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Abstract

The Upwind Interface Source method for hyperbolic conservation
laws presented in [30] is essentially first order accurate. Under appro-
priate hypotheses of consistency on the source discretization, we prove
Lp-error estimates, for 1≤ p <+∞, in the case of a uniform spatial
mesh, for which an optimal result can be obtained. We thus conclude
that the same convergence rate holds as in the corresponding homo-
geneous problem (refer to [8]). To improve the numerical accuracy, we
develop two different approaches of treating the source term and we
discuss the question to derive second order error estimates. Numerical
evidence shows that those techniques produce high resolution schemes
compatible with the Upwind Interface Source method.

Key-words: scalar conservation laws, source terms, upwind in-
terfacial methods, consistency, error estimates.
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1 Introduction

We consider the initial values problem for a transport equation with non-
linear source term, in one space dimension,

∂tu+ ∂xu = B(x, u), t ∈ R+, x ∈ R, (1.1)

u(0, x) = u0(x) ∈ Lp(R) ∩ L∞(R), 1 ≤ p < +∞, (1.2)

with u(t, x) ∈ R and the analytical source operator is given by

B(x, u) = z′(x) b(u), z′ ∈ Lp(R), b ∈ C1(R). (1.3)

The system (1.1)-(1.3) corresponds to the simplest model of scalar conserva-
tion law with a geometrical source term, extensively treated in [30].
The entropy inequalities associated to (1.1) are described by the equation

∂tS(u) + ∂xS(u) + S ′(u)B(x, u) ≤ 0, (1.4)

for any convex entropy function S (see [17] and [18]). Under stronger assump-
tions on the source term, Kružkov [17] proved existence and uniqueness
of the entropy solution to the problem (1.1)-(1.2), in the functional space
L∞([0, T );Lp(R)), for all T ∈ R+. Another approach, based on convergence
analysis for special approximations, is presented in [1]. In the case of singu-
lar source terms (namely, z discontinuous), a uniqueness result has recently
been proved by Vasseur [35].

1.1 Formalism of the Upwind Interface Source method

We set up a uniform mesh on R, whose vertices are xi, i ∈ Z and with
characteristic space-step h. We denote by Ci = [xi− 1

2

, xi+ 1

2

) the control

volume (cell) centered on xi, where xi+ 1

2

= xi+xi+1

2
are the cell interfaces, so

that h = length(Ci). Then we construct a piecewise constant approximation
of the function z on the mesh, for example

zh(x) =
∑

i∈Z

zi1Ci
(x), zi =

1

h

∫

Ci

z(x) dx, (1.5)

where 1Ci
is the characteristic function of the cell Ci.

✲s

xi−1

xi− 1

2

s

xi

xi+ 1

2

s

xi+1

zi
zi+1
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We also introduce a piecewise constant approximation of the analytical so-
lution to the problem (1.1)-(1.2), defined by

uh(t, x) =
∑

i∈Z

ui(t)1Ci
(x), ui(t) =

1

h

∫

Ci

u(t, x) dx. (1.6)

In the above framework, the numerical solution obtained from a finite volume
scheme applied to (1.1)-(1.2) is a function vh(t, x), whose cell-averages

vi(t) =
1

h

∫

Ci

vh(t, x) dx, i ∈ Z, (1.7)

are interpreted as approximations of the cell-averages of the analytical solu-
tion, vi(t) ≈ ui(t), i ∈ Z. The general scheme for (1.1) reads

∂tv
h + ∂xv

h = BN(x, vh), (1.8)

with initial data corresponding to the approximate initial condition

vh0 (x) =
∑

i∈Z

u0i1Ci
(x), u0i =

1

h

∫

Ci

u0(x) dx. (1.9)

According to the Upwind Interface Source method in [30], appropriate
discretizations of the source term in (1.8) are given by

BN(x, vh) =
∑

i∈Z

1

h

[

B+(vi−1, vi,∆zi− 1

2

) + B−(vi, vi+1,∆zi+ 1

2

)
]

1Ci
, (1.10)

where we set ∆zi+ 1

2

= zi+1 − zi (we dropped the time and space dependence

in the formula, for simplicity). We assume the following consistency proper-
ties for the numerical source operator (1.10), in respect of (1.3), which are
fundamental to the convergence analysis,

B± ∈ C2, B±(u, v, 0) = 0,
∂B±

∂u
(u, v, 0) =

∂B±

∂v
(u, v, 0) = 0, (1.11a)

lim
ζ→0

B+(u, u, ζ) + B−(u, u, ζ)

ζ
= b(u). (1.11b)

The last limit holds uniformly in u, as specified by the further assumption
∣

∣

∣

∣

B+(u, u, ζ) + B−(u, u, ζ)

ζ
− b(u)

∣

∣

∣

∣

≤ KB ζ, (1.12)

where KB is a fixed constant (independent of u). Moreover, we denote by Lb

and LB any Lipschitz constant associated respectively to the continuous or
discrete source operator.
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1.2 What is a second order scheme for the Upwind
Interface Source method?

In order to obtain second order extensions of the discrete solver (1.8)-(1.9),
we apply a slope limiter method to the numerical functions: the basic idea
is to replace the piecewise constant reconstruction on the mesh of the ap-
proximate solution by more accurate reconstructions, namely piecewise linear
(refer to [10] and [22] for a survey of high resolution methods).

We associate to the numerical solution (1.7) some coefficients, defined as
second order interpolation of the discrete unknowns,

v̄i(t, x) = vi(t) + (x− xi)v
′
i, i ∈ Z, x ∈ Ci, (1.13)

where v′i indicates a generic numerical derivative (computed by means of an
appropriate limiter, as it will be discussed more precisely later on).
From (1.6), analogous definitions are introduced for the analytical solution,

ūi(t, x) = ui(t) + (x− xi)u
′
i, i ∈ Z, x ∈ Ci. (1.14)

The function z can also be represented in terms of piecewise linear approxi-
mations on the spatial mesh, departing from (1.5), with coefficients

z̄i(x) = zi + (x− xi)z
′
i, x ∈ Ci.

At the cell interfaces, the values of the numerical functions are given by

v−i = v̄i(xi− 1

2

) = vi −
h

2
v′i, v+i = v̄i(xi+ 1

2

) = vi +
h

2
v′i, (1.15a)

z−i = z̄i(xi− 1

2

) = zi −
h

2
z′i, z+i = z̄i(xi+ 1

2

) = zi +
h

2
z′i, (1.15b)

as represented in the figure below, so that ∆zi+ 1

2

= z−i+1− z+i in this case (we

drop the time and space dependence when no mistake is possible).

