(
1 : x : x2 : x3 : y

)
.

The locus of strictly semi-stable bundles is given by the quartic hypersurface Wed ⊂ P4
B

spanned by the 2-secant lines of X. The natural action of the hyperelliptic involution
ι : X → X on cubic differentials induces an involution on P4

B that fixes the hyperplane
P3
B = {b4 = 0} and the point (0 : 0 : 0 : 0 : 1).

The Narasimhan-Ramanan moduli map

P
4
B 99K P

3
NR

is given by the full linear system of quadrics that contain X; it restricts to P3
B as the full

linear system of quadrics (of P3
B) that contain the six points X ∩ P3

B. After blowing-up
the locus X of unstable bundles, we get a morphism

P̃
4
B → P

3
NR

namely a conic bundle; its restriction to the strict transform P̃3
B of P3

B is generically
2 : 1, ramifying over the Kummer surface Kum ⊂ P3

NR. The quartic hypersurface Wed
restricts to P3

B as the (dual) Weddle surface; it is sent onto the Kummer surface.
There is a Poincaré vector bundle E → X × P4

B realizing the classifying map above.
Hence by restriction, there is a Poincaré bundle E → X × P3

B on the double cover P3
B

of P3
NR. The projectivized Poincaré bundle P (E) → X × P3

B defines a conic bundle
C → X × P3

NR over the quotient P3
NR. For each vector bundle E ∈ P3

NR, the fibre CE of
the conic bundle represents the family of Tyurin-subbundles of E. Yet the conic bundle
C is not a projectivized vector bundle over P3

NR, not even up to birational equivalency,
because a Poincaré bundle over a Zariski-open set of P3

NR does not exist [36].

4.3. Tyurin parametrization. Let E be a flat rank two vector bundle with trivial
determinant bundle over X. It follows from Corollary 4.5 that, when E is stable and
off the odd Gunning planes, then E can be deduced from OX (−KX) ⊕ OX (−KX) by
applying 4 positive elementary transformations, namely over the Tyurin divisor DT

E . In
fact, if we allow non reduced divisors, then this remains true for all flat bundles except
even Gunning bundles. Indeed, it follows from Proposition 4.1 that we have a non
degenerate map

ϕ+ ⊕ ϕ− : OX (−KX)⊕OX (−KX)→ E

by selecting ϕ+ and ϕ− generating H+ and H− respectively; non degenerate means
that the image spans the generic fiber. Comparing the degree of both vector bundles,
we promptly deduce that this map decomposes into 4 successive positive elementary
transformations, possibly over non distinct points. This so happens when the divisor
DT

E ∈ |2KX | is non reduced.
Conversely, let us consider a divisor, say reduced for simplicity:

D = [P 1] + [ι (P 1)] + [P 2] + [ι (P 2)] ∈ |2KX |,
and consider also a parabolic structure q over D on the trivial bundle E0 → X: given
e1 and e2 two independant sections of E0, the parabolic structure is defined by

(
λP 1

, λι(P 1)
, λP 2

, λι(P 2)

)
∈
(
P
1
)4
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where e1+λP i
e2 generates the parabolic direction over P i, and similarly for ι(P i). From

this data, one can associate a vector bundle with trivial determinant E by

O (−KX)⊗ elm+
D (E0, q)→ E.

Proposition 4.9. The list of rank 2 vector bundles of trivial determinant over X that
can be obtained from the trivial bundle by O (−KX)⊗elm+

D (OX ⊕OX , q) is the following:

(1) all stable bundles:
(a) stable bundles off the Gunning planes with odd theta characteristic,
(b)∗ stable bundles on Gunning planes Πw with odd theta characteristic ,

(2) all semi-stable bundles:
(a) decomposable bundles E = L⊕ L−1 where L is not of 2-torsion,
(b) the trivial bundle,
(c) generic unipotent bundles,
(d) affine bundles, possibly (*),
(e)∗ twists of the trivial bundle,
(f)∗ the 6 special unipotent bundles,
(g)∗ twists of the unipotent bundles,

(3) some unstable bundles:
(a) decomposable bundles E = L⊕ L−1 where L = O ([P 1]) or L = O (KX),
(b)∗ decomposable bundles E = L⊕ L−1 where L = O ([w]),
(c)∗ odd Gunning bundles.

For the bundles marked with (*) we need to use multiple elementary transformations
in some points. Neither even Gunning bundles nor general decomposable unstable bundles
can be obtained.

Proof. This proposition is mainly a résumé of 4, where we detail the reduced or non-
reduced nature of the Tyurin divisor.

(1) The Tyurin divisor for a stable bundle is reduced if and only if it does not ly on
an odd Gunning plane.

(2) (a) For λP 1
= λP 2

= 0 and λι(P 1)
= λι(P 2)

= ∞ we get E = L ⊕ L−1 with

L = O ([P 1] + [P 2]−KX).
(b) Take λP 1

= λι(P 1)
= 0 and λP 2

= λι(P 2)
=∞.

(c) We have seen that E⊗O (KX) can be obtained from the bundle O⊕O (KX)
by positive elementary transformations in P 2 and ι (P 2). Moreover, O ⊕
O (KX) can be obtained from the trivial bundle by a two elementary trans-
formations over P 1 and ι (P 1) (for an arbitrary P 1) on the same trivial
subbundle. The Tyurin divisor can thus be chosen reduced if and only if P 2

is not a Weierstrass point.
(d) The space of Tyurin subbundles of an affine bundle is generated by two

distinct Tyurin subbundles.
(e)∗ For λP 1

= λP 2
= 0 and λι(P 1)

= λι(P 2)
= ∞ for P 1 = ι (P 1) = wi and

P 2 = ι (P 2) = wj we obtain L⊕ L with L = O ([wi] + [wj ]−KX).
(g)∗ If E is a non trivial extension of L = O ([wi] + [wj]) with i 6= j, then E

is obtained by two double elementary transformations in wi and wj on a
trivial subbundle of the trivial bundle.

(3) (a) Take λP 2
= λι(P 2)

= λι(P 1)
= 0.

(b)∗ Like (a) with P 1 = w.
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(c)∗ If the theta characteristic is κ = [w], we need to perform a double elementary
transformation in w.

Even Gunning bundles cannot be obtained. Otherwise two distinct trivial subbundles
of the trivial bundle would generate two distinct Tyurin subbundes on an even Gun-
ning bundle. Reasoning on the possible preimages of the destabilizing subbundle, it is
straightforward to check that the above mentioned decomposable bundles are the only
possible ones. �

As a consequence, the moduli space MNR is birational to the moduli space of
parabolic structures over D on E0, when D runs over the linear system |2KX |. Let us
be more precise. Consider the parameter space

(P 1, P 2, λ) ∈ X ×X × P
1

and associate to each such data, the parabolic structure defined on the vector bundle
OX (−KX)⊕OX (−KX) by

(
λP 1

, λι(P 1)
, λP 2

, λι(P 2)

)
:=

(
λ,−λ, 1

λ
,− 1

λ

)
.

Equivalently, one can view the parabolic structure as the collection of points

(P 1, λ) , (ι(P 1),−λ) ,
(
P 2,

1

λ

)
and

(
ι(P 2),−

1

λ

)

on the total space X × P1 of the projectivized P1-bundle P (OX (−KX)⊕OX (−KX)).
The natural rational map X × X × P1

99K P3
NR is not birational however, since for a

given bundle over X there are several possibilities to choose P 1, P 2 and λ. One can
first independently permute P 1 ↔ ι(P 1), P 2 ↔ ι(P 2) and P 1 ↔ P 2: this generates
a order 8 group of permutations. Moreover, once P 1 and P 2 have been chosen to
parametrize the linear system |2KX |, there is still a freedom in the choice of λ: our
choice of normalization, characterized by

λP 1
+ λι(P 1)

= λP 2
+ λι(P 2)

= 0 and λP 1
· λP 2

= 1,

is invariant under the Klein 4 group < z 7→ −z, z 7→ 1
z > acting on the projective variable

e1 + ze2. The transformation group taking into account all this freedom is generated by
the following 4 transformations

(X1 ×X2 × P1
λ)× (X × P1

z) −→ (X1 ×X2 × P1
λ)× (X × P1

z)

((P 1, P 2, λ), ((x, y), z))





σ127−→
(
(P 2, P 1,

1
λ), ((x, y), z)

)

σι7−→ ((ι(P 1), ι(P 2),−λ), ((x, y), z))
σiz7−→ ((P 1, ι(P 2), iλ), ((x, y), iz))
σ1/z7−→

(
(P 1, P 2,

1
λ), ((x, y),

1
z )
)

(here, i =
√
−1). In fact, our choice of normalization for

(
λP 1

, λι(P 1)
, λP 2

, λι(P 2)

)
may

not the most naive one, which would have consisted to fix 3 of them to 0, 1 and ∞; but
our choice has the advantage that the transformation

(X1 ×X2 × P1
λ)× (X × P1

z) −→ (X1 ×X2 × P1
λ)× (X × P1

z)

((P 1, P 2, λ), ((x, y), z)) 7−→ ((P 1, P 2, λ), ((x,−y),−z))
preserves the parabolic structure, and corresponds to the projectivized hyperelliptic
involution h : E → ι∗E. In particular, the subbundles z = 0 and z = ∞ generated
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respectively by e1 and e2 precisely correspond to the two ι-invariant Tyurin subbundles
of E.

The 32-order group 〈σ12, σι, σiz, σ1/z〉 acts faithfully on the parameter space X1 ×
X2×P1

λ. Setting P 1 = (x1, y1) and P 2 = (x2, y2), the field of rational invariant functions
is generated by

s := x1 + x2, p := x1x2 and λ :=

(
λ2 +

1

λ2

)
y
1
y
2

so that a quotient map (up to birational equivalence) is given by

X1 ×X2 × P1
λ

(32:1)
99K P2

D × P1
λ(

(x1, y1), (x2, y2), λ
)

7→
(
(1 : −x1 − x2 : x1x2),

(
λ2 + 1

λ2

)
y
1
y
2

)

Here, P2
D = |2KX | is just the linear system parametrizing those divisors DT

E . This
quotient is our sharp Tyurin configuration space, and we get a natural birational map

P
2
D × P

1
λ 99K P

3
NR

which can be explicitely described as follows.

Proposition 4.10. The natural classifying map P2
D × P1

λ 99K P3
NR writes

(s,p,λ) 7→ (v0 : v1 : v2 : v3)

=
(
λ−sp2+2(1+σ1)p2−(σ1+σ2)sp+(σ2+σ3)(s2−2p)−σ3s

s2−4p
: p : −s : 1

)
.

Before proving it, let us make some observations. First, the fibration P2
D×P1

λ → P2
D

is send onto the pencil of lines of P3
NR passing through the trivial bundle E0 : (1 : 0 :

0 : 0). In fact, the surface {λ =∞} in Tyurin parameter space, corresponding to λ = 0
or ∞, is the locus of the trivial bundle. Also, the surface defined by λ = {1,−1, i,−i}
corresponds to generic decomposable flat bundles and is sent onto the Kummer surface;
we note that it is also defined by λ2 = 4(y1y2)

2 which, after expansion, writes

λ2 = p(p− s+ 1) ·
(
p3 − σ1p

2s+ σ2ps
2 − σ3s

3 + (σ2
1 − 2σ2)p

2 + (3σ3 − σ1σ2)ps

+σ1σ3s
2 + (σ2

2 − 2σ1σ3)p − σ2σ3s+ σ2
3

)

which allow us to retrieve the equation of Kum(X) ⊂ P3
NR.

