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Adaptive pointwise estimation of conditional density function

Karine Bertin, Claire Lacour and Vincent Rivoirard

Universidad de Valparaíso, Université Paris-Sud, Université Paris Dauphine

Abstract: In this paper we consider the problem of estimating f , the conditional density
of Y given X , by using an independent sample distributed as (X,Y ) in the multivariate
setting. We consider the estimation of f(x, .) where x is a fixed point. We define
two different procedures of estimation, the first one using kernel rules, the second one
inspired from projection methods. Both adapted estimators are tuned by using the
Goldenshluger and Lepski methodology. After deriving lower bounds, we show that
these procedures satisfy oracle inequalities and are optimal from the minimax point of
view on anisotropic Hölder balls. Furthermore, our results allow us to measure precisely
the influence of fX(x) on rates of convergence, where fX is the density of X . Finally,
some simulations illustrate the good behavior of our tuned estimates in practice.

Key words and phrases: conditional density; adaptive estimation; kernel rules; projection
estimates; oracle inequality; minimax rates; anisotropic Hölder spaces

1 Introduction

1.1 Motivation

In this paper, we consider the problem of conditional density estimation. For this purpose, we
assume we are given an i.i.d. sample (Xi, Yi) of couples of random vectors (for any i, Xi ∈ Rd1 and
Yi ∈ Rd2 , with d1 ≥ 1 and d2 ≥ 1) with common probability density function fX,Y and marginal
densities fY and fX : for any y ∈ Rd2 and any x ∈ Rd1 ,

fY (y) =

∫

Rd1

fX,Y (u, y)du, fX(x) =

∫

Rd2

fX,Y (x, v)dv.

The conditional density function of Yi given Xi = x is defined by

f(x, y) =
fX,Y (x, y)

fX(x)

for all y ∈ R and x ∈ R such that fX(x) > 0. Our goal is to estimate f using the observations (Xi, Yi).
The conditional density is much more informative than the simple regression function and then its
estimation has many practical applications: in Actuaries (Efromovich (2010)), Medicine (Takeuchi
et al. (2009)), Economy (Hall et al. (2004)), Meteorology (Jeon and Taylor (2012)) among others. In
particular, due to recent advances in ABC methods, the problem of conditional density estimation
in the multivariate setting is of main interest.

Indeed, the ABC methodology, where ABC stands for approximate Bayesian computation,
offers a resolution of untractable-yet-simulable models, that is models for which it is impossible to
calculate the likelihood. The standard ABC procedure is very intuitive and consists in

• simulating a lot of parameters values using the prior distribution and, for each parameter
value, a corresponding dataset,

• comparing this simulated dataset to the observed one;

1



• finally, keeping the parameter values for which distance between the simulated dataset and
the observed one is smaller than a tolerance level.

That is a crude nonparametric approximation of the target posterior distribution (the conditional
distribution of the parameters given the observation). Even if some nonparametric perspectives
have been considered (see Blum (2010) or Biau et al. (2012)), we easily imagine that, using the
simulated couples (parameters and datasets), a good nonparametric estimation of the posterior
distribution can be a credible alternative to the ABC method. Such a procedure has to consider
that the conditional density has to be estimated only for the observed value in the conditioning.

All previous points clearly motivate our work and in the sequel, we aim at providing an estimate
with the following 4 requirements:

1. The estimate has to be fully data-driven and implementable in a reasonable computational
time.

2. The parameters of the method have to adapt to the function f in the neighborhood of x.
Tuning the hyperparameters of the estimate has to be an easy task.

3. The estimate should be optimal from the theoretical point of view in an asymptotic setting
but also in a non-asymptotic one.

4. Estimating f in neighborhoods of points x where fX(x) is equal or close to 0 is of course a
difficult task and a loss is unavoidable. Studying this loss and providing estimates that are
optimal with respect to this problem are the fourth motivation of this paper.

To address the problem of conditional density estimation, the first idea of statisticians was
to estimate f by the ratio of a kernel estimator of the joint density fX,Y and a kernel estimator
of fX : see Rosenblatt (1969), Chen et al. (2000), or also Hyndman et al. (1996), De Gooijer and
Zerom (2003) for refinements of this method. A important work in this line is the one of Fan
et al. (1996) who extend the Rosenblatt estimator by a local polynomial method (see also Hyndman
and Yao (2002)). The estimators introduced in the ABC literature are also of this kind: a linear
(or quadratic) adjustment is realized on the data before to apply the classic quotient estimator
(Beaumont et al. (2002) , Blum (2010)). Other directions are investigated by Bouaziz and Lopez
(2010) who use a single-index model, or Györfi and Kohler (2007) who partition the space and
obtain a piecewise constant estimate. All these papers have in common to involve a ratio between
two density estimates, though we can mention Stone (1994) for a spline tensor based maximum
likelihood estimator. An original approach which rather involves a product is the copula one of
Faugeras (2009). But his method depends on a bandwidth, that remains to select from the data.
In particular, for all of these methods, the second requirement is not satisfied.

The practical choice of the bandwidth and cross-validation methods are studied in Bashtannyk
and Hyndman (2001) and Fan and Yim (2004). However, no theoretical result is associated to
this study. The first adaptive results can be found in Clémençon (2000) for the estimation of the
transition density of a Markov chain, which is a very similar problem to the one of conditional
density estimation (set Yi = Xi+1). He uses thresholding of wavelet estimator. Afterwards, using
different methods, the works of Brunel et al. (2007) or Efromovich (2007) yield oracle inequalities
and minimax rates of convergence for anisotropic conditional densities. The case of inhomogenous
regularities is studied in Akakpo and Lacour (2011) or Sart (2013) in the case of Markov chain.
Still for global adaptive approach, we can cite Chagny (2013) who applies the Goldenshluger-Lepski
methodology to warped bases and Le Pennec and Cohen (2013) who use a model selection approach
with Kullback risk. All the previous authors use a global risk and either consider integration with
respect to fX(x)dx or assume that fX is bounded from below by a constant (as it is done in regression
estimation). We are interested in precisely studying this assumption to show that it is unavoidable
in some sense.
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1.2 Our strategy and our contributions

Our strategy to estimate f is based on the Goldenshluger and Lepski methodology proposed in the
seminal papers Goldenshluger and Lepski (2011, 2012) in the case of density estimation and extended
to the white noise and regression models in Goldenshluger and Lepski (2013). This strategy detailed
in Section 2 allows us to derive two procedures: kernel and projection rules. If they seem different,
they are based on similar ideas and they lead to quite similar theoretical results. Our method
automatically selects a regularization parameter, and in particular a bandwidth for kernel rules.
Note that the tolerance level in ABC methods can be reinterpreted as a regularization parameter.

Unlike most of previous works of the literature, we shall not use a global risk and we will
evaluate the quality of an estimator f̂ at a fixed point x ∈ R and in the L2-norm with respect to
the variable y. In other words, we will use the risk

Rx(f̂ , q) =
(

E

[

‖f̂ − f‖qx,2
])

1
q

,

where for any function g,

‖g‖x,2 =
(∫

Rd2

g2(x, y)dy

)1/2

.

The previously mentioned motivating applications show that the tuning parameter has to depend on
x, which is not the case of other cited-above adaptive methods. As shown later, combined with the
Goldenshluger and Lepski methodology, considering this risk allows us to derive estimates satisfying
this property. Furthermore, for a given x, y 7→ f(x, y) is a density, so it is natural for us to study
the estimation pointwisely in x.

From the theoretical point of view, we establish non asymptotic meaningful oracle inequalities
and rates of convergence on anisotropic Hölder balls Hd(α,L). More precisely, in Proposition 1 and
Theorem 5, we establish lower bounds in oracle and minimax settings. Then, upper bounds of the
risk for our adaptive kernel procedure are established (see Theorems 1, 2 and 6). If the density
fX is smooth enough, Corollary 1 shows that upper and lower bounds match up to constants in
the asymptotic setting. Then, there is a natural question: is this assumption on the smoothness
of fX mandatory? We prove that the answer is no by establishing the upper bound of the risk
for our adaptive projection estimate (see Theorems 3 and 7). In particular, the latter achieves a
polynomial rate of convergence on anisotropic Hölder balls with rate exponent ᾱ/(2ᾱ + 1), where
ᾱ is the classical anisotropic smoothness index. Up to our knowledge, this rate exponent is new in
the conditional density estimation setting for the pointwise risk in x. Our result also explicits the
dependence of the rate with respect to L on the one hand and to fX(x) on the other hand, which
is not classical. Indeed, as recalled previously estimation is harder when fX(x) is small and this is
the reason why most of the papers assume that fX is bounded from below by a constant. For kernel
rules, our study is sharp enough to measure precisely the influence of fX(x) on the performance
or our procedure. Under some conditions and if the sample size is n, we show that the order of
magnitude of minimax rates (that are achieved by our procedure), is (nfX(x))ᾱ/(2ᾱ+1). We conclude
that our setting is equivalent to the setting where fX is locally bounded from 0 by 1 but we observe
nfX(x) observations instead of n.

Finally, we study our procedures from the practical point of view. We aim at completing
theoretical results by studying tuning issues. More precisely, our procedures are data driven and
tuning parameters depend on x and on an hyperparameter η, a constant that has to be tuned. We
lead a precise study that shows how to choose η in practice. We also show that reconstructions for
various examples and various values of n are satisfying. All these results show that our procedures
fulfill requirements listed in Section 1.1.
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1.3 Overview and notations

Our paper is organized as follows. In Section 2, we present the Goldenshluger and Lepski method-
ology in the setting of conditional density estimation. In Sections 4 and 5 respectively, kernel and
projection rules are derived and studied in the oracle setting by using assumptions of Section 3.
Rates of convergence on anisotropic Hölder balls are studied in Section 6. Then a simulation study
is lead in Section 7, where we focus on tuning aspects of our procedures. Finally, in Section 8 and
in Appendix, we prove our results. To avoid too tedious technical aspects, most of proofs are only
given for d1 = d2 = 1 but can easily be extended to the general case. In the sequel, we assume
that the sample size is 2n. The first n observations (X1, Y1), . . . , (Xn, Yn) are used to estimate f ,
whereas Xn+1, . . . , X2n are used to estimate fX when necessary. We recall that for any i, Xi ∈ Rd1

and Yi ∈ Rd2 and we set d = d1 + d2.

2 Methodology

2.1 The Goldenshluger-Lepski methodology

This section is devoted to the description of the Goldenshluger-Lepski methodology (GLM for short)
in the setting of conditional density estimation.

The GLM consists in selecting an estimate from a family of estimates, each of them depending
on a parameter m. Most of the time, choosing this tuning parameter can be associated to a
regularization scheme: if we take m too small, then the estimate oversmooths; if we take m too
large, data are overfitted.

So, given a set of parameters Mn, for any m ∈ Mn, we assume we are given a smoothing
linear operator denoted Km and an estimate f̂m. For any m ∈ Mn, f̂m is related to Km(f) via

its expectation and we assume that E[f̂m] is close to (or equal to) Km(f). The main assumptions
needed for applying the GLM are

Km ◦ Km′ = Km′ ◦ Km (2.1)

and
Km(f̂m′) = Km′(f̂m) (2.2)

for any m,m′ ∈ Mn. The GLM is a convenient way to select an estimate among (f̂m)m∈Mn which
amounts to selecting m ∈ Mn and can be described as follows: For ‖ · ‖ a given norm and σ a
function to be chosen later, we set for any m in Mn,

A(m) := sup
m′∈Mn

{

‖f̂m′ −Km′(f̂m)‖ − σ(m′)
}

+
.

Then we estimate f by using f̂ := f̂m̂, where m̂ is selected as follows:

m̂ := argmin
m∈Mn

{A(m) + σ(m)} .

This choice can be seen as a bias-variance tradeoff, with σ(m) an estimator of the standard deviation

of f̂m and A(m) an estimator of the bias (see later). Let us now fix m ∈ Mn. Using (2.2), we have:

‖f̂ − f‖ = ‖f̂m̂ − f‖
≤ ‖f̂m̂ −Km̂(f̂m)‖ + ‖Km(f̂m̂)− f̂m‖+ ‖f̂m − f‖
≤ A(m) + σ(m̂) +A(m̂) + σ(m) + ‖f̂m − f‖
≤ 2A(m) + 2σ(m) + ‖f̂m −Km(f)‖+ ‖Km(f)− f‖.

But

A(m) = sup
m′∈Mn

{

‖f̂m′ −Km′(f̂m)‖ − σ(m′)
}

+

≤ ξ(m) +B(m)
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with for any m ∈ Mn,

ξ(m) := sup
m′∈Mn

{

‖(f̂m′ −Km′(f))− (Km′(f̂m)− (Km′ ◦ Km)(f))‖ − σ(m′)
}

+

and
B(m) := sup

m′∈Mn

‖Km′(f)− (Km′ ◦ Km)(f)‖.

