Adaptive estimation of conditional density function - Archive ouverte HAL
Rapport Année : 2013

Adaptive estimation of conditional density function

Résumé

In this paper we consider the problem of estimating $f$, the conditional density of $Y$ given $X$, by using an independent sample distributed as $(X,Y)$ in the multivariate setting. We consider the estimation of $f(x,.)$ where $x$ is a fixed point. We define two different procedures of estimation, the first one using kernel rules, the second one inspired from projection methods. Both adapted estimators are tuned by using the Goldenshluger and Lepski methodology. After deriving lower bounds, we show that these procedures satisfy oracle inequalities and are optimal from the minimax point of view on anisotropic H\"{o}lder balls. Furthermore, our results allow us to measure precisely the influence of $\fx(x)$ on rates of convergence, where $\fx$ is the density of $X$. Finally, some simulations illustrate the good behavior of our tuned estimates in practice.
Fichier principal
Vignette du fichier
densite_cond.pdf (430.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00922555 , version 1 (27-12-2013)
hal-00922555 , version 2 (26-12-2014)

Identifiants

Citer

Karine Bertin, Claire Lacour, Vincent Rivoirard. Adaptive estimation of conditional density function. 2013. ⟨hal-00922555v1⟩
550 Consultations
417 Téléchargements

Altmetric

Partager

More