Proof. The Tyurin divisor DT
E has equation x2 − sx+ p. Following Proposition 4.3, the

divisor DT
E is also defined by the restriction of Narasimhan-Ramanan divisor DE on the

embedded curve X
∼→ Θ ⊂ Pic1(X). The latter one has equation v0 + v1 · Sum + v2 ·

Prod+ v3 ·Diag = 0. From notations of section 3.6, we can compute its restriction to
the lift ∞1 of the divisor Θ on X×X; it is parametrized as X

∼→∞1;P 7→ (∞, P ). The
generating functions 1, Sum,Prod,Diag restrict to ∞1 as (see proof of Lemma 3.6)

1|∞1 ≡ 0, Sum|∞1 ≡ 1, P rod|∞1 = x and Diag|∞1 = x2

so that equation for DT
E is also given by v1 + v2 · x+ v3 · x2 = 0. This already fixes the

last 3 terms of the map.
One would like to conclude as follows. The map being birational, it is in restriction

to a generic P1-fiber of P2
D×P1

λ → P2
D. Moreover, it is affine since λ =∞ has to be sent

to the point E0 = (1 : 0 : 0 : 0). Finally, the 2-section λ2 = 4(y
1
y
2
)2 has to be sent onto
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the Kummer surface (intersecting a generic line through E0 twice outside of E0). Yet
this fixes the map only up to an involution.

Let us restart in a more direct way. Assume we are given (P 1, P 2, λ) and the
associated parabolic structure on (E0, q) → (X,DT

E); then, we want to compute the

Narasimhan-Ramanan divisor DE ⊂ Pic1(X) for the corresponding vector bundle E
obtained after 4 elementary transformations. Given a degree 3 line bundle L0, we can
look at holomorphic sections s0 : X → E0 ⊗ L0; it is straightforward to check that a
section s1e1 + s2e2 taking value in Tyurin parabolic directions over DT

E will produce,
after elementary transformations, a holomorphic section of E ⊗ L0(KX −DT

E), showing

that L0(KX −DT
E) = L0(−KX) ∈ DE . Since sections of L0 = OX ([P1] + [P2] + [∞]) are

generated by 〈1, y+y1
x−x1

− y+y2
x−x2
〉, up to automorphisms of E0, we can assume s1 = 1 and

s2 = f := y+y1
x−x1

− y+y2
x−x2

. Therefore, computing the cross-ratio, we get

γ :=
λP 2
− λP 1

λι(P 1)
− λP 1

:
λP 2
− λι(P 2)

λι(P 1)
− λι(P 2)

=
f(P 2)− f(P 1)

f(ι(P 1)− f(P 1)
:

f(P 2)− fι(P 2))

f(ι(P 1))− f(ι(P 2))

which, after reduction, gives

4y
1
y
2
γ

(x1−x2)
2 = (−Diag(P 1, P 2) · 1 + Prod(P 1, P 2) · Sum

− Sum(P 1, P 2) · Prod + Diag)

with notations of section 3.6. On the other hand, from Tyurin parameters, we get

γ = −(1− λ2)2

4λ2

hence the result. �

The total space (X1 ×X2 × P1
λ)× (X × P1

z) is equipped with the 4 rational sections

(P 1, λ) , (ι(P 1),−λ) ,
(
P 2,

1

λ

)
,

(
ι(P 2),−

1

λ

)
:
(
X1 ×X2 × P

1
λ

)
→

(
X × P

1
z

)

which are globally invariant under the action of 〈σ12, σι, σiz, σ1/z〉. The quotient provides
a projective Poincaré bundle, namely a (non trivial) P1-bundle over

(
P2
D × P1

λ

)
×X (actu-

ally, over an open set of the parameters) equipped with a universal parabolic structure.
After positive elementary transformation, we get a universal P1-bundle over an open
subset of P3

NR. However, we cannot lift the construction to a vector bundle because the
action of < z 7→ −z, z 7→ 1

z > (induced by 〈σ2
iz, σ1/z〉) does not lift to a linear GL2-action

(indeed,
(−i 0

0 i

)
and

(
0 1
−1 0

)
do not commute). This is the reason why there is no Poincaré

bundle for P3
NR, but only a projective version of it. The ambiguity is killed-out if we do

not take σ1/z into account, meaning that we choose one of the two h-invariants Tyurin
subbundles: we then retrieve the Poincaré bundle defined by extensions in section 4.2,
which here is explicitely given as follows. Consider the vector bundle

Ẽ = p∗(OX (KX))⊗ elm+
δ1,δ2,δ3,δ4

((X1 ×X2 × P
1)× (X × C

2))

over (X1 ×X2 × P1)×X, where δ1 : p = p1, δ2 : p = ι(p1), δ3 : p = p2, δ4 : p = ι(p2) if
p denotes the projection from X1 ×X2 × P1 ×X to X and pi the projection to Xi; and
the parabolic structure over these divisors is given respectively by
(
P 1, P 2, λ, P 1,

(
λ
1

))
,
(
P 1, P 2, λ, ι(P 1),

(−λ
1

))
,
(
P 1, P 2, λ, P 2,

(
1
λ

))
,
(
P 1, P 2, λ, ι(P 2),

(
1
−λ

))
.
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This vector bundle is clearly invariant for the action

(
P 1, P 2, λ, P, Z

)





σ127−→
(
P 2, P 1,

1
λ , P, Z

)

σι7−→ (ι(P 1), ι(P 2),−λ, P,Z)

σiz7−→
(
(P 1, ι(P 2), iλ, P,

(√
i 0

0 1√
i

)
Z

)
,

i.e. Ẽ ≃ σ∗Ẽ for each σ ∈ 〈σ12, σι, σiz〉. The quotient (in the sense of [7]) thus defines
a universal vector bundle E → X × B with trivial determinant bundle parametrized by
the 2-cover B = (X1 × X2 × P1)/〈σ12,σι,σiz〉 = P2

D × P1
λ of MNR, defined over an open

set.

5. Flat parabolic vector bundles over the quotient X/ι

Consider the data
(
E,∇,p

)
where

• E is a rank 2 vector bundle over P1,
• ∇ : E → E⊗Ω1

P1 (W ) is a rank 2 logarithmic connection on E with polar divisor

W = [0] + [1] + [r] + [s] + [t] + [∞] and residual eigenvalues 0 and 1
2 over each

pole,
• p =

(
p0, p1, pr, ps, pt, p∞

)
the quasi-parabolic structure defined by all 1

2 -eigendirections
over x = 0, 1, r, s, t,∞.

Via the Riemann-Hilbert correspondance, an equivalent data is the monodromy rep-
resentation π1

(
P1 \ {0, 1, r, s, t,∞}

)
→ GL2 with local monodromy ∼

(
1 0
0 −1

)
at the

punctures. We denote by Con(X/ι) the coarse moduli space of such parabolic connec-
tions

(
E,∇,p

)
. We note that the parabolic structure p is determined by the connection

(E,∇) so that we may just ignore it; however, it plays a crucial role in the bundle map.

5.1. Flatness criterion. We denote by Bun(X/ι) the coarse moduli space of those
parabolic bundles

(
E,p

)
subjacent to some irreducible parabolic connection

(
E,∇,p

)
.

We note that, from Fuchs relations, we get that

deg(E) = −3 for any
(
E,p

)
∈ Bun(X/ι).

Following [10, 2], we have the complete characterization of flat parabolic bundles:

Proposition 5.1. Given a parabolic bundle
(
E,p

)
like above, there exists a connection

∇ compatible with the parabolic structure like above if and only if deg (E) = −3 and

• either
(
E,p

)
is indecomposable,

• or E = OP1 (−1)⊕OP1 (−2) with 2 parabolics directed by OP1 (−1), the 4 other
ones by OP1 (−2),
• or E = OP1 ⊕OP1 (−3) with all parabolics directed by OP1 (−3).

Moreover, in each case, one can choose ∇ irreducible.

Proof. We refer to the proof of Proposition 3 in [2] to show that indecomposable parabolic
bundles are flat: this part of their proof does not use genericity of eigenvalues. In the
decomposable case, E = L1 ⊕L2 and parabolics are distributed along L1 and L2 giving
a decomposition W = D1 +D2. If it exists, a connection ∇ writes in matrix form

∇ =

(
∇1 θ1,2
θ2,1 ∇2

)

where
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• ∇i : Li → Li ⊗ Ω1
P1 (Di) is a logarithmic connection with eigenvalues 1

2 for
i = 1, 2;
• θi,j : Lj → Li ⊗ Ω1

P1 (Di) is a morphism for i 6= j.

Fuchs relation for E gives deg (E) = −3, and for ∇i, gives

−2 deg (Li) = number of parabolics lying on Li.

It follows that the only flat decomposable parabolic bundles are those listed in the
statement. Now we note that connections ∇i exist and are uniquely determined by
above conditions. Setting θi,j = 0, we get a (totally reducible) parabolic connection ∇
on (E,p). In all cases, θi,j are morphisms OP1 (n)→ OP1 (n+ 1) for some n and live in
a 2-dimensional vector space. We claim that

• ∇ is reducible if, and only if, one of the θi,j = 0,
• ∇ is totally reducible if, and only if, all θi,j = 0.

Indeed, if a line bundle L →֒ E is ∇-invariant, then Fuchs relation for ∇|L gives the
following possible cases:

• deg (L) = −3 and L passes through all parabolics;
• deg (L) = −2 and L passes through 4 parabolics;
• deg (L) = −1 and L passes through 2 parabolics;
• deg (L) = 0 and L passes through no parabolics.

This forces L to be one of factors of the decomposable cases above. For instance, when
deg (L) = −3, either L →֒ OP1⊕OP1 (−3) and must coincide with the second factor (since
both must contain all parabolics), or L →֒ OP1 (−1) ⊕ OP1 (−2) but then L intersects
the first factor at only one point and thus cannot share the 2 parabolics. �

It follows from Proposition 5.1 above that the only flat decomposable parabolic
bundles are

• E = OP1 (−1) ⊕ OP1 (−2) with 2 parabolics directed by OP1 (−1), the 4 other
ones by OP1 (−2), and
• E = OP1 ⊕OP1 (−3) with all parabolics directed by OP1 (−3).

For each such bundle
(
E,p

)
, the space of connections is C2

θ1,2
×C2

θ2,1
(the θi,j are those

defined in the proof of Proposition 5.1) where {0}×C2 and C2×{0} stand for reducible
connections and {0}×{0} for the unique totally reducible one. The automorphism group
of

(
E,p

)
is C∗ acting as follows:

C
∗ × C

4 → C
4 ; (λ, (a0, a1, b0, b1)) 7→

(
λa0, λa1, λ

−1b0, λ
−1b1

)
.

The GIT quotient is the affine threefold xy = zw where x = a0a1, y = b0b1, z = a0b1
and w = a1b0; the singular point x = y = z = w = 0 stands for reducible connections.

5.2. How special bundles on X occur as special bundles on X/ι. Let us recall the
construction of the map φ : Bun(X/ι)→ Bun(X) (see sections 2.2 and 2.3). Given a flat

parabolic bundle (E,p) in Bun(X/ι), we lift it up to the curve X as π∗(E,p) = (Ẽ, p̃),

then apply elementary transformations (E,p) := elm+
W (Ẽ, p̃) over the Weierstrass points

and get a determinant-free vector bundle E over X, an element of Bun(X). Conversely,
given a generic bundle E on X, say stable and off the Gunning planes, then it has
exactly two ι-invariant anti-canonical subbundles OX (−KX) →֒ E (see Corollary 4.4);
consider the parabolic structure p directed by one of them L ⊂ E. Then after applying
elementary transformations over the Weiertrass points (Ẽ, p̃) := elm−

W (E,p), we get the

lift of a unique parabolic bundle (E,p) on X/ι; precisely, Ẽ = OX (−KX)⊕OX (−2KX)
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and E = OP1 (−1) ⊕ OP1 (−2). The two anti-canonical subbundles L,L′ ⊂ E, being
ι-invariant, descend as two subbundles of (E,p); one easily checks that they are the

destabilizing bundle L = OP1 (−1) ⊂ E ≃ OP1 (−1) × OP1 (−2) and the unique L′ ≃
OP1 (−4) ⊂ E passing through all parabolics p.