We finally obtain:

‖f̂ − f‖ ≤ 2B(m) + 2σ(m) + ‖f̂m −Km(f)‖+ ‖f −Km(f)‖+ 2ξ(m). (2.3)

Now, let us assume that
|||K||| := sup

m∈Mn

|||Km||| <∞, (2.4)

where |||Km||| is the operator norm of Km associated with ‖ · ‖. In this case, B(m) is upper bounded

by ‖f −Km(f)‖ up to the constant |||K|||, which corresponds to the bias of f̂m if

Km(f) = E[f̂m]. (2.5)

Furthermore, using (2.1) and (2.2), for any m ∈ Mn,

ξ(m) ≤ sup
m′∈Mn

{

(1+|||K|||)‖f̂m′ −Km′(f)‖ − σ(m′)
}

+
.

Then we choose σ such that, with high probability, for any m ∈ Mn,

‖f̂m −Km(f)‖ ≤ σ(m)/(|||K||| + 1). (2.6)

So, (2.3) gives that, with high probability,

‖f̂ − f‖ ≤ C inf
m∈Mn

{‖f −Km(f)‖+ σ(m)} , (2.7)

where C depends only on |||K|||. Since under (2.5), σ(m) controls the fluctuations of f̂m around its
expectation, σ2(m) can be viewed as a variance term and the oracle inequality (2.7) justifies our
procedure. Previous computations combined with the upper bound of A(m) also justify why A(m)
is viewed as an estimator of the bias.

Now, we illustrate this methodology with two natural smoothing linear operators: convolution
and projection. The natural estimates associated with these operators are kernel rules and projec-
tion rules respectively. Next paragraphs describe the main aspects of both procedures and discuss
assumptions (2.1), (2.2), (2.4) and (2.5) which are the key steps of the GLM.

2.2 Convolution and kernel rules

Kernel rules are the most classical procedures for conditional density estimation. To estimate f ,
the natural approach consists in considering the ratio of a kernel estimate of fX,Y with a kernel
estimate of fX . Actually, we use an alternative approach and to present our main ideas, we assume
for a while that fX is known and positive.

We introduce a kernel K, namely a bounded integrable function K such that
∫∫

K(u, v)dudv =
1 and ‖K‖2 < ∞. Then, given a regularization parameter, namely a d-dimensional bandwidth h
belonging to a set Hn to be specified later, we set

Kh(u, v) =
1

∏d
i=1 hi

K

(

u1
h1
, . . . ,

ud1
hd1

,
v1

hd1+1
, . . . ,

vd2
hd

)

, u ∈ R
d1 , v ∈ R

d2 .
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Then, we use the setting of Section 2.1 except that regularization parameters are denoted h, instead
of m to match with usual notation of the literature. Similarly, the set of bandwidths is denoted by
Hn, instead of Mn. For any h ∈ Hn, we set:

∀ g ∈ L2, Kh(g) = Kh ∗ g

where ∗ denotes the standard convolution product and

f̂h(x, y) :=
1

n

n
∑

i=1

1

fX(Xi)
Kh(x−Xi, y − Yi). (2.8)

The regularization operator Kh corresponds to the convolution with Kh. Note that

E[f̂h(x, y)] = (Kh ∗ f)(x, y).

Therefore 3 of 4 assumptions of the GLM are satisfied, namely (2.1), (2.2) and (2.5). Unfortunately,
(2.4) is satisfied with ‖ · ‖ the classic L2-norm but not with ‖ · ‖x,2, as adopted in this paper. We
shall see how to overcome this problem later on.

Another drawback of this description is that f̂h is based on the knowledge of fX . A kernel rule
based on f̂X , an estimate of fX , is proposed in Section 4.2 where we define σ (see (2.6)) to apply
the GLM methodology and then to obtain oracle inequalities similar to (2.7). Additional terms in

oracle inequalities will be the price to pay for using f̂X instead of fX .

2.3 Projection

We introduce a collection of models (Sm)m∈Mn and for any m, we denote Km the projection on
(Sm, <,>X) where <,>X is the scalar product defined by:

∀g, g′, < g, g′ >X=

∫∫

g(u, y)g′(u, y)fX(u)dudy. (2.9)

Of course, (2.1) is satisfied, but as for kernel rules, (2.4) is not valid with ‖ · ‖ = ‖ · ‖x,2. Now, we
introduce the following empirical contrast:

for all function t, γn(t) =
1

n

n
∑

i=1

[∫

R

t2(Xi, y)dy − 2t(Xi, Yi)

]

,

so that E(γn(t)) is minimum when t = f (see Lemma 1 in Section 5.2). Given m in Mn, the
conditional density can be estimated by:

f̂m ∈ argmin
t∈Sm

γn(t). (2.10)

Unlike kernel rules, this estimate does not depend on fX but (2.2) and (2.5) are not satisfied even if

for large values of n, Km(f) ≈ E[f̂m]. Therefore, we modify this approach to overcome this problem.
The idea is the following. Let us denote Sm∧m′ = Sm ∩ Sm′ . Taking inspiration from the fact that
Km ◦ Km′(f) = Km∧m′(f), set for any (m,m′) ∈ M2

n,

K̃m(f̂m′) = f̂m∧m′ .

This operator is only defined on the set of the estimators f̂m but verifies (2.2). Now the previous
reasoning can be reproduced and the GLM described in Section 2.1 can be applied by replacing Km′

by K̃m′ in A(m) and by setting

ξ(m) := sup
m′∈Mn

{

‖(f̂m′ −Km′(f))− (K̃m′(f̂m)− (Km′ ◦ Km)(f))‖ − σ(m′)
}

+
.
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In Section 5.2, we define σ such that for all m,m′ ∈ Mn, σ(m∧m′) ≤ σ(m′) and similarly to (2.6),
with high probability, for any m ∈ Mn,

‖f̂m −Km(f)‖ ≤ σ(m)

2
.

Then, for all m,m′ ∈ Mn,

‖K̃m′(f̂m)− (Km′ ◦ Km)(f)‖ = ‖f̂m∧m′ −Km∧m′(f)‖ ≤ σ(m ∧m′)

2
≤ σ(m′)

2

so that ξ(m) vanishes with high probability. Thus, we shall be able to derive oracle inequalities in
this case as well.

2.4 Discussion

We have described two estimation schemes for which the GLM is appropriate: kernel and projection
rules. In these schemes, the main commutative properties of the GLM, namely (2.1) and (2.2), are
satisfied. Due to the particular choice of the loss-function ‖ · ‖x,2, the property (2.4) is not satisfied.
However in both schemes, we shall be able to prove that for any function g

‖Km(g)‖x,2 ≤ C sup
t∈Vn(x)

‖g‖t,2 (2.11)

where C is a constant, Vn(x) is a neighborhood of x, and this property will allow us to control the
bias term B(m), as well as the term ξ(m). In the sequel, we shall cope with the following specific
features of each scheme:

• For kernel rules, when fX is known, (2.5) is satisfied and these estimates lead to straightforward
application of the GLM. But, when fX is unknown, serious difficulties will arise.

• For projection rules, the dependence on the knowledge of fX will be weaker but since (2.5) is
not satisfied, the control of the bias term will not be straightforward.

Beyond these aspects, our main task in next sections will be to derive for each estimation scheme
a function σ that conveniently controls the fluctuations of preliminary estimates as explained in
Section 2.1.

3 Assumptions

As explained in Introduction, we estimate the conditional density under the pointwise risk in x and
under the L2-risk in y. We shall need assumptions on functions f and fX . Before giving them,
we introduce the following neighborhood of x, denoted Vn(x). Given A a positive real number and
(kn)n any positive sequence larger than 1 only depending on n and such that kn goes to +∞, we
set:

Vn(x) =

d1
∏

i=1

[

xi −
2A

kn
, xi +

2A

kn

]

.

Note that the size of Vn(x) goes to 0. Now, we are ready to state our assumptions on f and fX .

(H1) The conditional density f is uniformly bounded on Vn(x)× Rd2 and we set

‖f‖∞ := sup
t∈Vn(x)

sup
y∈Rd2

f(t, y) <∞.
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(H2) The density fX is uniformly bounded on Vn(x) and we set

‖fX‖∞ := sup
t∈Vn(x)

fX(t) <∞.

(H3) The density fX is bounded away from 0 on Vn(x) and we set

δ := inf
t∈Vn(x)

fX(t) > 0.

In the sequel, without loss of generality, we assume that δ ≤ 1.

Assumptions (H1) and (H2) are very mild. Note that under (H1), since f is a conditional density,

sup
t∈Vn(x)

‖f‖2t,2 ≤ ‖f‖∞ <∞. (3.1)

Assumption (H3) is not mild but is in some sense unavoidable. As said in introduction, one goal of
this paper is to measure the influence of the parameter δ on the performance of the estimators of f .

For the procedures considered in this paper, if fX is unknown, we need a preliminary estimator
of fX denoted f̂X that is constructed with observations (Xi)i=n+1,...,2n. Then, we first assume that

f̂X satisfies the following condition:

δ̂ := inf
t∈Vn(x)

|̂fX(t)| > 0. (3.2)

For estimating fX , f̂X has to be rather accurate:

∀λ > 0, P

(

sup
t∈Vn(x)

∣

∣

∣

∣

∣

fX(t)− f̂X(t)

f̂X(t)

∣

∣

∣

∣

∣

> λ

)

≤ κ exp{−(logn)3/2}, (3.3)

where κ is a constant only depending on λ and fX . Theorem 4 in Section 6 proves the existence of
an estimate f̂X satisfying these properties.

4 Kernel rules

In this section, we study the data-driven kernel rules we propose for estimating the conditional
density f . They are precisely defined in Section 4.2 and their theoretical performances in the oracle
setting are studied in Section 4.3. Before this, in Section 4.1, we establish a lower bound of the risk
for any kernel estimate.

4.1 Lower bound for kernel rules

In this section, we consider the kernel estimate f̂h defined in (2.8) for h ∈ Hn. In particular, fX is

assumed to be known. For any fixed h ∈ Hn, we provide a lower bound of the risk of f̂h with q = 2
by using the following bias-variance decomposition:

R2
x(f̂h, 2) = E

[

‖f̂h − f‖2x,2
]

= ‖Kh ∗ f − f‖2x,2 +
∫

var(f̂h(x, y))dy.

Proposition 1. Assume that (H1) is satisfied. Then if K(x, y) = K(1)(x)K(2)(y) with K(1) sup-
ported by [−A,A]d1 , for any h ∈ Hn, we have for any n,

R2
x(f̂h, 2) ≥ ‖Kh ∗ f − f‖2x,2 +

‖K(2)‖22
n
∏d
i=1 hi

×
∫

[K(1)(s)]2

fX(x− (s1h1, . . . , sd1hd1))
ds+

C1

n
,
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where C1 depends on ‖K‖1 and ‖f‖∞. If we further assume that fX is positive and continuous on
a neighborhood of x, then if maxHn → 0 when n→ +∞,

R2
x(f̂h, 2) ≥ ‖Kh ∗ f − f‖2x,2 +

‖K‖22
fX(x)n

∏d
i=1 hi

× (1 + o(1)) +O

(

1

n

)

, (4.1)

when n→ +∞.

The proof of Proposition 1 is given in Section 8. The lower bounds of Proposition 1 can be
viewed as benchmarks for our procedures. In particular, our challenge is to build a data-driven
kernel procedure whose risk achieves the lower bound given in (4.1). It is the goal of the next

section where we modify f̂h by estimating fX when fX is unknown.

4.2 Kernel estimator

Let us now define more precisely our kernel estimator. We consider the kernel K defined in Sec-
tion 2.2, but following assumptions of Proposition 1, we further assume until the end of the paper
that following conditions are satisfied.

• The kernel K is of the form K(u, v) = K(1)(u)K(2)(v), u ∈ Rd1 , v ∈ Rd2 .

• The function K(1) is supported by [−A,A]d1 .

Our data-driven procedure is based on f̂X (see Section 3) and is defined in the following way. We

naturally replace f̂h defined in (2.8) with

f̂h(x, y) =
1

n

n
∑

i=1

1

f̂X(Xi)
Kh(x−Xi, y − Yi). (4.2)

Then, we set

σ(h) =
χ

√

δ̂n
∏d
i=1 hi

with χ = (1 + η)(1 + ‖K‖1)‖K‖2, (4.3)

where δ̂ is defined in (3.2) and η > 0 is a tuning parameter. The choice of this parameter will be
discussed in Section 6. We also specify the set Hn:

(CK) For any h = (h1, . . . , hd) ∈ Hn, we have for any i, h−1
i is a positive integer and

kn ≤ 1

hi
, ∀ i ∈ {1, . . . , d1},

1
∏d1
i=1 hi

≤ δ̂n

(logn)3
and log2(n) ≤ 1

∏d
i=d1+1 hi

≤ n.