✲s

xi−1

xi− 1

2

s

xi

xi+ 1

2

s

xi+1

❳
❳
❳
❳
❳
❳
❳
❳

r

zi−1

z+i−1

❳
❳
❳
❳
❳
❳
❳
❳

r

zi

z−i
z+i
✥✥
✥✥
✥✥
✥✥

r

zi+1z−i+1

Therefore, it is natural to perform a discretization of the source term (1.3)
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by using the interfacial values (1.15a)-(1.15b), as follows,

BN(x, vh) =
∑

i∈Z

1

h

[

B+(v+i−1, v
−
i ,∆zi− 1

2

) + B−(v+i , v
−
i+1,∆zi+ 1

2

)
]

1Ci

+
∑

i∈Z

z′i b(vi) 1Ci
,

(1.16)

with an additional term in comparison to the discrete source operator (1.10),
which depends on the cell-averages and is necessary to achieve second order
estimates (see Section 4 for details).

An alternative approach to formulating second order extensions of the
Upwind Interface Source method is based on improving the consistency prop-
erties of the numerical source operator.
We consider a piecewise constant approximation (1.5) of the function z and
piecewise linear reconstructions (1.13) of the numerical solution on the mesh,
to define the upwind interfacial discretization

BN(x, vh) =
∑

i∈Z

1

h

[

B+(v+i−1, v
−
i ,∆zi− 1

2

) + B−(v+i , v
−
i+1,∆zi+ 1

2

)
]

1Ci
, (1.17)

where the numerical functions are computed on the interfacial values (1.15a)
and ∆zi+ 1

2

= zi+1 − zi. To obtain second order accuracy, we need to assume

that (1.11a) holds and the second order definition of consistency
∣

∣

∣

∣

B+(u, u, ζ) + B−(u, u, ζ)

ζ
− b(u)

∣

∣

∣

∣

≤ KB ζ2. (1.18)

This is suggested by the particular form of the source term (1.3), given by
the product of functions which exhibit different orders of derivative.

Remark 1.1. In effect, the two discretizations (1.16) and (1.17) are strictly
related, as formally verified by means of standard asymptotic expansions on
the numerical functions and simple algebraic calculations with the discrete
differences of values (1.5) or (1.15b). We also note that many of the second
order schemes proposed in the literature do not include the additional term
in (1.16), for the sake of simplicity (see [25], [2] and [29], for instance), but
that is probably recovered implicitly in the formulation.

1.3 Convergence and error estimates

To deal with the question of deriving error estimates for the approxima-
tion (1.8) to the equation (1.1), we introduce the error function

e(t, x) = u(t, x)− vh(t, x), (1.19)
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which satisfies

∂te+ ∂xe = B(x, u)− BN(x, vh)

=
(

B(x, u)− BN(x, uh)
)

+
(

BN(x, uh)− BN(x, vh)
)

:= C(u; uh) + S(uh; vh).

(1.20)

From (1.6) and (1.7), we obtain the usual expression for the cell-averages,

ei(t) =
1

h

∫

Ci

e(t, x) dx = ui(t)− vi(t), i ∈ Z. (1.21)

The operators C(u; uh) and S(uh; vh) in the formula (1.20) indicate the con-
sistency and stability error term respectively.

The following result constitute the main stage of the convergence analysis
for the Upwind Interface Source method.

Theorem 1.2. We assume z ∈ W 2,p, 1 ≤ p < +∞, and we consider the
numerical source operator (1.10) in (1.20). Then, for all t ∈ R+, the error
function (1.19) verifies the first order estimate

‖e(t)‖Lp ≤ C(t)

(

‖e0‖Lp + h‖z‖W 2,p + h

∫ t

0

exp{−Cs}‖u(s)‖W 1,p ds

)

,

(1.22)
where C(t) is a constant independent of h.

The convergence properties of second order schemes are notably affected
by the technique used to construct piecewise linear approximations of the nu-
merical functions, namely the choice of the slope limiter, as pointed out by
several authors (see [27], [36] and [15]). Without appropriate hypotheses on
the coefficients of such approximations, the proof of the consistency estimate
given in Section 3.2 fails and numerical evidence shows that the discretiza-
tion (1.16) loses second order accuracy (refer to Section 4 for details).

The following results extend the one which is established in Theorem 1.2
to the discretization (1.16) and (1.17).

Theorem 1.3. We assume z ∈ W 3,p, 1 ≤ p < +∞, and we consider the
numerical source operator (1.16), with discrete derivatives computed in the
restricted class of slope limiters introduced in Section 3. Then, for all t∈R+,
the error function (1.19) verifies the second order estimate

‖e(t)‖Lp ≤ C(t)

(

‖e0‖Lp + h2‖z‖W 3,p + h2

∫ t

0

exp{−Cs}‖u(s)‖W 2,p ds

)

,

(1.23)
where C(t) is a constant independent of h.
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Theorem 1.4. We assume z ∈ W 3,p, 1 ≤ p < +∞, and we consider the
numerical source operator (1.17), with the consistency property (1.18). Then,
for all t∈R+, the error function (1.19) verifies the second order estimate

‖e(t)‖Lp ≤ C(t)

(

‖e0‖Lp + h2‖z‖W 3,p + h2

∫ t

0

exp{−Cs}‖u(s)‖W 2,p ds

)

,

(1.24)
where C(t) is a constant independent of h.

Because of the definition (1.6) and (1.9), we have vh0 = uh
0 and then we

deduce from (1.19) that e0(x) = u0(x)− uh
0(x), x∈R. Besides, the following

statements are classical and not difficult to prove (see [5], for instance),

‖uh
0‖Lp ≤ ‖u0‖Lp , 1 ≤ p < +∞,

‖e0‖Lp ≤ Ch if u0 ∈ W 1,p,

‖e0‖Lp ≤ Ch2 if u0 ∈ W 2,p.

The convergence of initial data in (1.22), (1.23) and (1.24), as the mesh size
tends to zero, is thus guaranteed by the first and second order convergence
of piecewise constant approximations.
The detailed proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4, with the
corresponding intermediate stages, are presented in Section 2 and Section 3.

Remark 1.5. The same approach as described above applies to nonlinear
scalar conservation laws with a source term, also to define numerical fluxes
in semi-discrete methods (refer to [30] for specific notations). Therefore, the
arguments developed in this paper might extend to the general case, to derive
complete error estimates for the Upwind Interface Source method.