(−1)

(+1)

(+1)

(−1)

(+5)

∞sr10

w1 wr ws wt w∞

P(OP1(−1)⊕OP1(−2))

w0

(+4)

P ι(P ) Q ι(Q)

(+4)

P(OP1(−2)⊕OP1(−1))

P1

elmW

π(Q)π(P )
(+5)

0 1 r s t ∞

X

P1

P(Egeneric)

elm+
W ◦ π∗

t

Figure 1. A generic stable bundle on X

In figure 1, we can see the total space (ruled surfaces) of the parabolic bundles
associated to E, and its two preimages E and E′ in Bun(X/ι). The anti-canonical
subbundles L and L′ of E, and the corresponding subbundles of E and E ′, are the blue
and red curves (sections) on the ruled surfaces. We can see the self-intersection of the
curves in each case. Parabolics are just points in Weierstrass fibers; those corresponding
to p and p (directed by the blue curve L up-side) are the red ones. The intersection of

the two curves determines (in each ruled surface) the Tyurin divisor DT
E. The Galois

involution of φ : Bun(X/ι) → Bun(X) permutes the roles of L and L′; down-side, the
elementary transformation permutes the role of the two curves.

We now list the parabolic bundles of Bun(X/ι) giving rise to special bundles of
Bun(X) and illustrate on pictures the corresponding configurations of curves and points
on the ruled surfaces.

5.2.1. Generic decomposable bundles. Let E = L0⊕L−1
0 , where L0 = O ([P ] + [Q]−KX)

is not 2-torsion: L2
0 6= OX . Assume also, for simplicity, that neither P , nor Q is a

Weierstrass point. Recall (see section 4.1.2) that, up to automorphism, there is a unique
parabolic structure p which is directed by any embedding OX (−KX) →֒ E. On the
projective bundle P(E), there are two sections σ0, σ∞ : X → P(E) coming from the two
factors L0 and L−1

0 respectively, both having 0 self-intersection and permuted by the
involution ι : X → X. On the other hand, the anticanonical embedding defines a section
σ : X → P(E) intersecting σ0 at [P ]+ [Q] and σ∞ at [ι(P )]+ [ι(Q)]. One can view P(E)
as the fiber-wise compactification of OX ([P ] + [Q]− [ι(P )] − [ι(Q)]) with σ0 as the zero
section and σ∞ as the compactifying section; then σ is a rational section with divisor
[P ] + [Q]− [ι(P )] − [ι(Q)].
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For the corresponding parabolic bundle (E,p), the anticanonical embedding de-
scends as the destibilizing subbundle OP1 (−1) →֒ E = OP1 (−1) ⊕ OP1 (−2). On the
other hand, σ0 and σ∞, being permuted by the involution ι, descend as a 2-section
Γ ⊂ P(E), thus intersecting a generic member of the ruling twice. Moreover, Γ intersects
twice the section σ−1 : P1 → P(E) defined by the destabilizing bundle OP1 (−1) →֒ E,
namely at π(P ) and π(Q) (where π : X → P1 = X/ι is the hyperelliptic projection).
The restriction of the ruling projection P(E)→ P1 to the curve Γ:

Γ→ P
1 (= X/ι)

is a 2 : 1-cover branching precisely over the branching divisor W of π : X → P1 (orbifold
points of X/ι). The parabolic structure p is precisely located at the double point of
Γ ⊂ P(E) over W .

(−1)

X

(+4)

(0)

1 r ∞ts

Γ

P1

(0) elm+
W ◦ π∗

w1 wr ws wt w∞w0 0

Figure 2. A generic decomposable bundle on X

Conversely, a parabolic structure p on E = OP1 (−1) ⊕ OP1 (−2) gives rise to a
decomposable bundle E if, and only if, there is a smooth curve Γ ⊂ P(E) belonging to
the linear system defined by |2[σ−1] + 2[f ]| (with f any fiber of the ruling and σ−1 the
negative section as before) such that Γ passes through all 6 parabolic points p and is
moreover vertical at these points (i.e. tangent to the ruling).

(0)

(0)

(−3)

(+3)

wt

∞
P1

P(OP1 ⊕OP1(−3))

P(OX ⊕OX)

X w∞wrw1w0 ws

elm+ ◦ π∗

0 1 r s t

(0)

(0)

(−1)

(+1)

P(OP1(−1)⊕OP1(−2))

∞
P1

X w∞wrw1w0 ws wt

P(OX([wr]− [wt])⊗ (OX ⊕OX))

elm+ ◦ π∗

0 1 r s t

Figure 3. The trivial bundle over X and one of its twists
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5.2.2. The trivial bundle and its 15 twists. Up to automorphism, the trivial bundle E0 =
OX ⊕ OX has a unique parabolic structure p, which is directed by any OX →֒ E0.
Descending to P1, we get the decomposable bundle E0 = OP1 ⊕OP1 (−3) with parabolic
structure p directed by any OP1 (−3) →֒ E0. Note that

(
E0,p

)
is a fixed point of elmW .

Similarly, Eτ = τ ⊗ E0 with τ = OX ([wi]− [wj ]) a 2-torsion line bundle, comes from
the decomposable parabolic bundle E = OP1 (−1)⊕ OP1 (−2) having parabolics pi and
pj lying on the first factor, the other ones on the second.

These 16 parabolic bundles are exactly those flat decomposable bundles listed in
Proposition 5.1.

5.2.3. The unipotent family and its 15 twists. A generic non trivial extension 0→ OX →
E → OX → 0 has two hyperelliptic parabolic structures:

• p directed by some embedding OX (−KX) →֒ E (unique up to bundle automor-
phism);
• p′ directed by the destabilizing bundle OX →֒ E.

They respectively descend to elements of

• ∆ =
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and p ⊂ OP1 (−3) ⊂ E

}
;

• ∆′ =
{
(E ′,p′) ; E′ = OP1 ⊕OP1 (−3) and p′ ⊂ OP1 (−4) ⊂ E ′}.
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(+1)
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t ∞sr10
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P1
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Q ι(Q)

π(Q)

0 1 r s t ∞

X

(+4)

P1

P(Eunipotent)

Figure 4. A unipotent bundle over X

Denote by ∆ the 1-parameter family of the corresponding unipotent bundles in
Bun (X) and by ∆ and ∆′ its respective preimages on Bun(X/ι). Both of these families
are naturally parametrized by our base X/ι: the extension class of E ∈ ∆ is charac-
terized by the intersection locus of the two special subbundles OX (−KX) ,OX →֒ E,
an element of |OX (KX) | ≃ |OP1 (1) |. Similarly, the intersection locus of subbundles
OP1 (−1) ,OP1 (−2) →֒ E and OP1 ,OP1 (−4) →֒ E′ both define an element of |OP1 (1) |.
This unambiguously defines isomorphisms ∆ ≃ ∆ ≃ ∆′, the latter one being induced by
O (−3) ⊗ elm+

W . Remind (see [29]) that, despite the point-wise identification just men-

tioned, any point of ∆ is arbitrary close to any point of ∆′ in the sense that they can
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be simultaneously approximated by some deformation of stable parabolic bundles. This
will give rise to a flop phenomenon when we will compare certain semi-stable projective
charts.

The study of non-trivial extensions 0→ τ → E → τ → 0 where τ = OX ([wi]− [wj ])
is a 2-torsion line bundle, can be deduced from the study of the corresponding unipotent
bundles τ⊗E by applying OP1 (−1)⊗elm+

[wi]+[wj ]
on E or, equivalently, by interchanging

on τ ⊗ E the parabolic directions pi and pj with p′i and p′j respectively. We get a

1-parameter family ∆i,j naturally parametrized by X/ι. There are two hyperelliptic
parabolic structures for such a bundle E:

• p with parabolics pi and pj on OX →֒ E and the others outside;
• p′ with parabolics pi and pj outside OX →֒ E and the others on it.

They respectively descend as elements of

• ∆i,j =
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and pk ⊂ OP1 (−2) , ∀k 6= i, j

}
;

• ∆′
i,j =

{
(E′,p′) ; E ′ = OP1 (−1)⊕OP1 (−2) and pi

′, pj ′ ⊂ OP1 (−1)
}
.
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(+1)

(−1) elmW
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Figure 5. Twist of a unipotent bundle over X

Again, O (−3)⊗ elm+
W point-wise permutes ∆i,j and ∆′

i,j.

5.2.4. The 6 + 10 Gunning bundles and Gunning planes. We now list how arises the
unique non trivial extension 0 → OX (κ) → E → OX (−κ) → 0 where κ runs over the
16 theta characteristics κ2 = KX .

Six odd theta characteristics. For odd theta characteristics κ = [wi] lying along
the divisor Θ, the two hyperelliptic parabolic structures are:

• p with parabolic pi on OX (κ) →֒ E and the others outside;
• p′ with parabolic pi outside OX (κ) →֒ E and the others lying on it.

They respectively descend as

• Qi : E = OP1 (−1)⊕OP1 (−2) and pk ⊂ OP1 (−2) , ∀k 6= i;

• Q′
i : E′ = OP1 ⊕OP1 (−3) and pi

′ ⊂ OP1 .
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Figure 6. An odd Gunning bundle over X

By the same way, the Gunning plane Πκ descend as

• Πi =
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and pi ⊂ OP1 (−1)

}
;

• Π′
i =

{
(E ′,p′) ; E′ = OP1 (−1)⊕OP1 (−2) and pk

′ ⊂ OP1 (−2) , ∀k 6= i
}
.
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Figure 7. An even Gunning bundle over X

Ten even theta characteristics. Somehow different is the case of even theta
characteristics κ = [wi] + [wj] − [wk]. Denote by W = {i, j, k} ∪ {l,m, n}. The two
hyperelliptic parabolic structures are:
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• p with parabolics pi, pj and pk lying on OX (κ) →֒ E and the others outside;
• p′ with parabolics pi, pj and pk outside OX (κ) →֒ E and the others lying on it.

They respectively descend as elements of

• Qi,j,k : E = OP1 (−1)⊕OP1 (−2) and pl, pm, pn ⊂ OP1 (−1);
• Ql,m,n : E ′ = OP1 (−1)⊕OP1 (−2) and pi

′, pj ′, pk ′ ⊂ OP1 (−1).

The corresponding Gunning planes descend to

• Πi,j,k =
{
(E,p) ; E = OP1 (−1)⊕OP1 (−2) and pi, pj, pk ⊂ OP1 (−3) ⊂ E

}
;

• Πl,m,n =
{
(E ′,p′) ; E′ = OP1 (−1)⊕OP1 (−2) and pl

′, pm′, pn′ ⊂ OP1 (−3) ⊂ E′}.

5.3. Semi-stable bundles and projective charts. The coarse moduli spaceBunu(X/ι)
of rank 2 indecomposable parabolic bundles

(
E,p

)
over P1 = X/ι is studied in [2, 29].

From the previous section, Bun(X/ι) \Bunu(X/ι) only consists of 16 bundles, that cor-
respond to the trivial bundle and its 15 twists on X (see section 5.2.2). It turns out that
a parabolic bundle

(
E,p

)
is indecomposable if, and only if, it is stable for a good choice

of weights µ = (µ0, µ1, µr, µs, µt, µ∞) ∈ [0, 1]6 (see [29]). One can thus cover the mod-
uli space Bunu(X/ι) by projective charts Bunssµ (X/ι) for a finite collection of weights,
giving Bunu(X/ι) a structure of non separated scheme. By the way, Bunu(X/ι) can be

covered by charts isomorphic to
(
P1

)3
(see [2]) or P3 (see [29]). We will mainly consider

two charts.