The GLM described in Section 2.2 can be applied and we estimate f with f̂ = f̂ĥ where

ĥ = ĥ(x) := argmin
h∈Hn

{A(h) + σ(h)} ,

A(h) := sup
h′∈Hn

{

∥

∥

∥f̂h′ − f̂h,h′

∥

∥

∥

x,2
− σ(h′)

}

+

,

and

f̂h,h′(x, y) =
1

n

n
∑

i=1

[

f̂X(Xi)
]−1

(Kh ∗Kh′)(x−Xi, y − Yi) = (Kh′ ∗ f̂h)(x, y). (4.4)

In the case where fX is known, f̂X is replaced by fX and δ̂ by δ. In particular, we obtain the
expressions of Section 2.2 except that now σ is specified.
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4.3 Oracle inequalities for kernel rules

We establish in this section oracle inequalities for our estimator f̂ with in mind the benchmarks
given in (4.1). To shed lights on the performance of our procedure and on the role of δ, we first deal
with the case where fX is known. We first state a trajectorial oracle inequality and then a control
of the risk.

Theorem 1. Assume that the density fX is known so that f̂X = fX . We also assume that (H1),
(H3) and (CK) are satisfied. If δn ≥ 1, we have with probability larger than 1−C exp{−(logn)5/4},

‖f̂ − f‖x,2 ≤ inf
h∈Hn







C1 sup
t∈Vn(x)

‖Kh ∗ f − f‖t,2 +
C2

√

δn
∏d
i=1 hi







, (4.5)

where C1 = 1+2‖K‖1, C2 = (1+ η)‖K‖2(3+ 2‖K‖1) and C depends on K, η and ‖f‖∞. Further-
more, for any q ≥ 1,

Rx(f̂ , q) ≤ C̃1 inf
h∈Hn







sup
t∈Vn(x)

‖Kh ∗ f − f‖t,2 +
1

√

δn
∏d
i=1 hi







+
C̃2√
n
, (4.6)

where C̃1 depend on K, η and q and C̃2 depends on K, η, ‖f‖∞ and q.

Due to the assumptions on Hn, the last term of the right hand side of (4.6), namely C̃2/
√
n, is

negligible with respect to the second one. Furthermore, since σ2(h) is proportional to (δn
∏n
i=1 hi)

−1,
the latter can be viewed as a variance term (see Section 2.1). Then right hand sides of (4.5) and
(4.6) correspond to the best tradeoff between a bias term and a variance term, so (4.5) and (4.6)
correspond indeed to oracle inequalities. Next, we can compare the (squared) upper bound of (4.6)
and the lower bound of (4.1) when q = 2 and fX is continuous. We note that these bounds match
up to leading constants, asymptotically negligible terms and up to the fact that terms of (4.6) are
computed on Vn(x) instead at x (note that the size of Vn(x) goes to 0 when n → +∞ and δ and
fX(x) are close). Actually, since (2.4) is not valid for ‖ · ‖ = ‖ · ‖x,2, we use Inequality (2.11).
This explains why we need to compute suprema of the bias term on Vn(x). Theorem 1 shows the
optimality of our kernel rule.

From these results, we can also draw interesting conclusions with respect to the term δ that
appears in the variance term. From (4.1), we already know that the term δ is unavoidable. Of

course, the lower δ the worse the performance of f̂ . Actually, in the oracle context, our setting
is (roughly speaking) equivalent to the classical setting where fX is lower bounded by an absolute
constant (see Brunel et al. (2007) for instance), but with δn observations to estimate f instead of
n. A similar remark will hold in the minimax framework of Section 6.

The following theorem deals with the general case where fX is unknown and estimated by f̂X .

Theorem 2. We assume that (H1), (H2), (H3), (CK) (3.2) and (3.3) are satisfied. If δn ≥ 1, we
have with probability larger than 1− C exp{−(logn)5/4},

‖f̂ − f‖x,2 ≤ inf
h∈Hn







C1 sup
t∈Vn(x)

‖Kh ∗ f − f‖t,2 +
C2

√

δ̂n
∏d
i=1 hi







+
C3

δ
sup

t∈Vn(x)

|̂fX(t)− fX(t)|, (4.7)

where C1 = 1 + 2‖K‖1, C2 = (1 + η)‖K‖2(3 + 2‖K‖1), C3 depends on K, η and ‖f‖∞ and C
depends on K, η, fX and ‖f‖∞. Furthermore, for any q ≥ 1,

Rx(f̂ , q) ≤ C̃1 inf
h∈Hn







sup
t∈Vn(x)

‖Kh ∗ f − f‖t,2 +
1

√

δn
∏d
i=1 hi







+
C̃2

δ
E

1
q

(

sup
t∈Vn(x)

|̂fX(t)− fX(t)|q
)

+
C̃3√
n
,
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where C̃1 depend on K, η and q, C̃2 depends on K, η, q and ‖f‖∞ and C̃3 depends on K, η, fX ,
‖f‖∞ and q.

The main difference between Theorems 2 and 1 lie in the terms involving supt∈Vn(x) |̂fX(t) −
fX(t)| in right hand sides. Of course, if fX is regular enough, we can build f̂X so that this term is

negligible. But in full generality, this unavoidable term due to the strong dependence of f̂h on f̂X ,
may be cumbersome. Therefore, even if Theorem 1 established the optimality of kernel rules in the
case where fX is known, it seems reasonable to investigate other rules to overcome this problem.

5 Projection rules

Unlike previous kernel rules that strongly depend on the estimation of fX , this section presents
estimates based on the least squares principle. The dependence on f̂X is only expressed via the use
of δ̂ and ‖f̂X‖∞ := supt∈Vn(x) |̂fX(t)|. For ease of presentation, we assume that d1 = d2 = 1 but
following results can be easily extended to the general case (see Section 6.3).

5.1 Models

As previously, we are interested in the estimation of f when the first variable is in the neighborhood
of x, so we still use Vn(x) defined in Section 3. We introduce a collection of models (Sm)m∈Mn .

Definition 1. Let Mn be a finite subset of {0, 1, 2, . . .}2. For each m = (m1,m2) ∈ Mn and given
two L2(R)-orthonormal systems of bounded functions (ϕmj )j∈Jm and (ψmk )k∈Km , we set

Fm1 = Span(ϕmj , j ∈ Jm), Hm2 = Span(ψmk , k ∈ Km)

and the model Sm is

Sm = Fm1 ⊗Hm2 =







t, t(x, y) =
∑

j∈Jm

∑

k∈Km

amj,kϕ
m
j (x)ψmk (y), amj,k ∈ R







.

Finally, we denote
Dm1 = |Jm| and Dm2 = |Km|,

respectively the dimension of Fm1 and Hm2 .

In this paper, we only focus on systems (ϕmj )j∈Jm based on Legendre polynomials. More
precisely, the estimation interval [x− 2A, x+ 2A] is split into 2m1 intervals of length 4A2−m1:

Il = Iml =
[

x− 2A+ 4A(l − 1)2−m1 , x− 2A+ 4Al2−m1
)

l = 1, . . . , 2m1 .

Then Jm = {(l, d), l = 1, . . . , 2m1 , d = 0, . . . , r}, Dm1 = (r + 1)2m1 and for any u,

ϕmj (u) = ϕml,d(u) =

√

2m1

2A

√

2d+ 1

2
Pd(Tl(u))1Il(u)

where Pd is the Legendre polynomial with degree d on [−1, 1], and Tl is the affine map which
transforms Il into [−1, 1].

In the y-direction, we shall also take piecewise polynomials. In the sequel, we only use the
following two assumptions : for all m,m′ ∈ Mn, Dm2 ≤ Dm′

2
⇒ Hm2 ⊂ Hm′

2
, and there exists a

positive real number φ2 such that for all m ∈ Mn for all u ∈ R,

∑

k∈Km

(ψmk )2(u) ≤ φ2Dm2 .

11



Note that this assumption is also true for Fm1 . Indeed the spaces spanned by the ϕmj ’s are nested
and, for all u ∈ [x− 2A, x+ 2A],

2m1
∑

l=1

r
∑

d=0

ϕml,d(u)
2 ≤ 2m1

2A

r
∑

d=0

2d+ 1

2
=

2m1

4A
(r + 1)2 =

r + 1

4A
Dm1

using properties of the Legendre polynomials. Therefore, with φ1 = (r + 1)/(4A), for any u ∈
[x− 2A, x+ 2A],

∑

j

(ϕmj )2(u) ≤ φ1Dm1 .

5.2 Projection estimator

As in (Brunel et al., 2007) and following Section 2.3, we introduce the following empirical contrast:

γn(t) =
1

n

n
∑

i=1

[∫

R

t2(Xi, y)dy − 2t(Xi, Yi)

]

.

We have the following lemma whose proof is easy by using straightforward computations. We use
the norm ‖ · ‖X associated with the dot product 〈, 〉X defined in (2.9), so we have for any t,

‖t‖2X =

∫∫

t2(u, y)fX(u)dudy.

Lemma 1. Assume that the function
∑

j∈Jm

∑

k∈Km
âmj,kϕ

m
j ψ

m
k minimizes the empirical contrast

function γn on Sm, then
ĜmÂm = Ẑm, (5.1)

where Âm denotes the matrix with coefficients (âmj,k)j∈Jm,k∈Km ,

Ĝm =

(

1

n

n
∑

i=1

ϕmj1(Xi)ϕ
m
j2(Xi)

)

j1,j2∈Jm

and Ẑm =

(

1

n

n
∑

i=1

ϕmj (Xi)ψ
m
k (Yi)

)

j∈Jm,k∈Km

.

Similarly, if Km(f) is the orthogonal projection of f on (Sm, 〈, 〉X), it minimizes on Sm

t 7−→ γ(t) = ‖t− f‖2X − ‖f‖2X = E(γn(t))

and if Km(f) =
∑

j∈Jm

∑

k∈Km
amj,kϕ

m
j ψ

m
k then,

GmAm = Zm,

where Am denotes the matrix with coefficients (amj,k)j∈Jm,k∈Km , Gm = E(Ĝm) =
(

〈ϕmj1 , ϕmj2〉X
)

j1,j2∈Jm

and

Zm = E(Ẑm) =

(∫∫

ϕmj (u)ψmk (y)f(u, y)fX(u)dudy

)

j∈Jm,k∈Km

.

From this lemma, we obtain that E(γn(t)) is minimum when t = f , which justifies the use of
γn.

Then, to derive f̂m an estimate of f , we use (5.1) as a natural consequence of the minimization
problem (2.10). But if Ĝm is not invertible, Âm can be not uniquely defined.

Since x is fixed, we can define, for each m = (m1,m2), the index lm1 = lm1(x) such that x
belongs to Ilm1

(actually, since the estimation interval is centered in x, lm1 = 2m1−1 + 1). Further-

more, since we use a piecewise polynomial system, the Gram matrix Ĝm is a block diagonal matrix

with blocks Ĝ
(1)
m , . . . , Ĝ

(2m1 )
m , where

Ĝ(l)
m =

(

1

n

n
∑

i=1

ϕml,d1(Xi)ϕ
m
l,d2(Xi)

)

0≤d1,d2≤r

.
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In the same way, we can define for l = 1, . . . , 2m1

Ẑ(l)
m =

(

1

n

n
∑

i=1

ϕml,d(Xi)ψ
m
k (Yi)

)

0≤d≤r,k∈Km

.

Now, and by naturally using the blockwise representation of Ĝm, we define the collection of estima-
tors (f̂m)m∈Mn as:

f̂m(x, y) =

r
∑

d=0

∑

k∈Km

âm(lm1 ,d),k
ϕmlm1 ,d

(x)ψmk (y)

and

(âm(lm1 ,d),k
)0≤d≤r,k∈Km := Â

(lm1 )
m :=

{

(Ĝ
(lm1 )
m )−1Ẑ

(lm1)
m if min(Sp(Ĝ

(lm1 )
m )) > (1 + η)−2/5δ̂

0 otherwise.

where η is a positive real number. Here, for a symmetric matrix M , Sp(M) denotes the spectrum
of M , i.e. the set of its eigenvalues. This expression allows us to overcome problems if Ĝm is
not invertible. Note that, when r = 0, where r is maximal degree of Legendre polynomials, this
estimator can be written

f̂m(x, y) =
∑

j∈Jm

∑

k∈Km

∑n
i=1 ϕ

m
j (Xi)ψ

m
k (Yi)

∑n
i=1 ϕ

m
j (Xi)2

ϕmj (x)ψmk (y).