2 Error estimates for first order schemes

Before giving details about the estimates, we introduce some relations on
the discrete differences of numerical functions, we will frequently use later
on the proofs.

We consider a generic function w ∈ C1, whose cell-averages on the spatial
mesh are denoted by wi =

1
h

∫

Ci
w(x) dx, i∈Z. By performing appropriate
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expansions, we obtain

wi+1 − wi =

∫

Ci

w′(ξ(x)) dx (2.1a)

= hw′(xi) +

∫

Ci

w′′(η(x))(x− xi) dx, (2.1b)

wi+1 − 2wi + wi−1 = h

∫

Ci

w′′(ϑ(x)) dx, (2.1c)

for some ξ(x), η(x), ϑ(x) ∈ Ci. We also recall the classical Taylor’s formula,

w(x) =
n

∑

k=0

1

k!
wk(xi)(x− xi)

k +
1

n!

∫ x

xi

(x− s)nwn+1(s) ds, (2.2)

in the particular form with an integral expression for the remainder.

2.1 Stability estimate

We begin by dealing with the stability error term S(uh; vh) in (1.20), to
test the stability of the numerical source operator.

Lemma 2.1. For the assumptions of Theorem 1.2, together with (1.11a),
there exists a constant C := C(LB, ‖z

′‖L∞), independent of h, such that

∣

∣

∣

∣

∫

R

S(uh; vh) |e|p−1sgn(e) dx

∣

∣

∣

∣

≤ C‖e‖pLp . (2.3)

Proof. From (1.20), we have

∫

R

S(uh; vh) |e|p−1sgn(e) dx =

∫

R

[

BN(x, uh)− BN(x, vh)
]

|e|p−1sgn(e) dx.
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Then, according to (1.10) and (1.6), we deduce
∫

R

S(uh; vh) |e|p−1sgn(e) dx

=

∫

R

{

∑

i∈Z

1

h

[

B+(ui−1, ui,∆zi− 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
]

1Ci

−
∑

i∈Z

1

h

[

B+(vi−1, vi,∆zi− 1

2

) + B−(vi, vi+1,∆zi+ 1

2

)
]

1Ci

}

|e|p−1sgn(e) dx

=
∑

i∈Z

[

B+(ui−1, ui,∆zi− 1

2

)− B+(vi−1, vi,∆zi− 1

2

)
]

e
p−1
i

+
∑

i∈Z

[

B−(ui, ui+1,∆zi+ 1

2

)− B−(vi, vi+1,∆zi+ 1

2

)
]

e
p−1
i

=
∑

i∈Z

[

B+(ui, ui+1,∆zi+ 1

2

)− B+(vi, vi+1,∆zi+ 1

2

)
]

e
p−1
i+1

+
∑

i∈Z

[

B−(ui, ui+1,∆zi+ 1

2

)− B−(vi, vi+1,∆zi+ 1

2

)
]

e
p−1
i := S1 + S2,

where we set e
p−1
i = 1

h

∫

Ci
|e|p−1sgn(e) dx (as usually, we dropped the time

and space dependence in the above formulas for simplicity).
We estimate the terms S1 and S2 separately. For S1, we have

S1 =
∑

i∈Z

[

B+(ui, ui+1,∆zi+ 1

2

)− B+(vi, ui+1,∆zi+ 1

2

)
]

e
p−1
i+1

+
∑

i∈Z

[

B+(vi, ui+1,∆zi+ 1

2

)− B+(vi, vi+1,∆zi+ 1

2

)
]

e
p−1
i+1

=
∑

i∈Z

(
∫ ui

vi

∂B+

∂u
(u, ui+1,∆zi+ 1

2

) du

)

e
p−1
i+1

+
∑

i∈Z

(
∫ ui+1

vi+1

∂B+

∂v
(vi, v,∆zi+ 1

2

) dv

)

e
p−1
i+1 ,

(2.4)

so that, in view of (1.11a), we get

S1 =
∑

i∈Z

(
∫ ui

vi

[

∂B+

∂u
(u, ui+1,∆zi+ 1

2

)−
∂B+

∂u
(u, ui+1, 0)

]

du

)

e
p−1
i+1

+
∑

i∈Z

(
∫ ui+1

vi+1

[

∂B+

∂v
(vi, v,∆zi+ 1

2

)−
∂B+

∂v
(vi, v, 0)

]

dv

)

e
p−1
i+1

≤ LB

∑

i∈Z

|∆zi+ 1

2

| (|ui − vi|+ |ui+1 − vi+1|) |e
p−1
i+1 |.

(2.5)
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We proceed in similar way for S2 and we establish the relations corresponding
to (2.4) and (2.5). Therefore, also recalling (1.21), we conclude

S1 ≤ LB

∑

i∈Z

|∆zi+ 1

2

| (|ei|+ |ei+1|) |e
p−1
i+1 |, (2.6)

S2 ≤ LB

∑

i∈Z

|∆zi+ 1

2

| (|ei|+ |ei+1|) |e
p−1
i |. (2.7)

Because of |sgn(e)| ≤ 1, by using the Hölder’s inequality for 1 ≤ p < +∞,
simple computations lead to obtain |ep−1

i | ≤ |ei|
p−1. This implies, after rear-

ranging terms in (2.6) and (2.7), that

∣

∣

∣

∣

∫

R

S(uh; vh) |e|p−1sgn(e) dx

∣

∣

∣

∣

≤ LB

∑

i∈Z

|∆zi+ 1

2

|
(

|ei|
p + |ei|

p−1|ei+1|+ |ei||ei+1|
p−1 + |ei+1|

p
)

.
(2.8)

Now the Young’s inequality, ab ≤ ap

p
+ bq

q
, 1

p
+ 1

q
= 1, applied to (2.8) and the

immediate property |ei|
p ≤ 1

h

∫

Ci
|e|p dx, i∈Z, provide

∣

∣

∣

∣

∫

R

S(uh; vh) |e|p−1sgn(e) dx

∣

∣

∣

∣

≤ 2LB

∑

i∈Z

|∆zi+ 1

2

|

h

(
∫

Ci

|e|p dx+

∫

Ci+1

|e|p dx

)

.

(2.9)
In the case of (1.5), according to (2.1a), a direct estimate yields the first order

approximation
|∆z

i+1
2

|

h
≤ ‖z′‖L∞ . The proof of (2.3) is thus completed.