5.3.1. The chart P1
R × P1

S × P1
T . One of them (see [2] and [29] section 3.4) is given by

weights of the form

µ0 = µ1 = µ∞ =
1

2
and µr = µs = µt = 0

and is isomorphic to P1
R × P1

S × P1
T . Precisely, µ-stable bundles

(
E,p

)
are given by

E = OP1 (−1) ⊕ OP1 (−2) with p
0
, p

1
, p∞ outside of OP1 (−1) ⊂ E and not all lying

on the same OP1 (−2) →֒ E. One can choose OP1 (−2) containing at least p0 and p∞
say, and then choose meromorphic sections e1 and e2 of OP1 (−1) and OP1 (−2) (whose
divisor is supported at x =∞) such that the parabolic structure is normalized to

p
i
= λie1+e2 with (λ0, λ1, λ∞) = (0, 1, 0) and (λr, λs, λt) = (R,S, T ) ∈ P

1
R×P1

S×P1
T .

To compare to the point of view of [2], note that

OP1 (1)⊗ elm+
∞
(
E,p

)
= (E′

0,p
′)

is the trivial bundle E ′
0 = OP1 ⊗OP1 equipped with a parabolic structure having p0

′, p1′

and p∞′ pairwise dictinct (with respect to the trivialization of the bundle). From this
chart, we can compute the two-fold cover φ : Bun(X/ι)→ Bun(X)
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Proposition 5.2. The classifying map P1
R × P1

S × P1
T 99K P3

NR is explicitely given by
(R,S, T ) 7→ (v0 : v1 : v2 : v3) where

v0 = s2t2(r2 − 1)(s − t)R− r2t2(s2 − 1)(r − t)S + s2r2(t2 − 1)(r − s)T+
+t2(t− 1)(r2 − s2)RS − s2(s− 1)(r2 − t2)RT + r2(r − 1)(s2 − t2)ST

v1 = rst [((r − 1)(s − t)R− (s− 1)(r − t)S + (t− 1)(r − s)T+
+(t− 1)(r − s)RS − (s− 1)(r − t)RT + (r − 1)(s− t)ST ]

v2 = −st(r2 − 1)(s − t)R+ rt(s2 − 1)(r − t)S − rs(t2 − 1)(r − s)T−
−t(t− 1)(r2 − s2)RS + s(s− 1)(r2 − t2)RT − r(r − 1)(s2 − t2)ST

v3 = st(r − 1)(s − t)R− rt(s− 1)(r − t)S + sr(t− 1)(r − s)T+
+t(t− 1)(r − s)RS − s(s− 1)(r − t)RT + r(r − 1)(s − t)ST

This map is generically (2 : 1) with indeterminacy points

(R,S, T ) = (0, 0, 0), (1, 1, 1), (∞,∞,∞) and (r, s, t).

The Galois involution (R,S, T ) 7→ (R̃, S̃, T̃ ) of this covering map is given by

R̃ = λ(R,S, T ) · (s−t)+(t−1)S−(s−1)T
−t(s−1)S+s(t−1)T+(s−t)ST

S̃ = λ(R,S, T ) · (r−t)+(t−1)R−(r−1)T
−t(r−1)R+r(t−1)T+(r−t)RT

T̃ = λ(R,S, T ) · (r−s)+(s−1)R−(r−1)S
−s(r−1)R+r(s−1)S+(r−s)RS

where λ(R,S, T ) = t(r−s)RS−s(r−t)RT+r(s−t)ST
(s−t)R−(r−t)S+(r−s)T .

The ramification locus is over the Kummer surface; its lift on P1
R × P1

S × P1
T is given by

the equation
((s − t)R+ (t− r)S + (r − s)T )RST

+t((r − 1)S − (s− 1)R)RS + r((s− 1)T − (t− 1)S)ST + s((t− 1)R− (r − 1)T )RT

−t(r − s)RS − r(s− t)ST − s(t− r)RT = 0.

Proof. For computations, we work with the parabolic bundle

(E ′
0,p

′) := OP1 (1)⊗ elm+
∞
(
E,p

)

where E′
0 = OP1 ⊗OP1 is the trivial bundle, generated by sections e′1 and e′2, and p′ is

the parabolic structure defined by

p′
i
= λie

′
1+e′2 with (λ0, λ1, λ∞) = (0, 1,∞) and (λr, λs, λt) = (R,S, T ) ∈ P

1
R×P1

S×P1
T .

Let now E be the vector bundle over X obtained by

E := elm+
W (π∗ (E,p)) = elm+

W

(
π∗

(
OP1 (−1)⊗ elm−

[∞] (E
′
0,p

′)
))

;

this can be rewritten as

E := OX (−3[w∞])⊗ elm+
W

(
π∗ (E ′

0,p
′)
)
= OX (−3[w∞])⊗ elm+

W (E0, π
∗p′)

where E0 is the trivial vector bundle on X.
In order to calculate the classifying map, we need to make the Narasimhan-Ramanan

divisor DE explicit in our coordinates. We may assume that E is generic (i.e. stable),
so that DE precisely describes the 1-parameter family of degree −1 line bundles L ⊂
E. After applying OX (−3[∞]) ⊗ elm+

W , we get the family of degree −4 subbundles
L′ ⊂ E0 (the trivial bundle over X) passing through all 6 parabolics p′. Precisely, if



FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES 49

L = OX ([w∞]− [P1]− [P2]), then L′ = OX (−3[w∞])⊗L = OX (−2[w∞]− [P1]− [P2]).
In other words, the Narasimhan-Ramanan divisor DE ⊂ Pic1(X) is directly given by the
1-parameter family of points {P1, P2} such that there is a line subbundle L = OX(−[P1]−
[P2] − 2[∞]) →֒ E0 coinciding with the parabolic structure over W . Let σ = (σ1, σ2) :
X → C2 be a meromorphic section of L with divisor −[P1] − [P2] − 2[∞] with Pi =
(xi, yi) ∈ X, i = 1, 2:

(
σ1
σ2

)
=

(
α+ βx+ γ( y−y1

x−x1
− y−y2

x−x2
)

δ + εx+ ϕ( y−y1
x−x1

− y−y2
x−x2

)

)
.

After normalizing α = 1, there is a unique choice of β, γ, δ, ε, ϕ ∈ C such that

σ(0, 0) ‖
(
0

1

)
, σ(1, 0) ‖

(
1

1

)
, σ(r, 0) ‖

(
R

1

)
, σ(s, 0) ‖

(
S

1

)
, σ(∞,∞) ‖

(
1

0

)
.

The condition σ(t, 0) ‖
(T
1

)
depends now only on the choice of {P1, P2} and writes (after

convenient reduction)

v0 · 1 + v1 · Sum(P1, P2) + v2 · Prod(P1, P2) + v3 ·Diag(P1, P2) = 0

with vi as given in the proposition.
One can easily deduce that a generic point (v0 : v1 : v2 : v3) ∈ MNR has precisely

two preimages in P1
R × P1

S × P1
T :

R = r(t−1)(v0+rv1−r(s+t+st)v3)T
t(r−1)(v0+tv1−t(r+s+rs)v3)−(r−t)(v0+v1−σ2v3)T

S = s(t−1)(v0+sv1−s(r+t+rt)v3)T
t(s−1)(v0+tv1−t(r+s+rs)v3)−(s−t)(v0+v1−σ2v3)T

,

where T is any solution of aT 2 + btT + ct2 = 0 with

a = (v1 + v2t+ v3t
2)(v0 + v1 − σ2v3)

b = −(1 + t)(v0v2 + v21 + tv1v3)− 2(v0v1 + tv0v3 + tv1v2)
+σ2(tv1 + v2 + tv3)v3 + (r + s+ rs)(v1 + t2v2 + t2v3)v3

c = (v1 + v2 + v3)(v0 + tv1 − t(r + s+ rs)v3).

The discriminant of this polynomial leads again to our equation of the Kummer surface
in the coordinates (v0 : v1 : v2 : v3) given in section 3.6. We can easily calculate the
Galois involution of the classifying map P1

R×P1
S ×P1

T 99K P3
NR. Its fixed points provide

the equation in coordinates (R,S, T ) of the lift of the Kummer surface. �

5.3.2. The chart P3
b. The other chart (namely the main chart P3

b of [29]) is defined by
democratic weights

1

6
< µ0 = µ1 = µr = µs = µt = µ∞ <

1

4
and corresponds to the moduli space of the indecomposable parabolic structures on
E := OP1 (−1)⊕OP1 (−2) having no parabolic directed by OP1 (−1). Parabolic bundles
belonging to this chart are exactly those given by extensions

0→ (OP1 (−1) , ∅)→
(
E,p

)
→ (OP1 (−2) ,W )→ 0

i.e. defined by points of PH1
(
P1,Hom(OP1 (−2)⊗OP1 (W ) ,OP1 (−1))

)
, which by Serre

duality, identifies to PH0
(
P1,OP1 (−1)⊗ Ω1

P1 (W )
)∨

. After lifting them on X → P1,
applying elementary transformations and forgetting the parabolic structure, we precisely
get those extensions

0→ O (−KX)→ E → O (KX)→ 0
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i.e. by those points of P4
B = PH0 (X,OX (3KX))∨, that are ι-invariant. Thus, the pro-

jective chart P3
b of [29] naturally identifies with that one P3

B introduced by Bertram (see
section 4.2). From this point of view, we have natural projective coordinates b = (b0 : b1 :

b2 : b3), dual to the coordinates of ι-invariant cubic forms
(
a0 + a1x+ a2x

2 + a3x
3
) (

dx
y

)⊗3
;

after computation, we get

Proposition 5.3. The natural birational map P3
B 99K P1

R × P1
S × P1

T is given by

(b0 : b1 : b2 : b3) 7→





R = r b3−(s+t+1)b2+(st+s+t)b1−stb0
b3−σ1b2+σ2b1−σ3b0

S = s b3−(r+t+1)b2+(rt+r+t)b1−rtb0
b3−σ1b2+σ2b1−σ3b0

T = t b3−(r+s+1)b2+(rs+r+s)b1−rsb0
b3−σ1b2+σ2b1−σ3b0

This will be proved in section 6.2, using Higgs fields. Combination with Proposition
5.2 yields

Corollary 5.4. The natural map P3
B 99K P3

NR is given by

(b0 : b1 : b2 : b3) 7→





v0 = b2b3 − (1 + σ1)b
2
2 + (σ1 + σ2)b1b2 − (σ2 + σ3)b0b2 + σ3b0b1

v1 = b22 − b1b3
v2 = b0b3 − b1b2
v3 = b21 − b0b2

Moreover, the (dual) Weddle surface, i.e. the lift to P3
B of the Kummer equation, writes

(−b0b2b23+ b21b
2
3+ b1b

2
2b3− b42)+ (1+σ1)(b0b

2
2b3−2b21b2b3+ b1b

3
2)+ (σ1+σ2)(−b0b32+ b31b3)

+(σ2 + σ3)(−b0b21b3 + 2b0b1b
2
2 − b31b2) + σ3(b

2
0b1b3 − b20b

2
2 − b0b

2
1b2 + b41) = 0.

This Corollary has to be compared to section 4.2. Indeed, the components of the
map P3

B 99K P3
NR exactly correspond to the restriction to P3

B of the natural quadratic
forms on P4

B vanishing along the embedding

X →֒ P
4
B ; (x, y) 7→ (b0 : b1 : b2 : b3 : b4) = (1 : x : x2 : x3 : y).