Now, to choose a final estimator among this collection, as explained in Section 2.3, we denote
m ∧ j = (m1 ∧ j1,m2 ∧ j2) = (min(m1, j1),min(m2, j2)) and by using f̂X introduced in Section 3,
we set

σ(m) = χ̂

√

Dm1Dm2

δ̂n
with χ̂2 = (1 + η)2(4φ1φ2(r + 1))

‖̂fX‖∞
δ̂

, (5.2)

where ‖̂fX‖∞ = ‖f̂X‖∞ and δ̂ is defined in (3.2). We also specify the models we use: The following
condition is the analog of (CK):

(CM) For any m ∈ Mn,

kn(r + 1) ≤ Dm1 ≤ δ̂n

(logn)3
and log2(n) ≤ Dm2 ≤ n.

The GLM described in Section 2.2 can be applied and we estimate f with f̃ = f̂m̂ where

m̂ = m̂(x) := arg min
m∈Mn

{A(m) + σ(m)}

and
A(m) := sup

m′∈Mn

[

‖f̂m′ − f̂m′∧m‖x,2 − σ(m′)
]

+
.

The next section studies the performance of the estimate f̃ .

5.3 Oracle inequality

We establish in this section oracle inequalities for the projection estimate in the same spirit as for
the kernel rule. We recall that Km(f) is the orthogonal projection of f on (Sm, <,>X) where <,>X
is the dot product defined in (2.9). The following result is the analog of Theorem 2.
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Theorem 3. We assume that (H1), (H2), (H3), (CM) (3.2) and (3.3) are satisfied. If δn ≥ 1, we
have with probability larger than 1− C exp{−(logn)5/4},

‖f̃ − f‖x,2 ≤ inf
m∈Mn

(

C1 sup
t∈Vn(x)

‖Km(f)− f‖t,2 +
5

2
χ̂

√

Dm1Dm2

δ̂n

)

with χ̂ defined in (5.2), C1 = 1 + 2(r + 1)δ−1‖fX‖∞ and C depends on φ1, φ2, r, η, ‖f‖∞ and fX .
Furthermore, for any q ≥ 1

Rx(f̃ , q) ≤ C̃1 inf
m∈Mn

(

sup
t∈Vn(x)

‖Km(f)− f‖t,2 +
√

Dm1Dm2

δn

)

+
C̃2√
n

where C̃1 depends on φ1, φ2, r, η, ‖fX‖∞, δ and q and C̃2 depends on φ1, φ2, r, η, ‖f‖∞, fX and q.

As for Theorem 2, using the definition of σ, the right hand sides correspond to the best tradeoff
between a bias term and a variance term. Note that unlike kernel rules, the performances of f̃ do
not depend on the rate of convergence of f̂X for estimating fX . But there is a price to pay: due to
a rougher control of the bias term, χ̂ depends on δ̂ and the leading constants C1 and C̃1 depend on
δ. In particular, when fX is known, conclusions drawn from Theorem 1 do not hold here. However,
in the case where r = 0 (the basis in the first coordinate is simply the histogram basis), we can use
the simpler penalty term χ̂ = (1 + η)

√
4φ1φ2 and the previous result still holds. To prove this, it is

sufficient to use the basis (‖ϕj‖−1
X ϕj ⊗ ψk)j,k which is orthonormal for the scalar product 〈., .〉X .

6 Rates of convergence

In this section, minimax rates of convergence will be computed on Hölder balls Hd(α,L). We recall
that for two d-tuples of positive reals α = (α1, . . . , αd) and L = (L1, . . . , Ld),

Hd(α,L) =
{

f : Rd → R s.t.

∥

∥

∥

∥

∂mf

∂xm

∥

∥

∥

∥

∞
≤ Li, m = 0, . . . , ⌊αi⌋

and for all t ∈ R

∥

∥

∥

∥

∂⌊αi⌋f

∂x⌊αi⌋ (·+ tei)−
∂⌊αi⌋f

∂x⌊αi⌋ (·)
∥

∥

∥

∥

∞
≤ Li|t|αi−⌊αi⌋

}

where for any i, ⌊αi⌋ = max{l ∈ N : l < αi} and ei is the vector where all coordinates are null
except the ith one which is equal to 1. In the sequel, we use the classical anisotropic smoothness
index defined by

ᾱ =

(

d
∑

i=1

1

αi

)−1

and introduced in the seminal paper Kerkyacharian et al. (2001). See also Goldenshluger and Lepski
(2008). Before studying rates for conditional density estimation, we state the following result.

Theorem 4. Assume that fX satisfies (H2) and (H3). Assume also that fX ∈ Hd1(β, L̃) such that

for any i = 1, . . . , d1, L̃i > 0 and 0 < βi ≤ β
(m)
i with some known β

(m)
i > 0. Then, there exists a

non-negative estimate f̂X such that (3.2) holds with δ̂−1 ≤ log logn and (3.3) holds with κ depending
on λ, δ, supt∈R

|fX(t)|, β and L̃. Moreover

E

(

sup
t∈Vn(x)

|̂fX(t)− fX(t)|q
)

≤ C

(

logn

n

)
qβ

2β+1

, (6.1)

for some positive constant C.
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6.1 Lower bound

We have the following result that holds without making any assumption.

Theorem 5. There exists a positive constant C not depending on L nor n such that, if n is large
enough,

inf
Tn

sup
(f,fX)∈H̃(α,L)

{

(fX(x))
2ᾱ

2ᾱ+1E‖f − Tn‖2x,2
}

≥ C

(

d
∏

i=1

L
1
αi

i

)

2ᾱ
2ᾱ+1

n− 2ᾱ
2ᾱ+1 ,

where the infimum is taken over all estimators Tn of f based on the observations (Xi, Yi)i=1,...,n and

H̃(α,L) is the set such that the conditional density f belongs to Hd(α,L) and the marginal density
fX is continuous.

Note that we consider the ball H̃(α,L) which may be (slightly) smaller than the ball H(α,L).
Actually, we wish to point out the dependence of the lower bound with respect to n, α and L

as usual but also to fX(x), which is less classical. The goal in next sections is to show that our
procedures achieve the lower bound of Theorem 5.

6.2 Upper Bound for kernel rules

In this section, we need an additional assumption on f .

(H4) There exists a compact set B, such that for all t ∈ Vn(x), the function y 7→ f(t, y) has a
support included into B. We denote by |B| the length of the compact set B.

This assumption could be avoided at the price of studying the risk restricted on B. Moreover,
to study the bias of the kernel estimator, we consider for any M = (M1, . . . ,Md) the following
condition.

(BKM) For any i ∈ {1, . . . , d}, for any 1 ≤ j ≤Mi, we have

∫

R

|xi|j |K(x)|dxi <∞ and

∫

R

xjiK(x)dxi = 0.

We refer the reader to Kerkyacharian et al. (2001) for the construction of a kernel K satisfying
(BKM) and previous required conditions. We obtain the following result showing the optimality of
our first procedure from the minimax point of view, up to the rate for estimating fX .

Theorem 6. We assume that (H1), (H2), (H3), (H4), (CK), (3.2) and (3.3) are satisfied. Let
M = (M1, . . . ,Md) such that (BKM) is satisfied. Then if f belongs to Hd(α,L) such that ⌊αi⌋ ≤Mi

for all i = 1, . . . , d, the kernel rule f̂ satisfies for any q ≥ 1,

Rqx(f̂ , q) ≤ C̃1

(

d
∏

i=1

L
1
αi

i

)

qᾱ
2ᾱ+1

(nδ)−
qα

2α+1 +
C̃2

δq
E

(

sup
t∈Vn(x)

|̂fX(t)− fX(t)|q
)

+ C̃3n
− q

2 ,

where C̃1 depend on K, η and q, C̃2 depends on K, η, q and ‖f‖∞ and C̃3 depends on K, η, fX ,
‖f‖∞ and q.

If the leading term in the last expression is the first one, then, up to some constants, the upper
bound of Theorem 6 matches with the lower bound obtained in Theorem 5 (note that δ is close to
fX(x)) when q = 2. In this case, our estimate is adaptive minimax. To study the second term, we
can use Theorem 4 and we obtain the following corollary.
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Corollary 1. We assume that (H1), (H2), (H3), (H4), (CK) and (BKM ) are satisfied. We also

assume that fX ∈ Hd1(β, L̃) such that for any i = 1, . . . , d1, L̃i > 0 and 0 < βi ≤ β
(m)
i with some

known β
(m)
i > 0. Then if f belongs to Hd(α,L) such that ⌊αi⌋ ≤Mi for all i = 1, . . . , d, the kernel

rule f̂ satisfies for any q ≥ 1,

Rqx(f̂ , q) ≤ C1





(

d
∏

i=1

L
1
αi

i

)

qᾱ
2ᾱ+1

(nδ)−
qα

2α+1 +
1

δq

(

logn

n

)
qβ̄

2β̄+1



+ C2n
− q

2 ,

where C1 is a constant not depending on L, n and δ and C2 is a constant not depending on L and
n.

From the corollary, we deduce that if β̄ > ᾱ and if δ is viewed as a constant, then the leading
term is the first one. Furthermore, in this case, the rate is polynomial and the rate exponent is the
classical ratio associated with anisotropic Hölder balls: ᾱ/(2ᾱ + 1). Our result also explicits the
dependence of the rate with respect to L and δ.

6.3 Upper bound for projection estimates

In the same way, we can control the bias for our second procedure of estimation in order to study the
rate of convergence. Let us briefly explain how the procedure defined in Section 5 can be extended
to the estimation of conditional anisotropic densities f : Rd1 × Rd2 → R with d1, d2 ≥ 2. The
contrast is still the same and the estimators f̂m have to be defined for m = (m1, . . . ,md) with a
polynomial basis on hyperrectangles : see Akakpo and Lacour (2011) for a precise definition. The
model dimension is now

Dm1 =

d1
∏

i=1

ri2
mi

where r1, . . . , rd1 are the maximum degrees. Then, the selection rule to define f̃ is unchanged,
except that in (5.2)

χ̂2 = (1 + η)2

(

4φ1φ2

d1
∏

i=1

ri

)

‖̂fX‖∞
δ̂

In order to control precisely the bias, we introduce the following condition.

(BMr) Hm2 is a space of piecewise polynomials with degrees bounded by rd1+1, . . . , rd, with Dm2 =
∏d
i=d1+1 ri2

mi .

This allows us to state the following result.

Theorem 7. We assume that (H1), (H2), (H3), (H4), (CM), (3.2) and (3.3) are satisfied. Let
r = (r1, . . . , rd) such that (BMr) is satisfied. Then if f belongs to Hd(α,L) such that αi < ri for
all i = 1, . . . , d, the projection rule f̃ satisfies for any q ≥ 1,

Rqx(f̃ , q) ≤ C̃

(

d
∏

i=1

L
1
αi

i

)

qᾱ
2ᾱ+1

n− qα
2α+1 ,

where C̃ depend on A, |B|, r,α, δ and ‖fX‖∞.

Thus, even if the control of δ is less accurate, the projection estimator achieves the optimal
rate of convergence whatever the regularity of fX .
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7 Simulations

In this section we focus on the numerical performances of our estimators. We first describe the
algorithms. Then, we introduce the studied examples and we illustrate the performances of our
procedures with some figures and tables.

7.1 Estimation algorithms

For both methods (kernel or projection), we need a preliminary estimator of fX . In order to obtain
an accurate estimator of fX , we use a pointwise Goldenshluger Lepski procedure which consists in
the following for estimating fX at x. This preliminary estimator is constructed using the sample
(Xi)i=n+1,...,2n. Let us define for h > 0,

pen(n, h) = 2.2‖K‖2(1 + ‖K‖1)

√

| log h|̃fX(x)

nh
, (7.1)

where f̃X is a preliminary estimator of fX obtained by the rule of thumb (see Silverman (1986)),
and K is the classical Gaussian kernel. The value 2.2 is the adjusted tuning constant which was
convenient on a set of preliminary simulations. Given H a finite set of bandwidths (actually H is a
set of 10 bandwidths centered at the bandwidth obtained by the rule of thumb) and for h, h′ ∈ H ,
consider

f̂h(x) =
1

n

2n
∑

i=n+1

Kh(x−Xi) and f̂h,h′(x) =
1

n

2n
∑

i=n+1

(Kh ∗Kh′)(x −Xi).

We consider
A(h, x) := max

h′∈H

{∣

∣

∣̂fh,h′(x)− f̂h′(x)
∣

∣

∣ − pen(n, h′)
}

+
.

Finally we define h0 by
h0 := argmin

h∈H
{A(h, x) + pen(n, h)} (7.2)

and we consider the following procedure of estimation: f̂X(x) = f̂h0(x).
Now, the algorithm for the kernel estimation of f is entirely described in Section 4.2 and we

perform it with K the Gaussian kernel and a set of 10 bandwidths in each direction, that means
that the size of Hn is 10d1+d2 . The quantity ‖f̂h′ − f̂h,h′‖x,2 is made easy to compute with some
preliminary theoretical computations (in particular, note that for the Gaussian kernelKh∗K ′

h = Kh′′

with h′′2 = h2+h′2). The only remaining parameter to tune is η which appears in the penalty term
σ (see (4.3)).