2.2 Consistency estimate

We turn our attention to the consistency error term C(u; uh) in (1.20), for
which an optimal result in terms of the rate of convergence is obtained.

Lemma 2.2. For the assumptions of Theorem 1.2, together with (1.11a),
(1.11b) and (1.12), there exists a constant independent of h such that

∣

∣

∣

∣

∫

R

C(u; uh) |e|p−1sgn(e) dx

∣

∣

∣

∣

≤ Ch (‖z‖W 2,p + ‖u‖W 1,p) ‖e‖p−1
Lp . (2.10)

Proof. From (1.20), we have

∫

R

C(u; uh) |e|p−1sgn(e) dx =

∫

R

[

B(x, u)− BN(x, uh)
]

|e|p−1sgn(e) dx.
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We compute the integral of the discrete source operator,

∫

R

BN(x, uh) |e|p−1sgn(e) dx

=

∫

R

{

∑

i∈Z

1

h

[

B+(ui−1, ui,∆zi− 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
]

1Ci

}

|e|p−1sgn(e) dx

=
∑

i∈Z

[

B+(ui−1, ui,∆zi− 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
]

e
p−1
i ,

where e
p−1
i = 1

h

∫

Ci
|e|p−1sgn(e) dx. Then we decompose as follows,

∫

R

BN(x, uh) |e|p−1sgn(e) dx

=
∑

i∈Z

[

B+(ui, ui+1,∆zi+ 1

2

) + B−(ui, ui+1,∆zi+ 1

2

)
]

e
p−1
i +

+
∑

i∈Z

[

B+(ui−1, ui,∆zi− 1

2

)− B+(ui, ui+1,∆zi+ 1

2

)
]

e
p−1
i := T1 + T2.

(2.11)

We estimate each Tj, j = 1, 2 separately. Setting B = B+ + B−, we write

T1 =
∑

i∈Z

[

B(ui, ui+1,∆zi+ 1

2

)− B(ui, ui,∆zi+ 1

2

)
]

e
p−1
i

+
∑

i∈Z

[

B+(ui, ui,∆zi+ 1

2

) + B−(ui, ui,∆zi+ 1

2

)
]

e
p−1
i := T 1

1 + T 2
1 .

(2.12)

For the remainder T 1
1 , thanks to (1.11a), we get

T 1
1 =

∑

i∈Z

(
∫ ui+1

ui

[

∂B

∂v
(ui, v,∆zi+ 1

2

)−
∂B

∂v
(ui, v, 0)

]

dv

)

e
p−1
i

≤ LB

∑

i∈Z

|∆zi+ 1

2

||ui+1 − ui||e
p−1
i |,

so that (2.1a) applied to (1.5) and (1.6) leads to conclude

T 1
1 ≤ LB‖z

′‖L∞

∑

i∈Z

(
∫

Ci

|∂xu| dx

)(
∫

Ci

|e|p−1 dx

)

. (2.13)
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The second term T 2
1 of (2.12) can be further decomposed into three parts,

T 2
1 =

∑

i∈Z

B(ui, ui,∆zi+ 1

2

)

∆zi+ 1

2

∆zi+ 1

2

h
he

p−1
i

=
∑

i∈Z

B(ui, ui,∆zi+ 1

2

)

∆zi+ 1

2

[

∆zi+ 1

2

h
− z′(xi)

]

he
p−1
i

+
∑

i∈Z

[

B(ui, ui,∆zi+ 1

2

)

∆zi+ 1

2

− b(ui)

]

z′(xi)he
p−1
i

+
∑

i∈Z

z′(xi)b(ui)he
p−1
i := T

2,1
1 + T

2,2
1 + T

2,3
1 .

(2.14)

We give details for each part. By using (1.11a), from (2.1b) we deduce that

T
2,1
1 ≤

∑

i∈Z

∣

∣

∣

∣

∣

B(ui, ui,∆zi+ 1

2

)− B(ui, ui, 0)

∆zi+ 1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆zi+ 1

2

h
− z′(xi)

∣

∣

∣

∣

∣

h|ep−1
i |

≤ LB

∑

i∈Z

(
∫

Ci

|z′′| dx

)(
∫

Ci

|e|p−1 dx

)

.

(2.15)

Because of the consistency property (1.12) and (2.1a) for (1.5), we derive

T
2,2
1 ≤ KB‖z

′‖L∞

∑

i∈Z

(
∫

Ci

|z′| dx

)(
∫

Ci

|e|p−1 dx

)

. (2.16)

Finally, the third term in (2.14) is equivalent to the integral of the analytical
source operator (1.3). Indeed, by means of Taylor’s expansions in (1.6), we
obtain the midpoint formula (dropping the time dependence, for simplicity)

ui = u(xi) +Ri, Ri =
1

h

∫

Ci

∂xu(ξ(x))(x− xi) dx,

for some ξ(x) ∈ Ci, and the regularity assumed in (1.3) guarantees that

b(ui) = b(u(xi)) + b′(νi)Ri, |b′(νi)| ≤ Lb, ∀i ∈ Z.

We thus write
T

2,3
1 =

∑

i∈Z

z′(xi)b(u(xi))he
p−1
i +R1, (2.17)

where the remainder satisfies

R1 ≤ Lb‖z
′‖L∞

∑

i∈Z

(
∫

Ci

|∂xu| dx

)(
∫

Ci

|e|p−1 dx

)

. (2.18)
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The Taylor’s formula (2.2), applied to the source term (1.3), yields
∫

R

B(x, u) |e|p−1sgn(e) dx =
∑

i∈Z

∫

Ci

z′(xi)b(u(xi)) |e|
p−1sgn(e) dx+R2

and we readily check that the remainder satisfies

R2 ≤ Lb

∑

i∈Z

(
∫

Ci

|z′′| dx

)(
∫

Ci

|e|p−1 dx

)

+ Lb‖z
′‖L∞

∑

i∈Z

(
∫

Ci

|∂xu| dx

)(
∫

Ci

|e|p−1 dx

)

.