Indeed, the first one is the restriction of

b24 − (b2b3 − (1 + σ1)b
2
2 + (σ1 + σ2)b1b2 − (σ2 + σ3)b0b2 + σ3b0b1)

which vanishes along X →֒ P4
B from

y2 = x(x− 1)(x− r)(x− s)(x− t) = x5 − (1 + σ1)x
4 + (σ1 + σ2)x

3 − (σ2 + σ3)x
2 + σ3x.

The other 3 quadratic forms just come from the following equalities on X

b0b2 = b21 = x2, b0b3 = b1b2 = x3 and b1b3 = b22 = x4.

It is quite surprising that the most natural basis both appearing from Bertram point
of view, and Narasimhan-Ramanan point of view, are so compatible. They provide the
same system of coordinate on P3

NR which is however not considered in the classical theory
of Kummer surfaces (see [24, 20]).
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5.3.3. Special bundles in the chart P3
b. Here is the list of those special parabolic bundles

of section 5.2 that are semi-stable for 1
6 < µ0 = µ1 = µr = µs = µt = µ∞ < 1

4 and how

they occur as special points in the chart P3
b.

Proposition 5.5. The only special bundles occuring (as semi-stable bundles) in Bunssµ (X/ι) =

P3
b are the generic bundles of the following families

• Unipotent bundles ∆: this 1-parameter family corresponds to the twisted cubic
parametrized by

X/ι→ P
3
b ; x 7→ (1 : x : x2 : x3).

• Odd Gunning bundles Qi: they are the 6 special points of the previous em-
bedding X/ι→ P3

b, namely Qi is the image of the Weierstrass point wi.
• Twisted unipotent bundles ∆i,j: lines of P3

b passing through Qi and Qj .

• Even Gunning planes Πi,j,k: planes of P3
b passing through Qi, Qj and Qk.

• Odd Gunning planes Π′
i: the quadric surface of P3

b with a conic singular point
at Qi that contains the 5 lines ∆i,j and the cubic ∆.

Proof. It is easy to check which special parabolic bundles are semi-stable or not. For
instance, the trivial bundle E0 descends as the vector bundle E0 = OP1 ⊕ OP1 (−3)
equipped with the decomposable parabolic structure p directed by OP1 (−3) →֒ E0 (see
5.2.2); then OP1 is destabilizing.

Once this has been done, for each family occuring in P3
b, we already know from

section 5.2 where they are sent on P3
NR, we known the corresponding explicit equations

from section 3.6 and we can deduce equations on P3
b by using explicit formula from

Corollary 5.4. �

Remark 5.6. Actually, we have only dealt with generic bundles of each type so far.
Indeed, only an open set of the family δ of unipotent bundles occurs in Bunssµ (X/ι) = P3

b,
namely the complement of Weierstrass points, since they are replaced by Gunning bundles
Qi.

The preimage of the Kummer surface Kum(X) in the chart P3
b is nothing but the

dual Weddle surface Wed (X), another birational model of Kum(X): it is also a quartic
surface, but with only 6 nodes (see [24, 20]). Precisely, the 16 singular points of Kum (X)
are blown-up and replaced by the lines ∆i,j; the 6 Gunning planes Πi are contracted
onto the points Qi, giving rise to new conic points. In particular, all 16 quasi-unipotent
families ∆ and ∆i,j are contained in Wed.

Actually, the map φ : P3
b 99K P3

NR is defined by the linear sytem of quadrics passing
through the 6 points Qi; indeed, for a general plane Π ∈ P3

NR, φ
∗Π must intersect each

contracted Πi. We thus recover the quadric system in [14], §4.6. Those Π tangent to
Kum(X) have a singular lift Π; when Π runs over the tangent planes of Kum(X), the
singular point of Π runs over the Weddle surface.

Remark 5.7. The complement of the (dual) Weddle surface covers the open set of stable
bundles in P3

NR

P
3
b \Wed (X)

φ
։ P

3
NR \Kum(X) .

However, this is not a covering since over odd Gunning planes, only Π′
i occurs in P3

b.
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5.4. Moving weights and wall-crossing phenomena. For a generic weight µ, semi-
stable bundles are automatically stable; in this case, the moduli space Bunssµ (X/ι) is
projective, smooth and a geometric quotient. The special weights µ, for which some
bundles are strictly semi-stable, form a finite collection of affine planes in the weight-
space [0, 1]6 ∋ µ called walls. They cut-out [0, 1]6 into finitely many chambers: the
connected components of the complement of walls. Along walls, the moduli space is
no more a geometric quotient, but a categorical quotient, identifying some semi-stable
bundles together to get a (Hausdorff) projective manifold, which might be singular in
this case; outside of the semi-stable locus, Bunssµ (X/ι) is still smooth and a geometric
quotient. The moduli space Bunssµ (X/ι) is locally constant in a given chamber; if not
empty, it has the right dimension 3 and contains as an open set the geometric quotient of
those bundles (E,p) with E = OP1 (−1)⊕OP1 (−2) and parabolics p in general position:

• no parabolic on OP1 (−1),
• no 3 parabolics on the same OP1 (−2),
• no 5 parabolics on the same OP1 (−3).

Between any two (non empty !) moduli spaces we get a natural birational map

can : Bunssµ (X/ι)
∼
99K Bunssµ′(X/ι)

arising from the identification of these generic bundles occuring in both of them. The
indeterminacy locus comes from those special parabolic bundles that are stable for µ

but not for µ′ and vice-versa; this happens each time we cross a wall. The moduli space
Bunu(X/ι) of indecomposable bundles can be covered by a finite collection of such
moduli spaces, by choosing one µ in each non empty chamber; therefore, Bunu(X/ι)
can be constructed by patching together these moduli spaces by means of canonical
maps along the open set of common bundles. This gives Bunu(X/ι) a structure of
smooth non separated scheme. However, in our case, we have also decomposable flat
bundles that are not taken into account in this picture. For instance the preimage
(E0,p

0) := φ−1(E0) of the trivial bundle on X (see section 5.2.2), being decomposable,
can only arise as a singular point in semi-stable projective charts Bunssµ (X/ι). Indeed,
if the bundle E0 = OP1 ⊕OP1 (−3) equipped with the decomposable parabolic structure
p0 directed by OP1 (−3) →֒ E0 is semi-stable for some choice of weights µ, then all
other parabolic structures p on E0 with no parabolics directed by OP1 ⊂ E0 are also

semi-stable and infinitesimally close to p0; they are represented by the same point in the
Hausdorff quotient Bunssµ (X/ι). One can check that this point is necessarily singular.

Instead of being exhaustive, let us consider in this section the family of moduli spaces
Bunssµ (X/ι) with weights µ = (µ, µ, µ, µ, µ, µ), for µ ∈ [0, 1]. One can easily check which
family of special bundle is semi-stable, depending on the choice of µ; this is resumed in
the following table.

µ 0 1
6

1
4

1
2

3
4

5
6 1

unipotent bundles ∆ ∆ij

(and twists) ∆′ ∆′
ij

odd Gunning Qi Πi

bundles and planes Π′
i Q′

i

even Gunning planes Πijk

Table 3. Moving weights.
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For µ ∈ [0, 16 [. The moduli space Bunssµ (X/ι) is empty since OP1 (−1) is destabilizing
the generic parabolic bundle (even if it carries no parabolic).

For µ = 1
6 . The moduli space Bunssµ (X/ι) reduces to a single point. Indeed, it also

contains the (non flat) decomposable bundle E = OP1 (−1)⊕OP1 (−2) with all parabolics
p directed by OP1 (−2). But the generic parabolic bundle is infinitesimally close to
this decomposable bundle so that they have to be identified in the Hausdorff quotient
Bunssµ (X/ι).

For µ ∈]16 , 14 [. Here, we recover our chart P3
b := Bunss

] 1
6
, 1
4
[
(X/ι) with special families ∆,

∆ij , Qi, Π
′
i and Πijk. The natural map φ : Bunss

] 1
6
, 1
4
[
(X/ι) 99K P3

NR has indeterminacy

points at all 6 points Qi.

For µ = 1
4 . Now, odd Gunning planes Πi become semi-stable, but infinitesimally close

the the corresponding point Qi, so that they are identified in the quotient Bunssµ (X/ι).

Therefore, the moduli space is still the same P3
b but no more a geometric quotient.

For µ ∈]14 , 12 [. Odd Gunning bundles Qi are no more semi-stable and are replaced by
the corresponding Gunning planes Πi. The natural map

can : Bunss
] 1
4
, 1
2
[
(X/ι)→ Bunss

] 1
6
, 1
4
[
(X/ι)

is the blow-up of P3
b at all 6 points Qi, and the exceptional divisors represent the corre-

sponding planes Πi. The natural map φ : Bunss
] 1
4
, 1
2
[
(X/ι)→ P3

NR is a morphism.

For µ = 1
2 . the trivial bundle and its 15 twists become semi-stable (and just for this

special value of µ). In particular, unipotent families are identified with these bundles in
the moduli space, which has effect to contract the strict transforms of lines ∆ij and the
rational curve ∆ to 16 singular points of Bunssµ (X/ι). This moduli space is exactly the

double cover of P3
NR ramified along Kum(X), therefore singular with conic points over

each singular point of Kum(X). The natural map

can : Bunss
] 1
4
, 1
2
[
(X/ι)→ Bunss1

2
(X/ι)

is a minimal resolution.

For µ ∈]12 , 34 [. The families ∆ and ∆ij are no more semi-stable, and replaced by the
families ∆′ and ∆′

ij. But mind that the canonical map

can : Bunss
] 1
4
, 1
2
[
(X/ι) 99K Bunss

] 1
2
, 3
4
[
(X/ι)

is not biregular: there is a flop phenomenon around each of the 16 above rational curves.

Precisely, after blowing-up the 16 curves, we exactly get the resolution ̂Bunss1
2

(X/ι) of

the previous moduli space by blowing-up the 16 conic points. Then, exceptional divisors
are ≃ P1 × P1 and we can contract them back to rational curves by using the other
ruling; this is the way the map can is constructed here. In particular, we get is another
minimal resolution of Bunss1

2

(X/ι).

For µ ∈ [34 ,
5
6 [. Here, we finally contract the strict transforms of Π′

i to the points Qi.
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5.5. Galois and Geiser involutions. The Galois involution of the ramified cover φ :

Bun(X/ι)
2:1−→ Bun(X)

Υ := OP1 (−3)⊗ elm+
W : Bun(X/ι)

∼−→ Bun(X/ι)

induces isomorphisms between moduli spaces

Υ : Bunssµ (X/ι)
∼−→ Bunssµ′(X/ι)

where µ′ is defined by µ′
i =

1
2 − µi for all i. In particular, it underlines the symmetry of

our special family of moduli spaces around µ = 1
2 (see section 5.4): the Galois involution

induces a biregular involution of Bunss1
2

(X/ι), as well as isomorphisms

Bunss
] 1
4
, 1
2
[
(X/ι)

∼←→ Bunss
] 1
2
, 3
4
[
(X/ι) and Bunss

] 1
6
, 1
4
]
(X/ι)

∼←→ Bunss
[ 3
4
, 5
6
[
(X/ι).

Considering now the composition

Bunss
] 1
6
, 1
4
]
(X/ι)

can
99K Bunss

[ 3
4
, 5
6
[
(X/ι)

Υ−→ Bunss
] 1
6
, 1
2
[
(X/ι),

we get the (birational) Galois involution of the map φ : P3
b 99K P3

NR described in Corol-
lary 5.4. This is known as the Geiser involution (see [14], §4.6); it is a degree 7 birational
map. The combination of all wall-crossing phenomena described in section 5.4, when µ
is varying from 1

6 to 5
6 , provides a complete decomposition of this map:

• first blow-up 6 points (those Qi along the embedding X/ι
∼−→ ∆ ⊂ P3

b),
• flop 16 rational curves (those strict transforms of the twisted cubic ∆ and all
lines ∆ij),

• contract 6 planes (namely strict transforms of Π′
i onto Qi),

• then compose by the unique isomorphism sending Q′
i → Qi.