In the same way, we follow Section 5.2 to implement the projection estimator. Matrix compu-
tations are easy to implement and make the implementation very fast. We only present the case of
polynomials with degrees r = s = 0, i.e. histograms, since the performance is already good in this
case. Again, the only remaining parameter to tune is η which appears in the penalty term σ (see
(5.2)). Note that in the programs, it is possible to use non-integers mi and in fact this improves the
performance of the estimation. However, to match with the theory we shall not tackle this issue.

7.2 Simulation study and analysis

We apply our procedures to different examples of conditional density functions with d1 = d2 = 1.
More precisely, we observe (Xi, Yi)i=1,...,n such that

Example 1 The Xi’s are iid uniform variables on [0, 1] and

Yi = 2X2
i + 5 + εi(1.3− |Xi|)1/2, i = 1, . . . , n,

where the εi’s are i.i.d. reduced and centered Gaussian variables, independent of the Xi’s.
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Example 2 The Xi’s are iid uniform variables on [0, 1] and the distribution of the Yi’s is a mixture of a
normal distribution and an exponential distribution: Yi ∼ 0.75εi + 0.25(2 + Ei), where εi is
a zero-mean normal distribution with standard deviation 2 + Xi and Ei is exponential with
parameter 2.

Example 3 The Xi’s are iid and their common distribution is a mixture of two normal distributions,
0.5N (0, 1/81) + 0.5N (1, 1/16) and

Yi = X2
i + 1 + εi(1.3 + |Xi|)1/2, i = 1, . . . , n,

where the εi’s are i.i.d. reduced and centered Gaussian variables, independent of the Xi’s.

Example 4 The Xi’s are iid and their common distribution is a mixture of two normal distributions,
0.5N (0, 1/81)+ 0.5N (1, 1/16) and the distribution of the Yi’s is a mixture of a normal distri-
bution and an exponential distribution: Yi ∼ 0.75εi + 0.25(2 + Ei), where εi is a zero-mean
normal distribution with standard deviation 2 +Xi and Ei is exponential with parameter 2.

We simulate our observations for three sample sizes: n = 250, n = 500 and n = 1000. In Figure 1,
we illustrate the quality of reconstructions for both estimates when fX is unknown. We use η = −0.2
for the projection estimator and η = 1 for the kernel estimator (see the discussion below).
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Figure 1: Plots of true function f(x, .) (plain line) versus kernel estimator f̂(x, .) (dashed line) and
projection estimator f̃(x, .) (dot-dashed line) in x = 0 (n = 1000) for Example 3 (left) and Example
4 (right)

To go further, for each sample size, we evaluate the mean squared error of the estimators, in
other words

MSE(f̂) =

∫

(

f̂(x, y)− f(x, y)
)2

dy,

where f̂ is either the kernel rule or the projection estimate. In Appendix C, we give approximations
of the MSE based on N = 100 samples for different values of η.

Now, let us comment our results from the point of view of tuning, namely we try to answer
the question: how to choose the parameter η? We first focus on kernel rules. Tables of Appendix C
show that, often, the optimal value is η = 1. More precisely, it is always the case for Examples 1 and
2. For Examples 3 and 4, when η = 1 is not the optimal value, taking η = 1 does not deteriorate
the risk too much. So, for kernel rules, the choice η = 1 is recommended even if larger values can
be convenient in some situations. To shed more lights on these numerical results, in Figure 2, we
draw the MSE for the kernel rule in function of the parameter η. We observe that the shape of
the curve is the same whatever the example. If η is too small the risk blows up, which shows that
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Figure 2: MSE(f̂ ) for n = 500, Example 1 (x = 0.5), Example 2 (x = 0.5), Example 3 (x = 0),
Example 4 (x = 0)

the assumption η > 0 in theoretical results is unavoidable at least asymptotically. Furthermore,
we observe that if η is too large, then the estimate oversmooths and the risk increases but without
explosion for η not too far from the minimizer. Similar phenomena have already been observed for
wavelet thresholding rules for density estimation (see Section 2.2 of Reynaud-Bouret et al. (2011)).
Tuning kernel rules is then achieved.

We now deal with projection rules. Unfortunately, the plateau phenomenon of Figure 2 does
not happen for projection estimators. In this case, the optimal value for η seems to change according
to the example. Tuning this procedure is not so obvious. Note that performances of kernel and
projections rules are hardly comparable since they are respectively based on a Gaussian kernel
function and piecewise constant functions.

For kernel rules, we study the influence of the knowledge of fX . Tables 1 and 3 show that
when fX is known results are a bit better as expected, but the difference is not very significant.
Since projections rules are less sensitive to the estimate f̂X , we only show results with fX unknown.
Finally, to study the dependence of estimation with respect to x, we focus on Tables 5 and 6 that
show that in Example 3 estimation is better at x = 0 and x = 1 than at x = 0.36. This was
expected since the density design is smaller at x = 0.36 and this confirms the role of δ in the rate
of convergence of both estimators (see Theorems 2 and 3). Similar conclusions can be drawn for
Example 4. Finally, we wish to mention that the ratio between the risk of our procedures and the
oracle risk (the upper bounds of Theorems 1, 2 and 3) remains bounded with respect to n, which
corroborates our theoretical results.
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8 Proofs

In this section, after giving intermediate technical results, we prove the results of our paper. Most
of the time, as explained in introduction, we only consider the case d1 = d2 = 1. We use notations
that we have previously defined. The classical Euclidian norm is denoted ‖ · ‖ and for any q ≥ 1,
‖ · ‖q is the classical functional Lq-norm. Except if the context is ambiguous, the ‖ · ‖∞-norm shall
denote the supremum either on R, on Vn(x) or on Vn(x)× R. We shall also use for any function g

‖g‖∞,2 := sup
t∈Vn(x)

‖g‖t,2.

We shall use the following technical lemmas whose proof is given in Appendix B. Note that Lemma 2
is a simple consequence of Birgé and Massart (1998), p.366.

Lemma 2. [Bernstein Inequality] Let (Ui) be a sequence of i.i.d. variables uniformly bounded by a
positive constant c and such that EU2

1 ≤ v. Then

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui − E[Ui]

∣

∣

∣

∣

∣

≥ ε

)

≤ 2 exp

(

−min

(

nε2

4v
,
nε

4c

))

Lemma 3. [Talagrand Inequality] Let U1, . . . , Un be i.i.d. random variables and νn(a) =
1
n

∑n
i=1[τa(Ui)−

E(τa(Ui))] for a belonging to A a countable subset of functions. For any ζ > 0,

P(sup
a∈A

|νn(a)| ≥ (1 + 2ζ)H) ≤ 2max

(

exp

(

−ζ
2

6

nH2

v

)

, exp

(

−min(ζ, 1)ζ

21

nH

M

))

with
sup
a∈A

sup
u

|τa(u)| ≤M, E

[

sup
a∈A

|νn(a)|
]

≤ H, sup
a∈A

Var(τa(U1)) ≤ v.

Let ρ > 1 and consider the event

Λρ = {ρ−1δ ≤ δ̂ ≤ ρδ} ∩ {ρ−2‖fX‖∞ ≤ ‖f̂X‖∞ ≤ ρ2‖fX‖∞}.

We have the following lemma.

Lemma 4. Condition (3.3) implies that

P(Λcρ) ≤ B1e
−(logn)3/2

with some positive constant B1 that depends on fX and ρ.

Lemma 5. For any integrable functions f1 and f2, if the support of u 7→ f2(u, y) is included in
[−2A/kn, 2A/kn]

d1 for all y, then we have

‖f1 ∗ f2‖x,2 ≤ sup
t∈Vn(x)

‖f1‖t,2 × ‖f2‖1,

Lemma 6. We use notations of Definition 1. Let m = (m1,m2) be fixed. For any function τ , the
projection Km(τ) of τ on Sm verifies

‖Km(τ)‖x,2 ≤ (r + 1)‖fX‖∞δ−1 sup
t∈Vn(x)

‖τ‖t,2.
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8.1 Proofs for the kernel estimator

8.1.1 Proof of Proposition 1

We just need to control:
∫

var(f̂h(x, y))dy =
1

n

∫

var
(

[fX(X1)]
−1Kh(x−X1, y − Y1)

)

dy

=
1

n

∫ (

E

[

[fX(X1)]
−2K2

h(x−X1, y − Y1)
]

−
(

E

[

[fX(X1)]
−1Kh(x−X1, y − Y1)

])2
)

dy.

First, by using Lemma 5 and (3.1),
∫

(

E

[

[fX(X1)]
−1
Kh(x−X1, y − Y1)

])2

dy =

∫

(Kh ∗ f)2(x, y)dy

≤ ‖Kh‖21 × sup
t∈Vn(x)

‖f‖2t,2 ≤ ‖K‖21‖f‖∞.

Furthermore,
∫

E

[

[fX(X1)]
−2
K2
h(x −X1, y − Y1)

]

dy =

∫∫∫

K2
h(x− u, y − v)f(u, v)f−1

X (u)dudvdy

=

∫

(K
(1)
h1

)2(x − u)f−1
X (u)du × ‖K(2)‖22

h2

=
‖K(2)‖22
h1h2

×
∫

[K(1)(s)]2

fX(x− sh1)
ds.

Now assume that fX is positive and continuous on a neighborhood of x. Since maxHn → 0 when
n→ +∞, then h1 → 0. Then we have

∣

∣

∣

∣

∫

fX(x)[K(1)(s)]2

fX(x − sh1)
ds− ‖K(1)‖22

∣

∣

∣

∣

≤
∫

[K(1)(s)]2
∣

∣

∣

∣

fX(x)

fX(x− sh1)
− 1

∣

∣

∣

∣

ds

≤ max
|v|≤Ah1

∣

∣

∣

∣

fX(x)

fX(x+ v)
− 1

∣

∣

∣

∣

∫

[K(1)(s)]2ds = o(1).

8.1.2 Proof of Theorems 1 and 2

We introduce

g(x, y) =
fX,Y (x, y)

f̂X(x)
=

fX(x)

f̂X(x)
f(x, y).

We consider the set Γ = Γ1 ∩ Γ2 where

Γ1 =







∀h, h′ ∈ Hn :
∥

∥

∥
Kh ∗ f̂h′ −Kh ∗Kh′ ∗ g

∥

∥

∥

x,2
≤ χ1
√

δ̂nh′1h
′
2







,

Γ2 =







∀h′ ∈ Hn :
∥

∥

∥
f̂h′ −Kh′ ∗ g

∥

∥

∥

x,2
≤ χ2
√

δ̂nh′1h
′
2







and
χ1 = (1 + η)‖K‖1‖K‖2, χ2 = (1 + η)‖K‖2.

We also use the set Λρ studied in Lemma 4 with ρ = (1 + η/2)2.

We have the following propositions that deal with the general case when fX is estimated by f̂X .
When fX is known, it can easily be checked that these propositions also hold with g replaced by f
and δ̂ by δ.
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Proposition 2. On the set Γ, we have the following result.

‖f̂ − g‖x,2 ≤ inf
h∈Hn

{

C1‖Kh ∗ g − g‖∞,2 + C2
1

√

δ̂nh1h2

}

,

where C1 = 1 + 2‖K‖1 and C2 = (1 + η)‖K‖2(3 + 2‖K‖1).
Proposition 3. Under (H1), (H3) and (CK), we have:

P (Γc ∩ Λρ) ≤ C exp{−(logn)5/4}
where C depends on K, η and ‖f‖∞.

Proposition 4. Assume that (H1), (H2) and (CK) are satisfied. On Λρ:

‖Kh ∗ g − g‖∞,2 ≤‖Kh ∗ f − f‖∞,2 + Cδ−1‖f̂X − fX‖∞,
‖g − f‖x,2 ≤Cδ−1‖f̂X − fX‖∞,

where C depends on η, K, and ‖f‖∞.

Proposition 5. Assume that (CK) is satisfied. For any h ∈ Hn,

‖f̂h‖x,2 ≤ ‖K(1)‖∞‖K(2)‖2(log n)−3n3/2.

The first part of Theorem 1 can be deduced from Propositions 2 and 3. Note that in the case
of Theorem 1, P(Λρ) = 1. The second part of Theorem 1 is a consequence of Proposition 5, (3.1)
and (4.5). Since

‖f̂ − f‖x,2 ≤ ‖f̂ − g‖x,2 + ‖g − f‖x,2
and

Γ ∩ Λρ = (Γ ∪ Λcρ) ∩ Λρ,

the first part of Theorem 2 is a consequence of Propositions 2, 3 and 4 combined with Lemma 4.
The second part of Theorem 2 is a consequence of Proposition 5, (3.1) and (4.7).