(2.19)

Therefore, from (2.17) we have

T
2,3
1 =

∫

R

B(x, u) |e|p−1sgn(e) dx+R1 −R2, (2.20)

with the remainders (2.18) and (2.19), which are conveniently bounded.
Coming back to decomposition (2.11), using (1.11a) we have for the last term

T2 =
∑

i∈Z

[

B+(ui−1, ui,∆zi− 1

2

)− B+(ui, ui,∆zi− 1

2

)
]

e
p−1
i

+
∑

i∈Z

[

B+(ui, ui,∆zi− 1

2

)− B+(ui, ui,∆zi+ 1

2

)
]

e
p−1
i

+
∑

i∈Z

[

B+(ui, ui,∆zi+ 1

2

)− B+(ui, ui+1,∆zi+ 1

2

)
]

e
p−1
i

=
∑

i∈Z

(
∫ ui−1

ui

[

∂B+

∂u
(u, ui,∆zi− 1

2

)−
∂B+

∂u
(u, ui, 0)

]

du

)

e
p−1
i

+
∑

i∈Z

[

B+(ui, ui,∆zi− 1

2

)− B+(ui, ui,∆zi+ 1

2

)
]

e
p−1
i

+
∑

i∈Z

(
∫ ui

ui+1

[

∂B+

∂v
(ui, v,∆zi+ 1

2

)−
∂B+

∂v
(ui, v, 0)

]

dv

)

e
p−1
i

≤ LB

∑

i∈Z

(

|∆zi− 1

2

||ui − ui−1|+ |∆zi+ 1

2

−∆zi− 1

2

|

+ |∆zi+ 1

2

||ui+1 − ui|
)

|ep−1
i |,

so that we conclude by means of (2.1a) and (2.1c),

T2 ≤ 2LB‖z
′‖L∞

∑

i∈Z

(
∫

Ci

|∂xu| dx

)(
∫

Ci

|e|p−1 dx

)

+ LB

∑

i∈Z

(
∫

Ci

|z′′| dx

)(
∫

Ci

|e|p−1 dx

)

.

(2.21)
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We put (2.11), (2.12), (2.14) and (2.20) together, with the corresponding esti-
mates stated in (2.13), (2.15), (2.16), (2.18), (2.19) and (2.21). We apply the

discrete Hölder’s inequality,
∑

i∈Z
aibi ≤

(
∑

i∈Z
a
p
i

)
1

p ·
(
∑

i∈Z
b
q
i

)
1

q , 1
p
+ 1

q
= 1,

to the products and then the usual continuous inequality to each integral on
the mesh cells. This provides a coefficient h in front of all expressions and
the result in (2.10) thus follows, with C := C(LB, KB, Lb, ‖z

′‖L∞).

2.3 Proof of Theorem 1.2

We multiply equation (1.20) by |e|p−1sgn(e) and we integrate as follows,
∫

R

(∂te+ ∂xe) |e|
p−1sgn(e) dx

=

∫

R

C(u; uh) |e|p−1sgn(e) dx+

∫

R

S(uh; vh) |e|p−1sgn(e) dx.

(2.22)

An integration by parts shows
∫

R
|e|p−1sgn(e) ∂xe dx = 0, then we deduce

from (2.22), (2.3) and (2.10) that

1

p
∂t‖e(t)‖

p
Lp ≤ C‖e(t)‖pLp + Ch (‖z‖W 2,p + ‖u(t)‖W 1,p) ‖e(t)‖p−1

Lp . (2.23)

Let t∗ ∈ R+ be such that ‖e(t∗)‖Lp = maxt∈R+
‖e(t)‖Lp . By integrating in

time from 0 to t∗, we get

‖e(t∗)‖pLp ≤ ‖e(0)‖pLp + Cp

∫ t∗

0

‖e(s)‖pLp ds

+ Cph‖z‖W 2,p

∫ t∗

0

‖e(s)‖p−1
Lp ds+ Cph

∫ t∗

0

‖u(s)‖W 1,p‖e(s)‖p−1
Lp ds

≤ ‖e(0)‖Lp‖e(t∗)‖p−1
Lp + Cp‖e(t∗)‖p−1

Lp

∫ t∗

0

‖e(s)‖Lp ds

+ Cph t∗‖z‖W 2,p‖e(t∗)‖p−1
Lp + Cph‖e(t∗)‖p−1

Lp

∫ t∗

0

‖u(s)‖W 1,p ds,

which implies that

‖e(t∗)‖Lp ≤ ‖e(0)‖Lp + Cp

∫ t∗

0

‖e(s)‖Lp ds

+ Cph t∗‖z‖W 2,p + Cph

∫ t∗

0

‖u(s)‖W 1,p ds.

(2.24)

Finally, a straightforward extension of Gronwall’s inequality yields the de-
sired result (1.22), where C(t) := C(t; p, LB, KB, Lb, ‖z

′‖L∞) is any positive
constant depending on time by the factor exp{−Ct}.
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3 Error estimates for second order schemes

The convergence properties of the approximation (1.16) are shown by
mimicking the proof of the analogous results for (1.10), provided in Section 2.

As in the case of first order approximations, we derive some preliminary
estimates on the discrete differences of numerical functions.
For a function w ∈ C2, with cell-averages wi = 1

h

∫

Ci
w(x) dx, i ∈ Z, we

construct piecewise linear approximations on the spatial mesh by means of
the coefficients

w̄i(x) = wi + (x− xi)w
′
i, i ∈ Z, x ∈ Ci, (3.1)

where the numerical derivatives are defined as appropriate interpolations of
the discrete increments between neighboring cells,

w′
i = lmtr

{

wi+1 − wi

h
,
wi − wi−1

h

}

, i ∈ Z. (3.2)

We consider a general representation of the slope limiter introduced in the
above formula, i.e. if M = lmtr{α, β}, then M =κα + λβ, with κ, λ ∈ [0, 1]
and κ+λ = 1 or κ+λ = 0. In particular, we restrict our analysis to the special
class of operators which satisfy the condition κi + λi = 1, ∀i ∈ Z (that ex-
cludes, for instance, the classical minmod limiter in the case of nonmonotonic
numerical functions). We also assume that the numerical application (3.2)
relating the cell-averages wj, j= i−1, i, i+1, to the discrete derivative w′

i is
Lipschitz continuous on its arguments, with constant C

h
. Several examples

of slope limiter which satisfies these properties have been formulated in the
literature (refer to [12], [13], [14], [26], [32] and [33]).