This is resumed in the following diagramm.

̂Bunss1
2

(X/ι)

∆,∆ij blow-up

(16 curves)
wwppp

pp
pp
pp
pp
p

��

∆′,∆′
ij blow-up

''NN
NN

NN
NN

NN
NN

Bunss
] 1
4
, 1
2
[
(X/ι)

Qi blow-up (6 points)

��

''

Bunss
] 1
2
, 3
4
[
(X/ι)

ww
Q′

i blow-up

��

Bunss1
2

(X/ι)

Bunss
] 1
6
, 1
4
]
(X/ι)

ii

Υ

∼
55
Bunss

[ 3
4
, 5
6
[
(X/ι)

Remark 5.8. Even Gunning bundles Qijk are semi-stable if, and only if, µ = 1. This is
why they do not appear in our family of moduli spaces. However, for some other choices
of weights µ, they appear as stable points, and therefore smooth points of some projective
charts.
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6. Higgs bundles and connections

A Higgs bundle on a Riemann surface X is a vector bundle E → X endowed with a
Higgs field, i.e. an OX -linear morphism

Θ : E → E ⊗ Ω1
X(D),

where D is an effective divisor. If D is reduced, then Θ is called logarithmic and for any
x ∈ D, the residual morphism Resx(Θ) ∈ End(Ex) is well-defined. As usual, we will only
consider the case where E is a rank 2 vector bundle with trivial determinant bundle and
Θ is trace-free. By definition, a holomorphic (D = ∅) and trace-free Higgs-field on E is an
element of H0(X, sl2(E)⊗Ω1

X), which, by Serre duality, is isomorphic to H1(X, sl2(E))∨.
On the other hand, stable bundles are simple (there are no non-scalar automorphism);
for such bundles E, the vector space H1(X, sl2(E)) is precisely the tangent space in E
of our moduli space Bun(X) of flat vector bundles over X. Therefore, in restriction to
the open set of stable bundles the moduli space Higgs(X) of Higgs bundles identifies in
a natural way to

Higgs(X) := T∗Bun(X).

Just as naturally, we can define

Higgs(X/ι) := T∗Bun(X/ι),

but we need to clarify its meaning. Let (E,p) be a parabolic bundle in Bun(X/ι). Then

T ∗
(E,p)Bun(X/ι) = H0(X, sl2(E,p) ⊗ Ω1

P1), where sl2(E,p) denotes the space of trace-

free endomorphisms of E leaving p invariant. Now consider the image of the natural
embedding

H0(P1, sl2(E,p)⊗ Ω1
P1) →֒ H0(P1, sl2(E)⊗ Ω1

P1(W )).

Via the (meromorphic) gauge transformation

OP1(−3)⊗ elm+
W ∈ H0(P1,SL2(E ⊗OP1(W ),p))

it corresponds precisely to those logarithmic Higgs fields Θ in H0(P1, sl2(E)⊗ Ω1
P1(W ))

that have apparent singularities in p over W : the residual matrices are congruent to
( 0 1
0 0 ) and p corresponds to their eigenvectors. We shall denote this set of apparent

logarithmic Higgs fields on E by

H0(P1, sl2(E)⊗ Ω1
P1(W ))

app
p ≃ H0(P1, sl2(E,p)⊗ Ω1

P1).

On the other hand, if we see Bun(X/ι) as a space of bundles E over X with a
lift h of the hyperelliptic involution, then the space of h-invariant Higgs fields on E
also naturally identifies to the cotangent space T∗

(E,h)Bun(X/ι). Indeed, let (E,p) be a

parabolic bundle in Bun(X/ι) and consider the corresponding parabolic bundle (E,p) =
elm+

W (π∗(E,p)) over X together with its unique isomorphism h : E ≃ ι∗E such that p
corresponds to the +1-eigenspaces of h. Let Θ be a logarithmic Higgs field in

T ∗
(E,p)Bun(X/ι) ≃ H0(P1, sl2(E)⊗ Ω1

P1(W ))
app

p .

The corresponding Higgs bundle (E,Θ) = elm+
W (π∗(E,p)) then is h-invariant and holo-

morphic by construction.
Similarly to the case of connections, we obtain

π∗(E,Θ) =

2⊕

i=1

(Ei,Θi),
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where (Ei,Θi) are apparent logarithmic Higgs bundles on P1 with D = W . Note that if
∇1 and ∇2 are connections on the same vector bundle E → X, then (E,∇1 −∇2) is a
Higgs bundle. Hence the moduli space Con(X) (resp. Con(X/ι)) is an affine extension
of Higgs(X) (resp. Higgs(X/ι)).

6.1. A Poincaré family on the 2-fold cover Bun(X/ι). Since we get a universal
vector bundle on an open part of Bun(X/ι) for our moduli problem (for instance over
P3
B, see section 4.2), we can expect to find a universal family of Higgs bundles (resp.

connections) there, which we will now construct over an open subset of the projective
chart P1

R × P1
S × P1

T , namely when (R,S, T ) ∈ C3 is finite.
For (i, zi) = (r,R), (s, S), (t, T ), define the Higgs field Θi given on a trivial chart

(P1 \ {∞})× C2 of E = OP1(−1)⊕OP1(−2) by

Θi :=
dx

x

(
0 0

1− zi 0

)
+

dx

x− 1

(
zi −zi
zi −zi

)
+

dx

x− i

(
−zi z2i
−1 zi

)

These parabolic Higgs fields are independant over C (they do not share the same poles)
and any other Higgs field Θ on E respecting the parabolic structure p given by (R,S, T )
is a linear combination of these Θi:

Θ = crΘr + csΘs + ctΘt for unique cr, cs, ct ∈ C.

These generators are chosen such that the coefficient (2, 1) of Θi vanishes at x = j and
k where {i, j, k} = {r, s, t}. They are also very natural on our chart Bunssµ (X/ι) =

P1
R×P1

S×P1
T with µ ∈]16 , 14 [. Indeed, for our choice of chart and generators, we precisely

get:

Proposition 6.1. The differential 1-form dzi on the affine chart (R,S, T ) ∈ C3 ⊂
P1
R × P1

S × P1
T identifies under Serre duality with the Higgs bundle Θi ∈ H0(P1, sl2(E)⊗

Ω1
P1(W ))

app
p for (i, zi) = (r,R), (s, S), (t, T ).

Proof. In an intrinsic way, the tangent space of the moduli space of parabolic bundles
at a point (E,p) is given by H1(P1, sl(E,p)) where sl(E,p) is the sheaf of trace-free

endomorphisms of E over P1
x that preserve the parabolic structure. For instance the

vector field ∂
∂R ∈ T(R,S,T )P

1
R×P1

S×P1
T can be represented by the two charts U0 = P1

x\{r}
and U1 an analytic disc surrounding x = r together with the cocycle

φ0,1 =

(
0 0
1 0

)

on the punctured disc U0,1 = U0 ∩ U1. Indeed, if we glue the restrictions (E,p)|U0 and
(E,p)|U1 by the map

exp(ζφ0,1) =

(
1 0
ζ 1

)
:
(
(E,p)|U1

)
|U0,1 → (E,p)|U0 ,

we get the new parabolic bundle defined by p = (0, 1, R + ζ, S, T,∞), i.e. the point

defined by the time-ζ map generated by the vector field ∂
∂R . Let us now compute the

perfect pairing

〈·, ·〉 : H0(P1, sl2(E)⊗ Ω1
P1(W ))

app
p ×H1(P1, sl(E,p))→ H1(P1,Ω1

P1) ≃ C;

defining Serre duality in our coordinates. Given a Higgs field Θ ∈ H0(P1, sl2(E) ⊗
Ω1
P1(W ))

app
p , the image in H1(P1,Ω1

P1) is given by the cocycle

〈Θ, φ0,1〉 = trace(Θ · φ0,1)
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on U0,1, that is the (1, 2)-coefficient of Θ restricted to U0,1 (note that Θ is holomorphic
there). We fix an isomorphism H1(Ω1

P1) → C as follows. Given a cocycle (U0,1, ω0,1) ∈
H1(Ω1

P1), one can easily write ω0,1 = α0 − α1 for meromorphic 1-forms αi on Ui. Then

ω0,1 is trivial in H1(Ω1
P1) if, and only if, ω0,1 = ω0 − ω1 for holomorphic 1-forms ωi on

Ui, or, equivalently, if the principal part defined by (αi)i is that of a global meromorphic
1-form (αi − ωi)i. Since the obstruction is given precisely by the Residue Theorem, we
are led to define

Res : H1(P1,Ω1
P1)→ C

as the map which to a principal part (αi)i representing the cocycle, associates the sum
of residues. For instance,

ω0,1 := 〈Θr, φ0,1〉 = (1−R)
dx

x
+R

dx

x− 1
− dx

x− r

can be represented by the cocycle

α0 := 0 and α1 := −ω0,1

so that the principal part is just defined by dx
x−r at x = r and we get

Res〈Θr, φ0,1〉 = 1

i.e.
〈
Θr,

∂
∂R

〉
= 1. Similarly, we have

〈
Θi,

∂

∂zj

〉
=

{
1 if i = j
0 if i 6= j

�

Corollary 6.2. The Liouville form on T∗ Bunssµ (X/ι) defines a holomorphic symplectic

2-form on the moduli space of Higgs bundles defined in the chart (R,S, T, cr, cs, ct) ∈ C6

by
ω = dR ∧ dcr + dS ∧ dcs + dT ∧ dct.

A connection on the parabolic bundle attached to a parameter (R,S, T ) is given by

(12)

∇0 := d +

(
0 0
1 1

2

)
dx
x +

(
−1 3

2
−1 3

2

)
dx
x−1

+1
2

(
0 R
0 1

)
dx
x−r +

1
2

(
0 S
0 1

)
dx
x−s +

1
2

(
0 T
0 1

)
dx
x−t

and any other connection on this bundle writes uniquely as

∇ = ∇0 + crΘr + csΘs + ctΘt.

This provides a universal family of parabolic connections on a large open subset of the
moduli space.

6.2. The apparent map on Con(X/ι). Folllowing [29], we will now recall the construc-
tion of the so-called apparent map, allowing us to prove Proposition 5.3. For a parabolic
connection (E,p,∇) defined on the main vector bundle E = OP1 (−1) ⊕ OP1 (−2), we
can associate a morphism

∇ 7→ ϕ∇ ∈ Hom(OP1 (−1) ,OP1 (−2)⊗Ω1
P1 (W )) ≃ H0

(
P
1,OP1 (−1)⊗ Ω1

P1 (W )
)

by composition of

OP1 (−1) →֒ E
∇−→ E ⊗ Ω1

P1 (W )→ OP1 (−2)⊗ Ω1
P1 (W )
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where the last arrow is just the projection on the second factor.

Remark 6.3. Geometrically, the zeroes of the apparent map (which is an element of
H0

(
P1,OP1 (3)

)
) are the coordinates of the (three) tangencies between the destabilizing

section σ−1 of P(E) and the foliation on P(E) defined by flat sections of P(∇). On
the other hand, these are precisely the positions of the apparent singular points appear-
ing when we derive the associate 2nd order fuchsian equation from the “cyclic vector”
OP1 (−1) →֒ E.

