Toward optimal stratification for stratified monte-carlo integration - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Toward optimal stratification for stratified monte-carlo integration

Rémi Munos
  • Fonction : Auteur
  • PersonId : 836863

Résumé

We consider the problem of adaptive stratified sampling for Monte Carlo integration of a noisy function, given a finite budget n of noisy evaluations to the function. We tackle in this paper the problem of adapting to the function at the same time the number of samples into each stratum and the partition itself. More precisely, it is interesting to refine the partition of the domain in area where the noise to the function, or where the variations of the function, are very heterogeneous. On the other hand, having a (too) refined stratification is not optimal. Indeed, the more refined the stratification, the more difficult it is to adjust the allocation of the samples to the stratification, i.e. sample more points where the noise or variations of the function are larger. We provide in this paper an algorithm that selects online, among a large class of partitions, the partition that provides the optimal trade-off, and allocates the samples almost optimally on this partition
Fichier principal
Vignette du fichier
icml13-stratMC.pdf (231.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00923685 , version 1 (03-01-2014)

Identifiants

  • HAL Id : hal-00923685 , version 1

Citer

Alexandra Carpentier, Rémi Munos. Toward optimal stratification for stratified monte-carlo integration. International Conference on Machine Learning, 2013, United States. ⟨hal-00923685⟩
224 Consultations
88 Téléchargements

Partager

More