We deduce from those definitions that

w′
i = κi

wi+1 − wi

h
+ λi

wi − wi−1

h
, i ∈ Z. (3.3)

The interfacial values of the reconstruction (3.1) are given by

w−
i = w̄i(xi− 1

2

) = wi −
h

2
w′

i, w+
i = w̄i(xi+ 1

2

) = wi +
h

2
w′

i, (3.4)

and we are interested in evaluating the jumps at the interfaces, i.e. w−
i+1−w+

i .
Taking into account (3.4) and (3.3), we have

w−
i+1 − w+

i = wi+1 − wi −
h

2

(

w′
i + w′

i+1

)

=

(

1−
κi

2
−

λi+1

2

)

W1 −
λi

2
W2 −

κi+1

2
W3,

(3.5)
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where we indicate

W1 = wi+1 − wi, W2 = wi − wi−1, W3 = wi+2 − wi+1. (3.6)

Consequently, to deal with (3.5) we use the same procedure as (2.1a)-(2.1b),
based on high order Taylor expansions applied to the various terms in (3.6).
Besides, we observe that

wi+1 − wi =
1

h

∫

Ci

[w(x+ h)− w(x)] dx =
1

h

∫

Ci

∫ h

0

w′(x+ s) ds dx,

then the following result holds,

|Wj| ≤ ‖w′‖L1(Ci), i ∈ Z, j = 1, 2, 3. (3.7)

The simplest first order approximation reads

w−
i+1 − w+

i =

(

1−
κi

2
−

λi+1

2

)
∫

Ci

w′(ξ(x)) dx

−
λi

2

∫

Ci

w′(η(x)) dx−
κi+1

2

∫

Ci

w′(ϑ(x)) dx,

(3.8)

for some ξ(x), η(x), ϑ(x) ∈ Ci, so it follows also from (3.7) that

|w−
i+1 − w+

i | ≤ Di+ 1

2

‖w‖W 1,1 or |w−
i+1 − w+

i | ≤ Di+ 1

2

h‖w′‖L∞ . (3.9)

Recalling that κi + λi=1, ∀i∈Z, we obtain the second order approximation

w−
i+1 − w+

i =

(

1−
κi

2
−

λi+1

2

)
∫

Ci

w′′(ξ(x))(x− xi) dx

+
λi

2

∫

Ci

w′′(η(x))(x− xi) dx−
3

2
κi+1

∫

Ci

w′′(ϑ(x))(x− xi) dx,

for some ξ(x), η(x), ϑ(x) ∈ Ci, and then it follows

|w−
i+1 − w+

i | ≤ Di+ 1

2

h‖w‖W 2,1 or |w−
i+1 − w+

i | ≤ Di+ 1

2

h2‖w′′‖L∞ . (3.10)

Remark 3.1. We note that the constant in (3.9) and (3.10) satisfies, uni-

formly for i∈Z, the estimate Di+ 1

2

≤max
{(

1− κi

2
− λi+1

2

)

, λi

2
, 3
4
κi+1

}

≤ 1.

Moreover, for any set of values (κi, λi)i∈Z, the bounds on these quantities are
always not degenerate.
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Finally, a long but straightforward computation, involving also the third
order expansions, leads to conclude that

w−
i+1 − w+

i = (λi+1 − κi)
h2

2
w′′(xi) (3.11)

+

(

1−
κi

2
−

λi+1

2

)
∫

Ci

w′′′(ξ(x))(x− xi)
2 dx

−
λi

2

∫

Ci

w′′′(η(x))(x− xi)
2dx−

κi+1

2

∫

Ci

w′′′(ϑ(x))(x− xi)
2dx,

for some ξ(x), η(x), ϑ(x) ∈ Ci.

Remark 3.2. According to the piecewise linear reconstruction (3.1), dis-
crete interfacial jumps approximate the second derivative of the numerical
functions, as it can be roughly deduced from (3.5).

3.1 Stability estimate

The following result corresponds to that presented in Section 2.1 and
then we adapt the proof of Lemma 2.1 in the case of the numerical source
operator (1.16).

Lemma 3.3. For the assumptions of Theorem 1.3, together with (1.11a),
there exists a constant C := C(LB, Lb, ‖z

′‖L∞ , ‖z′′‖L∞), independent of h,
such that

∣

∣

∣

∣

∫

R

S(uh; vh) |e|p−1sgn(e) dx

∣

∣

∣

∣

≤ C‖e‖pLp . (3.12)

Proof. From (1.20), (1.16) and (1.6), we deduce

∫

R

S(uh; vh) |e|p−1sgn(e) dx

=

∫

R

{

∑

i∈Z

1

h

[

B+(u+
i−1, u

−
i ,∆zi− 1

2

) + B−(u+
i , u

−
i+1,∆zi+ 1

2

)
]

1Ci

−
∑

i∈Z

1

h

[

B+(v+i−1, v
−
i ,∆zi− 1

2

) + B−(v+i , v
−
i+1,∆zi+ 1

2

)
]

1Ci

}

|e|p−1sgn(e) dx

+

∫

R

{

∑

i∈Z

z′i b(ui) 1Ci
−

∑

i∈Z

z′i b(vi) 1Ci

}

|e|p−1sgn(e) dx
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=
∑

i∈Z

[

B+(u+
i , u

−
i+1,∆zi+ 1

2

)− B+(v+i , v
−
i+1,∆zi+ 1

2

)
]

e
p−1
i+1

+
∑

i∈Z

[

B−(u+
i , u

−
i+1,∆zi+ 1

2

)− B−(v+i , v
−
i+1,∆zi+ 1

2

)
]

e
p−1
i (3.13)

+
∑

i∈Z

z′i [b(ui)− b(vi)]he
p−1
i := S1 + S2 + S3,

where e
p−1
i = 1

h

∫

Ci
|e|p−1sgn(e) dx.

To deal with S1 and S2, we proceed exactly as in (2.4) and (2.5). Because
of the definition (3.3) and (3.4), together with the Lipschitz property of the
application (3.2), simple computations lead to verify that

|u+
i − v+i | ≤ max (|ui − vi|+ |ui+1 − vi+1|+ |ui−1 − vi−1|) ,

and the same relation is satisfied by |u−
i −v−i |. So, we can establish for the

second order methods similar estimates to (2.6) and (2.7).
On the other hand, a direct treatment of the last term in (3.13) yields

S3 ≤ Lb

∑

i∈Z

|z′i| |ui − vi|h|e
p−1
i |. (3.14)

We give some details about the estimate of numerical derivatives (3.3), for
the particular case of (1.5), we will use later on the proofs.
By performing appropriate expansions, also recalling that κi+λi=1, ∀i ∈ Z,
we obtain

z′i =
κi

h

∫

Ci

z′(ξ(x)) dx+
λi

h

∫

Ci

z′(η(x)) dx

= z′(xi) + (κi − λi)
h

2
z′′(xi)

+
κi

3
h

∫

Ci

z′′′(ϑ(x)) dx+
λi

3
h

∫

Ci

z′′′(̺(x)) dx,

(3.15)

for some ξ(x), η(x), ϑ(x), ̺(x)∈Ci, which implies that |z′i| ≤ ‖z′‖L∞ in (3.14).
Thanks to the arguments used for passing to (2.8) and (2.9), with the first
order approximation (3.9) applied to (1.15b), we conclude (3.12).