8.1.3 Proof of Proposition 2

We apply the GLM as explained in Section 2 with f̂h given in (4.2) for estimating g, Mn = Hn,

‖.‖ = ‖.‖x,2, σ(h) = χ/
√

δ̂nh1h2, and the operator Kh is the convolution product with Kh. Note
that (2.1), (2.2) and (2.5) are satisfied but not (2.4). But we have:

B(h) = sup
h′∈Hn

‖Kh′(g)− (Kh′ ◦ Kh)(g)‖x,2 ≤ ‖K‖1 sup
t∈Vn(x)

‖g −Kh(g)‖t,2,

using Lemma 5 and the equality ‖Kh′‖1 = ‖K‖1. Let us fix h ∈ Hn. We obtain Inequality (2.3) in
our case:

‖f̂ − g‖x,2 ≤ 2B(h) + 2σ(h) + ‖f̂h −Kh(g)‖x,2 + ‖g −Kh(g)‖x,2 + 2ξ(h)

with
ξ(h) = sup

h′∈Hn

{

‖(f̂h′ −Kh′(g))− (Kh′(f̂h)− (Kh′ ◦ Kh)(g))‖x,2 − σ(h′)
}

+
.

But, on Γ, ∀h, h′ ∈ Hn, ‖f̂h′ − Kh′(g)‖x,2 ≤ χ2/

√

δ̂nh′1h
′
2 and ‖Kh′(f̂h) − (Kh′ ◦ Kh)(g)‖x,2 ≤

χ1/

√

δ̂nh′1h
′
2, so that ξ(h) = 0. Then, on Γ,

‖f̂ − g‖x,2 ≤ 2B(h) + 2σ(h) +
χ2

√

δ̂nh1h2
+ ‖g −Kh(g)‖x,2

≤ (2‖K‖1 + 1) sup
t∈Vn(x)

‖g −Kh(g)‖t,2 +
2χ+ χ2
√

δ̂nh1h2

with 2χ+ χ2 = 2χ1 + 3χ2 = (1 + η)(2‖K‖1 + 3)‖K‖2.
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8.1.4 Proof of Proposition 3

We respectively denote P̃ and Ẽ the probability distribution and the expectation associated with
(X1, Y1), . . . , (Xn, Yn). Thus

Γ1 =







∀h, h′ ∈ Hn :
∥

∥

∥
f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2
≤ χ1
√

δ̂nh′1h
′
2







,

Γ2 =







∀h′ ∈ Hn :
∥

∥

∥f̂h′ − Ẽ

[

f̂h′

]∥

∥

∥

x,2
≤ χ2
√

δ̂nh′1h
′
2







.

To prove Proposition 3, we study Γc1∩Λρ and Γc2∩Λρ. So first, let assume we are on the event

Λρ. Note that on Λρ, we have δ̂−1 ≤ ρδ−1 and for all u ∈ Vn(x), |g(u, v)| ≤ f(u, v)ρ (see the proof
of Lemma 4). We denote for any x, y, u and v,

w(x, y, u, v) = [̂fX(u)]−1(Kh ∗Kh′)(x− u, y − v).

We can then write:

f̂h,h′(x, y) =
1

n

n
∑

i=1

w(x, y,Xi, Yi)

and with B the unit ball in L2(R) endowed with the classical norm and A a dense countable subset
of B,

∥

∥

∥f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2
= sup

a∈B

∫

a(y)
(

f̂h,h′(x, y)− Ẽ[f̂h,h′(x, y)]
)

dy

= sup
a∈A

∫

a(y)
(

f̂h,h′(x, y)− Ẽ[f̂h,h′(x, y)]
)

dy

= sup
a∈A

1

n

n
∑

i=1

∫

a(y)
[

w(x, y,Xi, Yi)− Ẽ(w(x, y,Xi, Yi))
]

dy.

Hence, one will apply the inequality of Lemma 3 with τa,x(Xi, Yi) =
∫

a(y)w(x, y,Xi, Yi)dy. First,
we have:

(

Ẽ

[

∥

∥

∥
f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2

])2

≤ Ẽ

[

∥

∥

∥
f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

2

x,2

]

= Ẽ

[∫

(

f̂h,h′(x, y)− Ẽ[f̂h,h′(x, y)]
)2

dy

]

=

∫

var(f̂h,h′(x, y))dy

=
1

n

∫

var
(

[̂fX(X1)]
−1(Kh ∗Kh′)(x −X1, y − Y1)

)

dy

≤ 1

n

∫

Ẽ

(

[̂fX(X1)]
−2(Kh ∗Kh′)2(x−X1, y − Y1)

)

dy

≤ 1

δ̂n

∫∫∫

(Kh ∗Kh′)2(x− u, y − v)g(u, v)dudvdy.

But we have

(Kh ∗Kh′)2(x− u, y − v) =

(∫∫

Kh′(x− u− s, y − v − t)Kh(s, t)dsdt

)2

≤
∫∫

K2
h′(x− u− s, y − v − t)|Kh(s, t)|dsdt× ‖K‖1.
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Therefore, since for any u,
∫

f(u, v)dv = 1 and K(x, y) = K(1)(x)K(2)(y),

(

Ẽ

[

∥

∥

∥f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2

])2

≤ ‖K‖1
δ̂n

∫∫

|Kh(s, t)|
(∫∫∫

K2
h′(x− u− s, y − v − t)g(u, v)dudvdy

)

dsdt

=
‖K‖1
δ̂n

∫∫

|Kh(s, t)|
(∫ (∫ (∫

(K
(1)
h′

1
)2(x − u− s)(K

(2)
h′

2
)2(y − v − t)dy

)

g(u, v)dv

)

du

)

dsdt

=
‖K‖1‖K(2)‖22ρ

δ̂nh′2

∫∫

|Kh(s, t)|
(∫

(K
(1)
h′

1
)2(x− u− s)du

)

dsdt

=
‖K‖21‖K(1)‖22‖K(2)‖22ρ

δ̂nh′1h
′
2

=
‖K‖21‖K‖22ρ
δ̂nh′1h

′
2

.

Consequently, we obtain Ẽ

[

∥

∥

∥f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2

]

≤ H , with

H =
‖K‖1‖K‖2ρ1/2
√

δ̂nh′1h
′
2

. (8.1)

Now, let us deal with v which is an upper bound of supa∈A var (τa,x(X1, Y1)).

sup
a∈A

var (τa,x(X1, Y1)) ≤ sup
a∈A

Ẽ

[

(∫

a(y)w(x, y,X1, Y1)dy

)2
]

≤ sup
a∈A

Ẽ

[
∫

|w(x, y,X1, Y1)|dy
∫

a2(y)|w(x, y,X1, Y1)|dy
]

≤ sup
u,v

∫

|w(x, y, u, v)|dy sup
y

Ẽ[|w(x, y,X1, Y1)|].

Now,

sup
u,v

∫

|w(x, y, u, v)|dy = sup
u,v

∫

∣

∣

∣[̂fX(u)]−1(Kh ∗Kh′)(x − u, y − v)
∣

∣

∣ dy

≤ 1

δ̂
sup
u,v

∫
∣

∣

∣

∣

∫∫

K
(1)
h′

1
(x− u− s)K

(2)
h′

2
(y − v − t)Kh(s, t)dsdt

∣

∣

∣

∣

dy

≤ 1

δ̂
sup
u,v

∫∫

|Kh(s, t)|
(∫

|K(1)
h′

1
(x − u− s)||K(2)

h′

2
(y − v − t)|dy

)

dsdt

≤ ‖K‖1‖K(2)‖1‖K(1)‖∞
δ̂h′1

and

sup
y

Ẽ[|w(x, y,X1, Y1)|] = sup
y

∫∫

|w(x, y, u, v)|fX,Y (u, v)dudv

= sup
y

∫∫

|(Kh ∗Kh′)(x− u, y − v)|g(u, v)dudv

≤ ‖g‖∞ sup
y

∫∫ (∫∫

|Kh(x− u− s, y − v − t)||Kh′(s, t)|dsdt
)

dudv

≤ ‖g‖∞‖K‖21 ≤ ‖f‖∞ρ‖K‖21
since on Λρ, ‖g‖∞ ≤ ρ‖f‖∞ and where ‖g‖∞ = sup(t,v)∈Vn(x)×R

|g(t, v)|. Thus, we set

v =
‖K‖31‖K(2)‖1‖K(1)‖∞ρ‖f‖∞

δ̂h′1
. (8.2)
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Finally, we deal with M which has to be an upper bound of supa∈A supu supv
∣

∣

∫

a(y)w(x, y, u, v)dy
∣

∣

sup
a∈A

sup
u

sup
v

∣

∣

∣

∣

∫

a(y)w(x, y, u, v)dy

∣

∣

∣

∣

= sup
u,v

‖w(x, ., u, v)‖2

≤ 1

δ̂
sup
u,v

(∫

(Kh ∗Kh′)2(x− u, y − v)dy

)1/2

.

We have:

∫

(Kh ∗Kh′)2(x − u, y − v)dy =

∫ (∫∫

Kh′(x − u− s, y − v − t)Kh(s, t)dsdt

)2

dy

≤ ‖K‖1
∫∫

|Kh(s, t)|
(∫

K2
h′(x− u− s, y − v − t)dy

)

dsdt

≤ ‖K‖21‖K(1)‖2∞‖K(2)‖22
h′21 h

′
2

.

Therefore, we can set

M =
‖K‖1‖K(1)‖∞‖K(2)‖2

δ̂h′1
√

h′2
. (8.3)

So, since ρ = (1 + η/2)2, Lemma 3 implies that for any ζ > 0,

P̃





∥

∥

∥f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2
≥ (1 + 2ζ)

‖K‖1‖K‖2(1 + η/2)
√

δ̂nh′1h
′
2





≤ 2max

(

exp

{

−ζ
2C1(K, ‖f‖∞)

h′2

}

, exp

{

−ζmin(1, ζ)C2(K, η)

√

nh′1δ̂

})

,

where C1(K, ‖f‖∞) and C2(K, η) are positive constants that depend on K, η and ‖f‖∞ and K and
η respectively. Similarly we have for any ζ > 0,

P̃





∥

∥

∥
f̂h′ − Ẽ

[

f̂h′

]∥

∥

∥

x,2
≥ (1 + 2ζ)

‖K‖2(1 + η/2)
√

δ̂nh′1h
′
2





≤ 2max

(

exp

{

−ζ
2C3(K, η, ‖f‖∞)

h′2

}

, exp

{

−ζmin(1, ζ)C4(K, η)

√

nh′1δ̂

})

,

where C3(K, η, ‖f‖∞) and C4(K, η) are positive constants that depend on K, η and ‖f‖∞ and K
and η respectively. Let us choose ζ such that (1 + 2ζ)(1 + η/2) = (1 + η). For (h1, h2) ∈ Hn,
(logn)3

ρn ≤ (logn)3

ρδn ≤ (logn)3

δ̂n
≤ h1 < 1 and 1

n ≤ h2 <
1

(logn)2−1 . Therefore, on Λρ,

∑

h,h′∈Hn

P̃





∥

∥

∥f̂h,h′ − Ẽ

[

f̂h,h′

]∥

∥

∥

x,2
≥ (1 + η)

‖K‖1‖K‖2
√

δ̂nh′1h
′
2



 ≤ ρ2n4e−C5(K,η,‖f‖∞)(logn)3/2

≤ C6(K, η, ‖f‖∞)e−(logn)5/4 , (8.4)

with C5(K, η, ‖f‖∞) and C6(K, η, ‖f‖∞) positive constants depending on K, η and ‖f‖∞. We have

a similar result for
∑

h′∈Hn
P̃

(

∥

∥

∥f̂h′ − Ẽ

[

f̂h′

]∥

∥

∥

x,2
≥ (1 + η) ‖K‖2√

δ̂nh′

1h
′

2

)

. Now to conclude, note that

the right hand side of Inequality (8.4) is not random. This allows us to obtain the result of the
proposition.

25



8.1.5 Proof of Proposition 4

We have the following decomposition

Kh ∗ g − g = Kh ∗ g −Kh ∗ f +Kh ∗ f − f + f − g. (8.5)

Next, on Λρ,

|Kh ∗ g(x, y)−Kh ∗ f(x, y)| =
∣

∣

∣

∣

∫∫

Kh(x− u, y − v) (g(u, v)− f(u, v)) dudv

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫∫

Kh(x− u, y − v)
f(u, v)

f̂X(u)

(

fX(u)− f̂X(u)
)

dudv

∣

∣

∣

∣

∣

≤ sup
t∈Vn(x)

∣

∣

∣fX(t)− f̂X(t)
∣

∣

∣ δ̂−1

∫∫

|Kh(x − u, y − v)|f(u, v)dudv

≤ sup
t∈Vn(x)

∣

∣

∣fX(t)− f̂X(t)
∣

∣

∣ δ−1ρ

∫∫

|Kh(x− u, y − v)|f(u, v)dudv.