We can extend the definition of the apparent map to so-called λ-connections

∇ = λ · ∇0 + crΘr + csΘs + ctΘt, (λ, cr, cs, ct) ∈ C
4,

including Higgs fields (for λ = 0). There is a natural Gm-action by multiplication on
the moduli space of λ-connections so that a generic element ∇, with λ 6= 0, is equivalent
to a unique connection (in the usual sense), namely 1

λ∇. After projectivization, we thus
obtain a natural compactification of the moduli space of connections on E (an affine
3-space) by the moduli space of projective Higgs fields (i.e. up to Gm-action). In our
coordinates, an element (λ : cr : cs : ct) ∈ P3 denotes either a connection (when λ 6= 0)
or a projective class of a Higgs field. It is proved in [29], Theorem 4.3, that the map
∇ 7→ Pϕ∇, which is invariant under Gm-action, defines an isomorphism from the moduli
space of λ-connections up to Gm-action onto PH0

(
P1,OP1 (−1)⊗ Ω1

P1 (W )
)
. Moreover,

we deduce a map

Bunssµ (X/ι)→ PH0
(
P
1,OP1 (−1)⊗ Ω1

P1 (W )
)∨

which to a parabolic bundle (E,p) associates the image under Pϕ of the hyperplane

locus of Higgs bundles λ = 0. For 1
6 < µ < 1

4 , this map is also an isomorphism.
On the other hand, looking at Bunssµ (X/ι) as extensions (see section 5.3), we also

get a natural isomorphism

Bunssµ (X/ι)
∼→ PH0

(
P
1,OP1 (−1)⊗ Ω1

P1 (W )
)∨

It follows from [29], proof of Theorem 4.3, that these two maps coincide.

Proof of Proposition 5.3. For (R,S, T ) ∈ C3 finite, the corresponding parabolic bundle
also belongs to Bunssµ (X/ι) and we can use the apparent map to compute the corre-

sponding point (b0 : b1 : b2 : b3) ∈ P3
b. Precisely, the apparent map ϕΘr is given by the

(2, 1)-coefficient of Θr

PϕΘr =
R− 1

R− r
(x− r)(x− s)(x− t) ∈ PH0

(
P
1,OP1 (−1)⊗ Ω1

P1 (W )
)
≃ |OP1 (3) |.

This provides a first equation

(R− r)b0 − (σ1R− r(1 + s+ t))b1 + (σ2R− r(s+ t+ st))b2 − σ3(R − 1)b3 = 0;

similar equations for Θs and Θt give the result. �

6.3. A rational section of Con(X)→ Bun(X). The rational section∇0 : Bun(X/ι) 99K
Con(X/ι) constructed in section 6.1 over the chart P1

R × P1
S × P1

T is not invariant by the

Galois involution of Φ : Con(X/ι)
2:1−→ Con(X), i.e. it defines a 2-section, but not a

rational section Bun(X/ι) 99K Con(X). One can easily deduce a rational section by
taking the barycenter (recall that Con(X) → Bun(X) is an affine bundle) but it is not
the simplest one. Here, we start back from the Tyurin parametrization of bundles to
construct such an explicit section.
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Like in section 4, consider a generic data (P 1, P 2, λ) ∈ X × X × P1 and associate

the parabolic structure p̃ on Ẽ := OX (−KX)⊕OX (−KX) defined over

D := [P 1] + [ι (P 1)] + [P 2] + [ι (P 2)] ∈ |2KX |,
by

(
λP 1

, λι(P 1)
, λP 2

, λι(P 2)

)
:=

(
λ,−λ, 1

λ
,− 1

λ

)

(where λQ means the direction generated by λQe1 + e2 over Q, for fixed independant
sections e1, e2 over X \ {∞}). After 4 elementary transformations, we get a bundle

E with trivial determinant. A holomorphic connection ∇ on E := elm+
D(Ẽ, p̃) can be

pulled-back to OX (−KX) ⊕ OX (−KX) and we get a parabolic logarithmic connection

∇̃ on this bundle with (apparent) singular points over D. In the basis 〈e1, e2〉, we can
write

∇̃ : d +

(
α β
γ δ

)

where the trace is given by

α+ δ =
dx

x− x1
+

dx

x− x2

and the projective part takes the form (here z is the projective variable defined by
ze1 + e2)

P∇̃ : dz − γz2 + (α− δ)z + β with





−γ = A(x)
(x−x1)(x−x2)

dx
y

α− δ = by
(x−x1)(x−x2)

dx
y

β = C(x)
(x−x1)(x−x2)

dx
y

where A,C are degre 3 polynomials in x and b ∈ C. This is due to the fact that the
connection has only simple poles over D and that it is invariant under the (normalized)
lift of the hyperelliptic involution h : (x, y, z) 7→ (x,−y,−z). We note that e1 and e2
generate the two ι-invariant Tyurin subbundles. Moreover, these coefficients {(A, b,C)}
have to satisfy several additional conditions, namely the compatibility with the parabolic
data, that eigenvalues are 0 and 1 (parabolic directed by 1) and the singularity is appar-
ent, in the sense that it disappears after an elementary transformation in the parabolic.
This gives 6 affine equations in the 9-dimensional space of coefficients {(A, b,C)}:

parabolic data:

{
λA(x1) + by1 +

1
λC(x1) = 0

1
λA(x2) + by2 + λC(x2) = 0

eigenvalues:

{
2λA(x1) + by1 = y1(x2 − x1)
2
λA(x2) + by2 = y2(x1 − x2)

apparent:

{
2y1(λA

′(x1) +
1
λC

′(x1)) + bF ′(x1) = 0
2y2(

1
λA

′(x2) + λC ′(x2)) + bF ′(x2) = 0

where F (x) = x(x − 1)(x − r)(x − s)(x − t). Viewing a Higgs field Θ̃ =
(

α β
γ δ

)
as

the difference of two connections, we get α + δ = 0 and, for the projective part, the
corresponding linearized equations (with 0 right-hand-side). Starting with a connection
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∇̃ on Ẽ = OX (−KX)⊕OX (−KX) as above, via 4 elementary transformations, we get
a holomorphic sl2-connection

(E,∇) = elm+
D(Ẽ, ∇̃, p̃)

on X whose parabolic data p is supported by the strict transform of the line bundle
L1 := C〈e1〉 (we suppose λ 6∈ {0,∞} by genericity). Pushing it down, we get a parabolic
connection on X/ι = P1

x for which L1 becomes the destabilizing subbundle OP1 (−1).
Selecting the ι-invariant Tyurin subbundle L1, we have a natural generically finite

map

X ×X × P
1
λ

16:1
99K P

3
B

with Galois group generated by 〈σ12, σι, σiz〉 (see section 4). Then, the Galois involution

of P3
B

2:1
99K P3

NR is induced by σ1/z which is permuting e1 and e2. We can thus compute

the apparent map of a connection ∇̃ (or a Higgs field Θ̃) with respect to e1 and get that
ϕ∇̃ = A(x).

Remark 6.4. The three zeroes of A(x) define six points on X, which are the coordinates

of the tangencies between e1 and the foliation P(∇̃) on P(Ẽ).

Like in the proof of Proposition 5.3 (see section 6.2) we can use the apparent map for
Higgs fields to compute the corresponding Bertram coordinates of P3

B . A straightforward
computation yields:

Proposition 6.5. The natural map X ×X × P1
λ → P3

B is given by




b0 = λy2 − 1
λy1

b1 = λx1y2 − 1
λx2y1

b2 = λx21y2 − 1
λx

2
2y1

b3 = λx31y2 − 1
λx

3
2y1

It follows from [29] that a connection on a parabolic bundle belonging to the chart
P3
B is determined by its apparent map. It is particularly easy to see this fact in above

equations: after prescribing ϕ∇̃ = A(x) ∈ P3
A (up to homothecy), i.e. after prescribing

the roots of A(x), we get a unique solution (A, b,C) except when A(x) lies in the hy-
perplane of Higgs bundles defined by Proposition 6.5 above. In the latter case, there is
a solution (A, b,C) as a Higgs field which is unique up to an homothecy. Note that the
group 〈σ12, σι, σiz〉 acts on connections (and Higgs fields) and the induced action on the
coefficient A(x) is by homothecy. It follows that the corresponding point A(x) ∈ P3

A is
invariant. The fourth involution σ1/z however permutes A(x) and C(x) (and changes
the sign). In order to construct a rational section ∇0 : Bun(X) 99K Con(X), we can
consider connections for which A(x) and C(x) are homothetic to each other, i.e. define
the same point in P3

A. A straightforward computation shows that there are exactly two
possibilities:

∇+ : b =
λ2 + 1

λ2 − 1
(x1 − x2) and A(x) = C(x) =

1

2(x1 − x2)2
λ

λ2 − 1

(
(y1 − y2)(4x

3 − 6(x1 + x2)x
2 + 12x1x2x)− 6x1x2(x2y1 − x1y2)

+2(x32y1 − x31y2)− (x1 − x2)(x− x1)(x− x2)

(
y1

F ′(x1)
F (x1)

(x− x2) + y2
F ′(x2)
F (x2)

(x− x1)

))
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and

∇− : b =
λ2 − 1

λ2 + 1
(x1 − x2) and A(x) = −C(x) =

1

2(x1 − x2)2
λ

λ2 + 1

(
(y1 + y2)(4x

3 − 6(x1 + x2)x
2 + 12x1x2x)− 6x1x2(x2y1 + x1y2)

+2(x32y1 + x31y2)− (x1 − x2)(x− x1)(x− x2)

(
y1

F ′(x1)
F (x1)

(x− x2)− y2
F ′(x2)
F (x2)

(x− x1)

))

This provides two “universal connections” over the parameter space X×X×P1
λ which are

each invariant under σ1/z and 〈σ12, σι, σ2
iz〉, but permuted by σiz. Taking the barycenter

of these two connections for each parameter (P 1, P 2, λ) yields a fully invariant section

∇0 :=
∇+ +∇−

2

whose coefficients are given by

b0y
(x−x1)(x−x2)

:= λ4+1
λ4−1

(
1

x−x1
− 1

x−x2

)

A0(x)
(x−x1)(x−x2)

:= λ
λ4−1

{(
y2

x−x2
− λ2y1

x−x1

)
+ (λ2y1−y2)(2x−x1−x2)

(x1−x2)2

−λ2y1
F
′(x1)

F (x1)
(x−x2)+y2

F
′(x2)

F (x2)
(x−x1)

2(x1−x2)

}

C0(x)
(x−x1)(x−x2)

:= λ
λ4−1

{(
λ2y2
x−x2
− y1

x−x1

)
+ (y1−λ2y2)(2x−x1−x2)

(x1−x2)2

−y1
F
′(x1)

F (x1)
(x−x2)+λ2y2

F
′(x2)

F (x2)
(x−x1)

2(x1−x2)

}
.

Proposition 6.6. The induced rational section

∇0 : Bun(X/ι) 99K Con(X)

is Lagrangian, and moreover regular over the open set of stable bundles.

Proof. This connection is well-defined provided that λ4 6= 1 and x2 6= x1. We get a
universal connection for all stable bundles. Indeed, we first check that all stable bundles
off odd Gunning planes are covered by the open subset where the connection ∇0 is
well-defined:

X ×X × P
1
λ \

(
{λ4 = 1} ∪ {x1 = x2}

)
։ P

3
NR \ (Kum(X) ∪Πw0 ∪ · · · ∪Πw∞) .

We thus get a rational section ∇0 : Bun(X) 99K Con(X) which is holomorphic over stable
bundles, off odd Gunning planes. We can check that it actually extends holomorphically
along odd Gunning planes. It is sufficient to extend it outside intersections of odd
Gunning planes since those form a codimension 2 subset. The Gunning plane Πw0

comes from the indeterminacy locus {w0} ×X × {0} of the map X ×X × P1
λ → P3

NR.
Precisely, a generic element of Πw0 is obtained as follows. We first renormalize z = w/λ
so that parabolic directions become

(λP 1
, λι(P 1)

, λP 2
, λι(P 2)

) = (λ2,−λ2, 1,−1)
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and then make the first two parabolic tending to 0 while y1 → 0 with some fixed slope
λ2

y1
= c. The limiting connection has now a double pole at w0, which disappears after

two elementary transformations.
Finally, that this section is Lagrangian directly follows from straightforward verifi-

cation. �

Remark 6.7. There are precisely two Higgs fields invariant under σ1/z:

(x− x1)(λ
2z2 − 1)

dx

y
and (x− x2)(z

2 − λ2)
dx

y
.