3.2 Consistency estimate

The proof of the following result is also an extension of that of Lemma 2.2.
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Lemma 3.4. For the assumptions of Theorem 1.3, together with (1.11a),
(1.11b) and (1.12), there exists a constant independent of h such that

∣

∣

∣

∣

∫

R

C(u; uh) |e|p−1sgn(e) dx

∣

∣

∣

∣

≤ Ch2 (‖z‖W 3,p + ‖u‖W 2,p) ‖e‖p−1
Lp . (3.16)

Proof. We consider the integral of the source operator (1.16), computed on
the approximation (1.6) of the analytical solution,

∫

R

BN(x, uh) |e|p−1sgn(e) dx

=

∫

R

{

∑

i∈Z

1

h

[

B+(u+
i−1, u

−
i ,∆zi− 1

2

) + B−(u+
i , u

−
i+1,∆zi+ 1

2

)
]

1Ci

}

|e|p−1sgn(e) dx

+

∫

R

{

∑

i∈Z

z′ib(ui)1Ci

}

|e|p−1sgn(e) dx

=
∑

i∈Z

[

B+(u+
i−1, u

−
i ,∆zi− 1

2

) + B−(u+
i , u

−
i+1,∆zi+ 1

2

)
]

e
p−1
i +

∑

i∈Z

z′ib(ui)he
p−1
i ,

where we set e
p−1
i = 1

h

∫

Ci
|e|p−1sgn(e) dx. In the sequel, we neglect the de-

pendence on time of the numerical functions to simplify the notation.
We decompose the first part of the above formula, similarly to (2.11), into
two terms Tj, j=1, 2 treated separately. The remainder can be rewritten as

T2 =
∑

i∈Z

[

B+(u+
i−1, u

−
i ,∆zi− 1

2

)− B+(u+
i , u

−
i ,∆zi− 1

2

)
]

e
p−1
i

+
∑

i∈Z

[

B+(u+
i , u

−
i ,∆zi− 1

2

)− B+(u+
i , u

−
i ,∆zi+ 1

2

)
]

e
p−1
i

+
∑

i∈Z

[

B+(u+
i , u

−
i ,∆zi+ 1

2

)− B+(u+
i , u

−
i+1,∆zi+ 1

2

)
]

e
p−1
i

and the usual procedures for the differences, by using (1.11a), leads to deduce

T2 ≤ LB

∑

i∈Z

(

|∆zi− 1

2

||u+
i − u+

i−1|+ |∆zi+ 1

2

−∆zi− 1

2

|

+ |∆zi+ 1

2

||u−
i+1 − u−

i |
)

|ep−1
i |.

(3.17)

According to the definition (3.3) and (3.4), concerning (1.14), we easily obtain

|u+
i − u+

i−1| = ui − ui−1 +
h

2

(

u′
i − u′

i−1

)

≤

∫

Ci

|∂xu| dx,
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with an analogous estimate for |u−
i+1 − u−

i |, while a second order approxima-
tion is needed for the central term in (3.17), that is

|∆zi+ 1

2

−∆zi− 1

2

| = (zi+1 − 2zi + zi−1)−
h

2

(

z′i+1 − z′i−1

)

≤ h2

∫

Ci

|z′′′| dx.

These estimates and (3.10) for (1.15b) provide an analogous inequality to (2.21),

T2 ≤ 2LB h‖z′′‖L∞

∑

i∈Z

(
∫

Ci

|∂xu| dx

)(
∫

Ci

|e|p−1 dx

)

+ LBh
∑

i∈Z

(
∫

Ci

|z′′′| dx

)(
∫

Ci

|e|p−1 dx

)

.

(3.18)

For the term corresponding to (2.12), setting B = B+ + B−, we thus have

T1 =
∑

i∈Z

[

B(u+
i , u

−
i+1,∆zi+ 1

2

)− B(u+
i , u

+
i ,∆zi+ 1

2

)
]

e
p−1
i

+
∑

i∈Z

B(u+
i , u

+
i ,∆zi+ 1
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(3.19)

We use again the property (1.11a) and we deduce

T 1
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∑
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i ||e
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to conclude from (3.8) and (3.10) that
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. (3.20)

The second term of (3.19) is further decomposed, also thanks to (3.11),
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(3.21)

where Qi+ 1

2

= λi+1−κi ≤ 1, ∀i ∈ Z, for the properties of coefficients in (3.3).

We give a few details of the estimate for each part. We proceed as in (2.15),
by means of (1.11a) and (3.11), to obtain

T
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1 ≤ LBh
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i∈Z

(
∫
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|e|p−1 dx

)

. (3.22)
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From the consistency bound (1.12), together with the approximation (3.8),
we derive that

T
2,2
1 ≤ KB h‖z′′‖L∞

∑

i∈Z

(
∫

Ci

|z′| dx

)(
∫

Ci

|e|p−1 dx

)

. (3.23)

Then we pass to the crucial point of the proof, to show the convergence
towards the integral of the analytical source operator (1.3). On the one
hand, by applying to that function classical Taylor’s expansions, we have
∫

R

B(x, u) |e|p−1sgn(e) dx =
∑

i∈Z

∫
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z′(xi)b(u(xi)) |e|
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+
∑

i∈Z

∫

Ci
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p−1sgn(e) dx,

(3.24)

for some ξ(xi)∈Ci. On the other hand, recalling the definition of interfacial
values (1.15a) and by the regularity assumed in (1.3), we can write

b(u+
i ) = b(ui) + b′(νi)

h

2
u′
i, |b′(νi)| ≤ Lb, ∀i ∈ Z,

so that from (3.21) we deduce

T
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2
z′′(xi)b(ui)he

p−1
i +R1 (3.25)

and we use analogous approximations to (3.15) for the numerical derivatives
of the analytical solution to obtain

R1 ≤ Lbh‖z
′′‖L∞
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(
∫
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|e|p−1 dx

)

. (3.26)

To conclude the announced result, we need to take into account the contri-
bution of the additional term in the numerical source operator, neglected in
the first part of the proof. The second order approximation of cell-averages,

ui = u(xi) +Ri, Ri =
1

h

∫

Ci

∂xxu(ξ(x))
(x− xi)