Now by using (3.1), we have:

∫ (∫∫

|Kh(x− u, y − v)|f(u, v)dudv
)2

dy ≤ ‖K‖1
∫∫∫

|Kh(x − u, y − v)|f2(u, v)dudvdy

≤ ‖K‖1‖K(2)‖1
∫∫

|K(1)
h1

(x− u)|f2(u, v)dudv ≤ ‖f‖∞‖K‖21.

Then we deduce that

‖Kh ∗ g −Kh ∗ f‖∞,2 ≤ Cδ−1 sup
t∈Vn(x)

∣

∣

∣fX(t)− f̂X(t)
∣

∣

∣ , (8.6)

where C depends on ρ, ‖f‖∞ and K. Moreover we have on Λρ:

‖g − f‖2t,2 =
∫

f2(t, y)

f̂2X(t)

(

f̂X(t)− fX(t)
)2

dy ≤ ‖f‖∞δ̂−2 |̂fX(t)− fX(t)|2

≤Cδ−2|fX(t)− f̂X(t)|2,
where C depends on ρ and ‖f‖∞. The last line, (8.5) and (8.6) allow us to conclude.

8.1.6 Proof of Proposition 5

For any h ∈ Hn, we have
1

nδ̂h1
≤ 1

(logn)3
,

1

h2
≤ n.

Therefore,

‖f̂h‖2x,2 ≤
∫

(

1

n

n
∑

i=1

∣

∣

∣̂fX(Xi)
∣

∣

∣

−1 1

h1

∣

∣

∣

∣

K(1)

(

x−Xi

h1

)∣

∣

∣

∣

1

h2

∣

∣

∣

∣

K(2)

(

y − Yi
h2

)∣

∣

∣

∣

)2

dy

≤
∫

(

1

n

n
∑

i=1

1

δ̂h1
‖K(1)‖∞

1

h2

∣

∣

∣

∣

K(2)

(

y − Yi
h2

)∣

∣

∣

∣

)2

dy

≤ n(logn)−6‖K(1)‖2∞
n
∑

i=1

∫

1

h22

∣

∣

∣

∣

K(2)

(

y − Yi
h2

)∣

∣

∣

∣

2

dy

≤ n3(log n)−6‖K(1)‖2∞‖K(2)‖22,
which proves the result.
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8.1.7 Proof of Theorem 6

We first assume that d1 = d2 = 1. Using conditions (BKM), we then have:

(Kh ∗ f)(x, y)− f(x, y) =

∫∫

K(u, v) [f(x− uh1, y − vh2)− f(x, y)] dudv

=

∫∫

K(u, v) [f(x− uh1, y − vh2)− f(x, y − vh2) + f(x, y − vh2)− f(x, y)] dudv

=

∫∫

K(u, v)

[

(−uh1)⌊α1⌋

⌊α1⌋!

(

d⌊α1⌋

dx⌊α1⌋ f(x+ ũh1, y − vh2)−
d⌊α1⌋

dx⌊α1⌋ f(x, y − vh2)

)]

dudv

+

∫∫

K(u, v)

[

(−vh2)⌊α2⌋

⌊α2⌋!

(

d⌊α2⌋

dy⌊α2⌋ f(x, y + ṽh2)−
d⌊α2⌋

dy⌊α2⌋ f(x, y)

)]

dudv

where |ũ| ≤ |u| and |ṽ| ≤ |v|. If f ∈ H2(α,L), this implies that

|(Kh ∗ f)(x, y)− f(x, y)| ≤ C1L1h
α1
1 + C2L2h

α2
2 ,

where C1 and C2 depend on α1, α2 and K. We can easily generalize this result to the case d1, d2 ≥ 2
and we obtain:

|(Kh ∗ f)(x, y)− f(x, y)| ≤ C
d
∑

i=1

Lih
αi

i ,

with a constant C depending on α and K. Now taking

hi = L
− 1

αi

i ∆
− 1

αi
n , ∆n =

(

d
∏

i=1

L
1
αi

i

)− α
2α+1

(δn)
α

2α+1 ,

we obtain that
1

√

δn
∏d
i=1 hi

= ∆−1
n

and

sup
t∈Vn(x)

‖Kh ∗ f − f‖t,2 ≤ C(δn)−
ᾱ

2ᾱ+1

(

d
∏

i=1

L
1
αi

i

)

ᾱ
2ᾱ+1

,

using (H4) and where C is a positive constant that does not depend on δ, n and L. By using
Theorem 2, this concludes the proof of Theorem 6.

8.2 Proofs for the projection estimator

8.2.1 Proof of Theorem 3

First, let
Γ = {∀m ∈ Mn ‖f̂m −Km(f)‖x,2 ≤ σ(m)/2}.

To prove Theorem 3, we follow the GLM, as explained in Section 2, with ‖.‖ = ‖.‖x,2, and the
operator Km is the projection on Sm. In this case, using Lemma 6,

B(m) = sup
m′∈Mn

‖Km′(f)− (Km′ ◦ Km)(f)‖x,2 ≤ (r + 1)‖fX‖∞δ−1 sup
t∈Vn(x)

‖f −Km(f)‖t,2.

Moreover for all m,m′ ∈ Mn, Km′ ◦ Km = Km∧m′ , with m ∧ m′ = (min(m1,m
′
1),min(m2,m

′
2)),

and σ(m ∧m′) ≤ σ(m′). As already explained in Section 2, we introduce K̃m(f̂m′) = f̂m∧m′ and

ξ(m) = sup
m′∈Mn

{

‖(f̂m′ −Km′(f))− (K̃m′(f̂m)− (Km′ ◦ Km)(f))‖x,2 − σ(m′)
}

+
.
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Let us fix m ∈ Mn. We obtain inequality (2.3) in our case:

‖f̃ − f‖x,2 ≤ 2B(m) + 2σ(m) + ‖f̂m − Km(f)‖x,2 + ‖f −Km(f)‖x,2 + 2ξ(m).

But, on Γ, for allm,m′ in Mn, ‖f̂m′−Km′(f)‖x,2 ≤ σ(m′)/2 and ‖f̂m∧m′−Km∧m′(f)‖x,2 ≤ σ(m′)/2,
so that ξ(m) = 0. Then, on Γ,

‖f̃ − f‖x,2 ≤ 2B(m) + 2σ(m) +
σ(m)

2
+ ‖f −Km(f)‖x,2

≤ (2(r + 1)‖fX‖∞δ−1 + 1) sup
t∈Vn(x)

‖f −Km(f)‖t,2 +
5

2
σ(m). (8.7)

Now, let ‖.‖n be the empirical norm defined by

‖t‖n =

(

1

n

n
∑

i=1

t2(Xi)

)1/2

and lm1 be the index such that x belongs to the interval Ilm1
. For ρ = (1 + η)1/5, let

Ωρ =

{

∀m, ∀t ∈ Span(ϕmlm1 ,d
)0≤d≤r ‖t‖2n ≥ ρ−1

∫

t2(u)fX(u)du

}

.

The heart of the proof of Theorem 3 is the following concentration result:

Proposition 6. Assume that assumptions (H1), (H2), (H3) and (CM) are satisfied. There exists
C > 0 only depending on η, φ1, φ2, r, ‖f‖∞ and ‖fX‖∞ and δ such that

P (Γc ∩ Λρ ∩ Ωρ) ≤ C exp{−(logn)5/4}.

We shall also use the following result.

Proposition 7. Assume that assumptions (H2), (H3) and (CM) are satisfied. Then,

P(Ωcρ ∩ Λρ) ≤ C exp{−(logn)5/4},

where C is a constant only depending on ρ, φ1, r, ‖fX‖∞ and δ.

Then, using Lemma 4 and Propositions 6 and 7,

P(Γc) ≤ P((Γ ∩ Λρ ∩ Ωρ)
c) = P(Γc ∩ Λρ ∩ Ωρ) + P(Ωcρ ∩ Λρ) + P(Λcρ) ≤ Ke− log5/4(n) (8.8)

with K depending on η, φ1, φ2, r, ‖f‖∞ and fX . Then, the first part of Theorem 3 is proved. To
deduce the second part, we use the following proposition.

Proposition 8. For all m ∈ Mn,

‖f − f̂m‖2x,2 ≤ 2‖f‖∞ + 2(1 + η)4/5δ̂−2(r + 1)φ21φ2D
2
m1
D2
m2
.

Using assumption (CM), it implies that ‖f − f̂m̂‖2x,2 ≤ C̃2
3n

4, where C̃3 depends on η, r, φ1, φ2
and ‖f‖∞. Then, by using (8.7) which is true on Γ ∩ Λρ we have

E‖f̃ − f‖qx,2 = E‖f̃ − f‖qx,21Γ∩Λρ + E‖f̃ − f‖qx,21(Γ∩Λρ)c

≤ C̃4

(

sup
t∈Vn(x)

‖f −Km(f)‖t,2 +
√

‖fX‖∞
δ

√

Dm1Dm2

δn

)q

+ C̃q3n
2q
P((Γ ∩ Λρ ∩ Ωρ)

c),

where C̃4 depends on η, φ1, φ2, r, ‖fX‖∞ and δ. Using (8.8), this concludes the proof of Theorem 3.
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8.2.2 Proof of Proposition 6

First, we introduce some preliminary material. For any matrix M , we denote

‖M‖2 = sup
x 6=0

‖Mx‖
‖x‖ , ‖M‖F =





∑

j,k

|Mj,k|2




1
2

the operator norm and the Frobenius norm. We shall use that for any matrices M and N ,

‖M‖2 ≤ ‖M‖F , ‖MN‖2 ≤ ‖M‖2‖N‖2, ‖MN‖F ≤ ‖M‖2‖N‖F .

Now we fix m ∈ Mn. Then the index lm1 such that x belongs to the interval Ilm1
is fixed. For the

sake of simplicity, we denote it by l. Note that Il ⊂ Vn(x), since 2−m1 ≤ k−1
n . We set

F (l)
m1

= Span(ϕml,d)0≤d≤r.

Moreover we denote

Ĝ = Ĝ(l)
m , Ẑ = Ẑ(l)

m , Â = Â(l)
m , ϕd = ϕml,d, ψk = ψmk .

The elements of Â are denoted (âd,k)d,k instead of (âm(lm1 ,d),k
)d,k. We also introduce

G = E(Ĝ) = (〈ϕd1 , ϕd2〉X)0≤d1,d2≤r

and

Z = E(Ẑ) =

(∫∫

ϕd(u)ψk(y)f(u, y)fX(u)dudy

)

0≤d≤r,k∈Km

.

By using Lemma 1, the coefficients (amj,k) of Km(f) in the basis verify the matrix equation GA = Z
where the coefficients of the matrix A are Ad,k = am(lm1 ,d),k

but are denoted ad,k for short. We shall

use the following algebra result. If M is a symmetric matrix,

min(Sp(M)) = min
u

u∗Mu

u∗u
.

Then

min(Sp(G)) = min
u

u∗Gu

u∗u
= min

t∈F (l)
m1

∫

t2(u)fX(u)du

‖t‖22
≥ δ (8.9)

and, in the same way,

min(Sp(Ĝ)) = min
u∗Ĝu

u∗u
= min
t∈F (l)

m1

‖t‖2n
‖t‖22

,

so that
on Ωρ min(Sp(Ĝ)) ≥ ρ−1δ. (8.10)

Now, let us begin the proof of Proposition 6. Since

(f̂m −Km(f))(x, y) =

r
∑

d=0

∑

k∈Km

(âd,k − ad,k)ϕd(x)ψk(y)

we deduce

‖f̂m −Km(f)‖2x,2 =
∑

k

(
∑

d

(âd,k − ad,k)ϕd(x))
2 ≤

∑

d

ϕ2
d(x)

∑

k

∑

d

(âd,k − ad,k)
2

≤ φ1Dm1‖Â−A‖2F .
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On Λρ, δ ≥ ρ−1δ̂. Then, using (8.10), on Ωρ ∩ Λρ, min(Sp(Ĝ)) ≥ ρ−2δ̂ = (1 + η)−2/5δ̂, so we are in

the case where Â = Ĝ−1Ẑ. From now on, we always assume that we are on Ωρ ∩ Λρ. We have:

‖Â−A‖F ≤ ‖(Ĝ−1 −G−1)Z‖F + ‖Ĝ−1(Ẑ − Z)‖F
≤ ‖Ĝ−1 −G−1‖2‖Z‖F + ‖Ĝ−1‖2‖Ẑ − Z‖F .