They are also permuted by σiz and invariant under 〈σ12, σι, σ2
iz〉. We obtain a basis of

the space of Higgs bundles by adding for example ∇+ −∇−.

6.4. The Hitchin fibration on Higgs(X/ι) and Higgs(X). On the moduli space of
Higgs bundles on X, the Hitchin fibration is defined by the map

Hitch : Higgs(X)→ H0(X, 2KX ) ; (E,Θ) 7→ det(Θ).

Viewing Higgs(X) as the total space of the cotangent bundle T ∗Bun(X) (over the open
set of stable bundles), the Liouville form defines a symplectic structure on Higgs(X).
The above map defines a completely integrable system on this space: writing a quadratic

differential as (h2x
2 + h1x+ h0)

(
dx
y

)⊗2
, the 3 components of Hitch

h0, h1, h2 : Higgs(X)→ C

are holomorphic functions commuting to each other for the Poisson structure. More-
over, fibers of the map Hitch are (open sets of) 3-dimensional abelian varieties. One
can also associate to (E,Θ) the spectral curve spec(Θ) which is the double-section of
the projectivized bundle PE → X defined by the eigendirections of Θ. This curve
spec(Θ) is thus a two-fold ramified cover of X, ramifying at zeroes of the quadratic form
Hitch(E,Θ); the spectral curve is thus constant along Hitchin fibers and its Jacobian is
the compactification of the fiber.

Viewing a Higgs field as the difference of two connections, we have seen that Higgs
bundles are invariant under involution and descend, likely as connections, as parabolic
Higgs fields on P1

x = X/ι. The induced map

Higgs(X/ι)
2:1→ Higgs(X)

allows us to compute the Hitchin fibration easily. Note that, applying an elementary
transformation to some Higgs bundle (E,Θ) does not modify det(Θ) since an elementary
transformation is just a birational bundle transformation, acting by conjugacy on Θ.
Therefore, to get Hitchin Hamiltonians on the chart (R,S, T, cr, cs, ct), we just have to
compute

det(crΘr + csΘs + ctΘt) = (h2x
2 + h1x+ h0)

(dx)⊗2

x(x− 1)(x− r)(x− s)(x− t)
.

A straightforward computation yields
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h0 = (cr(R− 1) + cs(S − 1) + ct(T − 1)) (crst(R− r)R+ csrt(S − s)S + ctrs(T − t)T )

h1 = +cr (cr(s+ t)(r + 1) + css(t+ 1) + ctt(s+ 1))R2 − cr
2 (t + s)R3

+cs (cs(r + t)(s + 1) + crr(t+ 1) + ctt(r + 1)) S2 − cs
2 (t + r)S3

+ct (ct(r + s)(t+ 1) + crr(s+ 1) + css(r + 1)) T 2 − ct
2 (r + s)T 3

−crcs(t(R − 1 + S − 1) + r(S − s) + s(R− r))RS
−crct(s(R − 1 + T − 1) + r(T − t) + t(R− r))RT
−csct(r(S − 1 + T − 1) + s(T − t) + t(S − s))ST
− (ct t(r + s) + cr r(s + t) + css(r + t)) (crR+ csS + ctT )

h2 = (cr(R− 1)R + cs(S − 1)S + ct(T − 1)T ) (cr (R− r) + cs(S − s) + ct(T − t))

It is easy to check that these functions indeed Poisson-commute: for any f, g ∈
{h0, h1, h2}, we have

∑

i=r,s,t

∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

in Darboux notation (pr, ps, pt, qr, qs, qt) := (R,S, T, cr, cs, ct).
In proposition 5.3, we specified the birational map P1

R × P1
S × P1

T 99K P3
B, allowing

us to express the Bertram coordinates (b0 : b1 : b2 : b3) as functions of (R,S, T ). Setting

crdR+ csdS + ctdT = λ1d
b1
b0

+ λ2d
b2
b0

+ λ3d
b3
b0

allows us to express the coeffcients cr, cs, ct as functions of the Bertram coordinates as
well. The Hitchin map in Bertram coordinates then writes

(h2x
2 + h1x+ h0)

(dx)⊗2

x(x− 1)(x− r)(x− s)(x− t)

with

h0 = λ1b1+λ2b2+λ3b3
b40

·





−b0σ3· [λ1b0b10 + λ2(b0b21 + b1b10) + λ3(b0b32 + b1b21 + b2b10)]

+b0σ2· [λ1b1b10 + λ2(b2b10 + b1b21) + λ3(b1b32 + b2b21 + b3b10)]

−σ1·
[
λ1b

2
1b10 + λ2b2(b1b10 + b0b21)

+λ3(b0b2b32 + b0b3b21 + b1b3b10)]

+1·
[
λ1(b

2
1b21 + b2(b

2
1 − b0b2)) + λ2b2(b1b21 + b2b10)

+λ3b3(b0b32 + b1b21 + b2b10)]
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h1 = 1
b40
·





b0σ3·
[
λ2
2b0(b

2
21 − b2b20) + λ2

3(−b0b2(2b3 − b2)− b1b3(b1 − 2b0))
−λ1λ2b0b1b10 − λ1λ3b

2
1b10

+λ2λ3(2b0b1b2 + b2b0(b0 − 2b2)− b0b3(2b1 − b0)− b2b
2
10)

]

+b0σ2·
[
λ2
2b2(b

2
10 + b0b20) + λ2

3b3(b0(b3 − 2b2) + b1(2b2 − b1)) + λ1λ2b
2
1b10

+λ1λ3(b
2
1(2b2 − b1)− b0b

2
2) + λ2λ3(b

2
1b32 + 2b22b10 + 2b0b3b21)

]

+b0σ1·
[
λ2
2b2(b

2
21 − b2b20) + λ2

3b3(−b2(b2 − 2b1)− b3(2b1 − b0))
+λ1λ2(b0b

2
2 − b21(2b2 − b1))

+λ1λ3(b0b2(2b3 − b2)− b1(b
2
21 + b1(2b3 − b1)))

+λ2λ3(b3(b
2
1 − 2b2(2b1 − b0))− b22(b2 − 2b1))

]

+1·
[
λ2
1(b

2
1(b

2
1 − 2b0b2) + b20b

2
2) + λ2

2b
2
2(b

2
10 + b0b20)

+λ2
3b3(−b0(b22 + 2b1b3) + b3(b

2
1 + 2b0b2))

+λ1λ2b2(2b
2
1 − b0b2)b10 + λ1λ3(−b0b1b22 + 2b21b3b10 − b20b3(b3 − 2b2))

+λ2λ3(b0b
2
2(3b3 − b2) + 2b1b2b3(b1 − 2b0))

]

h2 = λ3

b30
·





σ3· [−λ1b0b1b10 − b0λ2(b1b21 + b2b10)− λ3b0(b1b32 + b2b21 + b3b10)]

+σ2·
[
λ1b

2
1b10 + λ2b2(b1b10 + b0b21) + λ3(b0b2b32 + b0b3b21 + b1b3b10)

]

−σ1·
[
λ1(b

2
1b21 + b2(b

2
1 − b0b2)) + λ2b2(b2b10 + b1b21)

+λ3b3(b0b32 + b1b21 + b2b10)]

+1·
[
λ1((b

2
1 − b0b2)(2b3 − b2) + b1b2b21)+ λ2(b

2
2(b2 − 2b1) + b3(2b1b2 − b0b3))

+λ3(b
2
3(2b1 − b0) + b2b3(b2 − 2b1))

]

Here bij denotes bi − bj.
We can now push-down formulae onto X to give the explicit Hitchin Hamiltonians

on Higgs(X) ≃ T ∗Bun(X). In order to do this, we consider the natural rational map
φ∗ : T ∗P3

NR 99K T ∗P1
R×P1

S ×P1
T induced by the explicit map φ : P1

R×P1
S ×P1

T 99K P3
NR

of Proposition 5.2. Then, for a general section µ0d(
v0
v3
) +µ1d(

v1
v3
)+µ2d(

v2
v3
), the Hitchin

Hamiltonians are given, after straightforward computation, by

h0 = 1
v33
·





µ2
0·

[
v30 − (2σ23v0 + σ3v1 − (σ12σ3 + σ2

23)v3)v0v3
+σ3(σ23v1 + σ3v2 + v3)v

2
3 − σ123σ2v

3
3

]

+v1µ
2
1· [v0v1 + σ3v2v3]

+v1µ
2
2·

[
v0v3 + v1v2 + (1 + σ1)v1v3 − σ23v

2
3

]

+µ0µ1· [2(v0 − σ23v3)v0v1 + (v0v2 − (v1 − σ12v3)v1 − (σ23v2 + σ3v3)v3)σ3v3]

+µ0µ2·
[
v20v2 + v0v

2
1 − (σ12v1 + 2σ23v2 + σ3v3)v0v3

−(σ23v1 + 3σ3v2 + (σ1σ3 − σ123σ2 + 2σ3)v3)v1v3 + σ23(σ23v2 + σ3v3)v
2
3

]

+v1µ1µ2·
[
v0v2 + v21 − (σ12v1 + σ23v2 − σ3v3)v3

]

h1 = 1
v33
·





µ2
0·

[
2v20v1− 2σ23v0v1v3 + σ3v0v2v3 + σ12σ3v1v

2
3 − σ2σ23v2v

2
3 − σ2

3v
3
3

]

+v1µ
2
1·

[
v0v2 + v21 − σ12v1v3 − σ23v2v3 + σ3v

2
3

]

+µ2
2·

[
v0v2v3 − v21v3 + 2v1v

2
2 + 2(1 + σ1)v1v2v3 + σ12v1v

2
3 − σ23v2v

2
3 − σ3v

2
3

]

+µ0µ1·
[
v20v2 − (σ12v1 + σ23v2 + σ3v3)v0v3 − σ23v

2
1v3 + (σ123σ2 − (σ1 + 2)σ3)v1v

2
3

+σ23(σ23v2 + σ3v3)v
2
3

]

+µ0µ2·
[
v0(2v0v3 + 4v1v2 + 4(1 + σ3)v1v3 + σ12v2v3 − 2σ23v

2
3)

+σ12(v1 − σ12v3)v1v3 + 2σ3v
2
2v3 − (σ123σ2 − (σ1 + 2)σ3)v2v

2
3 + σ12σ3v

3
3

]

+µ1µ2·
[
v0v

2
2 + 3v21v2 + 2((1 + σ1)v1 − σ23v3)v1v3 − (σ12v1 + σ23v2 + σ3v3)v2v3

]



FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES 65

h2 = 1
v33
·





v1µ
2
0· [v0v1 + σ3v2v3]

+v1µ
2
1·

[
v0v3 + v1v2 + (1 + σ1)v1v3 − σ23v

2
3

]

+v1µ0µ1·
[
v0v2 + v21 − σ12v1v3 − σ23v2v3 + σ3v

2
3

]

+µ0µ2·
[
−2v0v1v3 + v0v

2
2 + v21v2 − σ12v1v2v3 − σ2

23v3 − σ3v2v
2
3

]

+µ1µ2·
[
v0v2v3 − v21v3 + 2v1v

2
2 + 2(1 + σ1)v1v2v3 + σ12v1v

2
3 − σ23v2v

2
3 − σ3v

3
3

]

where σij = σi + σj , ij = 12, 13, 23, and σ123 = σ1 + σ2 + σ3.
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