First and second order error estimates for the Upwind Interface Source method - Archive ouverte HAL
Article Dans Une Revue Mathematics of Computation Année : 2005

First and second order error estimates for the Upwind Interface Source method

Résumé

The Upwind Source at Interface method for hyperbolic conservation laws with source term introduced in [B. Perthame, C. Simeoni, Convergence of the Upwind Interface Source method for hyperbolic conservation laws, Hyperbolic Problems: Theory, Numerics, Applications (T. Hou and E. Tadmor, Eds.), Springer, 2003] is essentially first order accurate. Under appropriate hypotheses of consistency on the finite volume discretization of the source term, we prove $L^p$-error estimates, $1\le p < +\infty$, in the case of a uniform spatial mesh, for which an optimal result can be obtained. We thus conclude that the same convergence rates hold as for the corresponding homogeneous problem. To improve the numerical accuracy, we develop two different approaches of dealing with the source term and we discuss the question of deriving second order error estimates. Numerical evidence shows that those techniques produce high resolution schemes compatible with the Upwind Source at Interface method.
Fichier principal
Vignette du fichier
Katsaounis_Simeoni_2005.pdf (217.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00922829 , version 1 (30-12-2013)

Identifiants

Citer

Theodoros Katsaounis, Chiara Simeoni. First and second order error estimates for the Upwind Interface Source method. Mathematics of Computation, 2005, 74 (249), pp.103-122. ⟨10.1090/S0025-5718-04-01655-2⟩. ⟨hal-00922829⟩
243 Consultations
107 Téléchargements

Altmetric

Partager

More