2

2
dx, (3.27)

for some ξ(x) ∈ Ci, together with the usual Taylor’s expansion

b(ui) = b(u(xi)) + b′(νi)Ri, |b′(νi)| ≤ Lb, ∀i ∈ Z, (3.28)
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after proceeding according to (3.15), setting Pi+ 1

2

= κi − λi, i∈Z, leads to
∑
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(3.29)

with the following estimates for the remainders,

R2 ≤ Lb h‖z
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, (3.30)

R3 ≤ Lb h
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. (3.31)

Therefore, up to the bounded remainders (3.26), (3.30) and (3.31), by com-
bining (3.24), (3.25) and (3.29), we have

∫

R

B(x, u) |e|p−1sgn(e) dx− T
2,3
1 −

∑

i∈Z

z′ib(ui)he
p−1
i

=
∑

i∈Z

∫

Ci

z′′(ξ(xi)) b(u(ξ(xi))) (x− xi) |e|
p−1sgn(e) dx

+
∑

i∈Z

∫

Ci

z′(ξ(xi)) b
′(u(ξ(xi))) u

′(ξ(xi)) (x− xi) |e|
p−1sgn(e) dx

−
∑

i∈Z

(Pi+ 1

2

+Qi+ 1

2

)
h

2
z′′(xi)b(u(xi))he

p−1
i

−
∑

i∈Z

(Pi+ 1

2

+Qi+ 1

2

)
h

2
z′′(xi)b

′(νi)Ri he
p−1
i ,

(3.32)

where again we used (3.27)-(3.28) and Pi+ 1

2

+Qi+ 1

2

=λi+1 − λi, i∈Z.

We introduce an appropriate hypothesis on the slope limiter (3.2)-(3.3), as
discussed in Section 1.3, namely an additional property for its coefficients,

∃ Λ0 > 0 such that λi+1 − λi ≥ Λ0, ∀i ∈ Z. (3.33)

This condition and general properties of the numerical functions allow us to
rewrite the difference between first and third term in the right-hand side of
(3.32) in integral form, to conclude that
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≤ h
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An analogous estimate is proved for the difference between second and fourth
term in the right-hand side of (3.32), which also involves the second derivative
of the analytical solution, similarly to the remainder (3.30).
We apply to the previous computations the arguments in the conclusion of
Lemma 2.2, to obtain (3.16) with C = C(LB, KB, Lb, ‖z

′‖L∞ , ‖z′′‖L∞).

3.3 Proof of Theorem 1.3 and Theorem 1.4

With the stability estimate (3.12) and the consistency estimate (3.16), we
proceed as in Section 2.3 to conclude the second order error estimate (1.23).

The proof of Theorem 1.4 is obtained by using the main tools introduced
for proving the results of Section 2 and Section 3.
Because of the consistency hypotheses (1.11a)-(1.18), the same techniques as
in Lemma 2.2 extend to the numerical source operator (1.17), while we apply
the arguments formulated in Lemma 3.3 to deduce stability estimates.

4 Remarks and numerical evidence

The principal issue in the proofs of Theorem 1.2 and Theorem 1.3 is to
establish the consistency estimates (2.10) and (3.16) respectively, in partic-
ular to show the convergence of the numerical source operators towards the
analytical source term (1.3) from the relations (2.17) and (3.25).

We note that, due to the introduction of piecewise linear reconstructions
of the function z, the differences of interfacial values approximate the second
order derivative and the upwind part of the discretization (1.16) “overtakes”
the desired result; an additional term is thus needed to recover the first
order derivatives in the Taylor’s expansion of the source term. Moreover,
some restrictions on the definition of the slope limiter are also required, to
guarantee the occurrence of suitable error estimates (refer also to [7], [23]
and [24]). Without these assumptions, only suboptimal results are derived
(see [19] and [20], for instance).

These considerations can also be justified numerically: the tables above
reproduce the convergence rates observed when the Upwind Interface Source
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||e(t)||L1 ||e(t)||L2 ||e(t)||L∞

Error Rate Error Rate Error Rate

50 0.323743E-02 0.772868E-02 0.368811E-01

100 0.816610E-03 1.987 0.270992E-02 1.512 0.184893E-01 0.996

200 0.207343E-03 1.982 0.951254E-03 1.511 0.921217E-02 1.001

400 0.516765E-04 1.990 0.336009E-03 1.508 0.461648E-02 0.999

800 0.128919E-04 1.993 0.118745E-03 1.506 0.231075E-02 0.999

1600 0.321149E-05 1.995 0.419888E-04 1.505 0.115659E-02 0.999

Table 1

||e(t)||L1 ||e(t)||L2 ||e(t)||L∞

Error Rate Error Rate Error Rate

50 0.129563E-02 0.148671E-02 0.324608E-02

100 0.326417E-03 1.989 0.368537E-03 2.012 0.814699E-03 1.994

200 0.819300E-04 1.992 0.917495E-04 2.009 0.203996E-03 1.996

400 0.205217E-04 1.993 0.228873E-04 2.007 0.509962E-04 1.997

800 0.513540E-05 1.995 0.571567E-05 2.006 0.127479E-04 1.998

1600 0.128447E-05 1.996 0.142815E-05 2.005 0.318655E-05 1.998

Table 2

method illustrated in this paper is applied to the simplified problem

∂tu = z′(x), u(0, x) = u0(x),

with z(x) = sin(π ∗x), x ∈ [0, 1], for which an analytical solution is available
to make direct comparisons, u(t, x) = u0(x) + z′(x) t.
The results plotted correspond to the discretization (1.16), for the standard
VanLeer limiter, with a simple TVD reconstruction (see [34]) in Table 1 and
with an appropriate ENO reconstruction (see [12]) in Table 2.

The problems just discussed do not arise in the case of discretization (1.17),
for which stronger consistency hypotheses are made, to compensate reduced
regularity of the reconstructions.

Some classical convergence results for numerical approximations of hyper-
bolic conservation laws are presented in [28], [37], [11], [6] and its references.
Further applications of these methods to different situations are proposed
in [3] and [4].

Although the question of preserving stationary states at the discrete level
is only handled rigorously for discretizations of the first order (refer to [30]),
the numerical results obtained for the Saint-Venant system indicate that the
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discretization (1.16) exactly simulates simple equilibria (refer to [16]). As far
as we know, similar issues are only addressed in [9] and [21].
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