Since Ĝ is symmetric, ‖Ĝ−1‖2 is equal to the spectral radius of Ĝ−1. And, using (8.10), its eigen-
values are positive, then

‖Ĝ−1‖2 = (min(Sp(Ĝ)))−1 ≤ ρδ−1.

In the same way, using (8.9),

‖G−1‖2 = (min(Sp(G)))−1 ≤ δ−1.

Then,
‖Ĝ−1 −G−1‖2 = ‖Ĝ−1(G− Ĝ)G−1‖2 ≤ ρδ−2‖G− Ĝ‖2 ≤ ρδ−2‖G− Ĝ‖F .

Thus

‖Â−A‖F ≤ ρδ−2‖G− Ĝ‖F‖Z‖F + ρδ−1‖Ẑ − Z‖F .

Moreover, since for any function s,
∑

d〈s, ϕd〉2 ≤
∫

Il
s2(u)du, where 〈, 〉 denotes the standard L2 dot

product,

‖Z‖2F =

r
∑

d=0

∑

k∈Km

〈
∫

ϕd(u)f(u, .)fX(u)du, ψk〉2

≤
r
∑

d=0

∫ (∫

ϕd(u)f(u, y)fX(u)du

)2

dy

≤
∫ ∫

Il

f2(u, y)f2X(u)dudy

≤ ‖fX‖2∞‖f‖∞(4A2−m1).

Finally (still on Ωρ ∩ Λρ),

‖f̂m −Km(f)‖x,2 ≤ C3‖Ĝ−G‖F + ρδ−1
√

φ1Dm1‖Ẑ − Z‖F .

Here C3 = ‖fX‖∞ρδ−2(r + 1)
√

‖f‖∞. Thus, with Pρ(·) = P(· ∩ Λρ ∩ Ωρ), we can write:

Pρ

(

‖f̂m −Km(f)‖x,2 ≥ σ(m)

2

)

≤ P1,m + P2,m

with


















P1,m = Pρ

(

‖Ẑ − Z‖F ≥ σ(m)

2ρ2δ−1
√

φ1Dm1

)

P2,m = Pρ

(

‖Ĝ−G‖F ≥ σ(m)

2ρC3
(ρ− 1)

)

.

[1] Study of P1,m: Let νn(t) =
1
n

∑n
i=1 t(Xi, Yi)− E(t(Xi, Yi)) and

S(l)
m = F (l)

m1
⊗Hm2 =

{

t, t(x, y) =

r
∑

d=0

∑

k∈Km

bd,kϕd(x)ψk(y), bd,k ∈ R

}

.
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Then,

sup
t∈S(l)

m ,‖t‖2≤1

|νn(t)|2 =
∑

d,k

|νn(ϕd ⊗ ψk)|2

=
∑

d,k

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ϕd(Xi)ψk(Yi)− E(ϕd(Xi)ψk(Yi))

∣

∣

∣

∣

∣

2

= ‖Ẑ − Z‖2F .

We are reduced to bound:

Pρ

(

sup
t∈S(l)

m ,‖t‖2≤1

|νn(t)| ≥
σ(m)

2ρ2δ−1
√

φ1Dm1

)

.

To deal with this term, we use Lemma 3. So, we consider A a dense subset of {t ∈ S
(l)
m , ‖t‖2 ≤ 1}

and we compute M,H and v.
• First, if t =

∑

d,k bdkϕd ⊗ ψk then

|t(u, v)|2 = |
∑

d,k

bdkϕd(u)ψk(v)|2 ≤
∑

d,k

b2dk
∑

d,k

|ϕd(x)ψk(v)|2 ≤ ‖t‖22φ1Dm1φ2Dm2 .

Thus supt∈A ‖t‖∞ ≤
√

φ1φ2Dm1Dm2 and we can take M =
√

φ1φ2Dm1Dm2 .
• Secondly, we recall

sup
t∈S(l)

m ,‖t‖2≤1

|νn(t)|2 =
∑

d,k

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ϕd(Xi)ψk(Yi)− E(ϕd(Xi)ψk(Yi))

∣

∣

∣

∣

∣

2

.

Since the data are independent,

Var

(

1

n

n
∑

i=1

ϕd(Xi)ψk(Yi)

)

=
1

n
Var(ϕd(X1)ψk(Y1)).

We deduce:

∑

k

E

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ϕd(Xi)ψk(Yi)− E(ϕd(Xi)ψk(Yi))

∣

∣

∣

∣

∣

2

≤ 1

n

∫∫

ϕ2
d(u)

∑

k

ψ2
k(v)fX(u)f(u, v)dudv

≤ φ2Dm2

n

∫

ϕ2
d(u)fX(u)

(∫

f(u, v)dv

)

du

≤ φ2Dm2

n
‖fX‖∞.

Hence,

E sup
t∈A

ν2n(t) ≤ (r + 1)‖fX‖∞
φ2Dm2

n

so that we can take H2 = (r + 1)‖fX‖∞φ2Dm2/n.
• Thirdly

Var(t(X1, Y1)) ≤ E|t(X1, Y1)|2

≤
∫∫

t2(u, v)fX(u)f(u, v)dudv

≤ ‖t‖22‖f‖∞‖fX‖∞
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and then we can take v = ‖f‖∞‖fX‖∞.
Finally

ζ2nH2

6v
=
ζ2(r + 1)φ2

6‖f‖∞
Dm2

min(ζ, 1)ζnH

21M
=

min(ζ, 1)ζ
√

(r + 1)‖fX‖∞
21

√
φ1

√

n

Dm1

.

According to condition (CM), on Λρ, since δ ≤ 1, Dm1 ≤ ρn/(logn)3 and Dm2 ≥ (logn)2. Thus
Talagrand’s Inequality gives

Pρ

[

sup
t∈A

|νn(t)| ≥ (1 + 2ζ)H
]

≤ 2 exp(−C log3/2(n))

with C only depending on η, ζ, r, φ1, φ2, ‖f‖∞, ‖fX‖∞. Moreover,

(1 + 2ζ)H = (1 + 2ζ)
√

(r + 1)‖fX‖∞φ2
√

Dm2

n

and, since δ > ρ−1δ̂ and ‖̂fX‖∞ > ρ−2‖fX‖∞ on Λρ,

σ(m)

2ρ2δ−1
√

φ1Dm1

≥ ρ−4(1 + η)
√

(r + 1)‖fX‖∞φ2
√

Dm2

n
.

Then, since ρ5 = 1 + η, choosing ζ such that 1 + 2ζ = ρ gives

σ(m)

2ρ2δ−1
√

φ1Dm1

≥ (1 + 2ζ)H

and then
P1,m ≤ 2 exp(−C log3/2(n)).

[2] Study of P2,m: We now have to bound (with large probability) the term

‖Ĝ−G‖2F =
∑

d,d′

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ϕdϕd′(Xi)− E[ϕdϕd′(Xi)]

∣

∣

∣

∣

∣

2

.

We use Bernstein’s Inequality (Lemma 2): Since supu∈R
|ϕd(u)ϕd′(u)|∞ ≤ φ1Dm1 and

E|ϕdϕd′(X1)|2 ≤
∫∫

ϕ2
dϕ

2
d′(u)fX(u)du ≤ φ1‖fX‖∞Dm1 ,

the assumptions of Lemma 2 are satisfied with c = φ1Dm1 and v = φ1‖fX‖∞Dm1 . If we set

ε = C4

√

Dm1Dm2

n , with C4 = (ρ− 1)(1 + η)
√

φ1φ2‖fX‖∞/(ρ3C3δ
√
r + 1) then, on Λρ,

ε ≤ (ρ− 1)σ(m)

2ρC3(r + 1)
.

Moreover on Λρ, since δ ≤ 1,

nε2

v
=

C2
4

φ1‖fX‖∞
Dm2 ≥ C2

4

φ1‖fX‖∞
(logn)2

nε

c
=
C4

φ1

√

nDm2

Dm1

≥ C4

φ1
√
ρδ

(logn)5/2 ≥ C4

φ1
√
ρ
(log n)5/2.

32



Then, using Lemma 2,

Pρ

[

‖Ĝ−G‖F ≥ (ρ− 1)
σ(m)

2C3ρ

]

≤
∑

d,d′

Pρ

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

ϕdϕd′(Xi)− E[ϕdϕd′(Xi)]

∣

∣

∣

∣

∣

≥ (ρ− 1)σ(m)

2ρC3(r + 1)

)

≤ 2(r + 1)2 exp(−C5 log
2(n)),

with C5 only depending on η, r, φ1, φ2, ‖f‖∞, ‖fX‖∞ and δ. Finally, we denote

Mn = {(m1,m2), 2m1 ≤ ρδn, Dm2 ≤ n}

which verifies Mn ⊂ Mn on Λρ. Gathering all the terms together, we obtain

Pρ

(

∃m ∈ Mn ‖f̂m −Km(f)‖x,2 ≥
σ(m)

2

)

≤ Pρ

(

∃m ∈ Mn ‖f̂m −Km(f)‖x,2 ≥
σ(m)

2

)

≤
∑

m∈Mn

P1,m + P2,m

≤
∑

m∈Mn

4(r + 1)2 exp(−C6 log
3/2(n))

≤ 4(r + 1)2ρδn2 exp(−C6 log
3/2(n)),

with C6 depending on η, r, φ1, φ2, ‖f‖∞, ‖fX‖∞ and δ, which yields Proposition 6.

8.2.3 Proof of Proposition 7

In this Section, we denote

‖t‖2X :=

∫

t2(u)fX(u)du.

We recall that lm1 is the index such that x belongs to the interval Ilm1
and as in Section 8.2.2, we

set:
F

(lm1 )
m1 = Span(ϕmlm1 ,d

)0≤d≤r.

We want to bound

P(Ωc ∩ Λρ) = P

(

∃m1, ∃t ∈ Span(ϕmlm1 ,d
)0≤d≤r ‖t‖2n < ρ−1‖t‖2X and Λρ

)

.

Under (CM), we have: kn(r+1) ≤ Dm1 ≤ δ̂n/(logn)3, and on Λρ, we have: 2m1 ≤ ρδn. Let µn be
the empirical process defined by

µn(t) =
1

n

n
∑

i=1

t(Xi)− E(t(Xi)).

Then, µn(t
2) = ‖t‖2n − ‖t‖2X , which implies that

P(Ωc ∩ Λρ) ≤
∑

m1,2m1≤ρδn
P



 sup
t∈F (lm1 )

m1
,‖t‖X=1

|µn(t2)| > 1− ρ−1,



 .

But, for all t ∈ F
(lm1 )
m1 such that ‖t‖X = 1

|µn(t2)|2 ≤ δ−2
∑

d,d′

µ2
n(ϕ

m
lm1 ,d

ϕmlm1 ,d
′).
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Using Lemma 2, we easily prove as in Section 8.2.2 that ∀m ∈ Mn

P

(

|µn(ϕmlm1 ,d
ϕmlm1 ,d

′)| > (1− ρ−1)δ/(r + 1)
)

≤ 2 exp(−K(logn)3)

with K depending on ρ, φ1, r, ‖fX‖∞, δ. Then

P(Ωc ∩ Λρ) ≤
∑

m1,2m1≤ρδn
P





∑

d,d′

µ2
n(ϕ

m
lm1 ,d

ϕmlm1 ,d
′) > (δ(1− ρ−1))2





≤
∑

m1,2m1≤ρδn

∑

d,d′

P

(

|µn(ϕmlm1 ,d
ϕmlm1 ,d

′)| > δ(1− ρ−1)/(r + 1)
)

≤ 2(r + 1)2
∑

m1,2m1≤ρδn
exp(−K(logn)3) ≤ 2(r + 1)2ρδn exp(−K log3(n)),

which yields the result.

8.2.4 Proof of Proposition 8

First, as already noticed, ‖f‖2x,2 ≤ ‖f‖∞. Now let m be a fixed element of Mn. Then we denote
l = lm1the index such that x belongs to the interval Il and moreover we denote

Ĝ = Ĝ(l)
m , Ẑ = Ẑ(l)

m , Â = Â(l)
m , ϕd = ϕml,d, ψmk = ψk.

The elements of Â are denoted (âd,k)d,k instead of (âm(lm1 ,d),k
)d,k.

If Sp(Ĝ) ≥ (1 + η)−2/5δ̂ (otherwise Â = 0),

‖Ĝ−1‖2 = ρ(Ĝ−1) = (min(Sp(Ĝ)))−1 ≤ (1 + η)2/5δ̂−1.

Therefore, we have:

‖Â‖2F ≤ ‖Ĝ−1‖22‖Ẑ‖2F ≤ (1 + η)4/5δ̂−2
∑

d,k

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ϕd(Xi)ψk(Yi)

∣

∣

∣

∣

∣

2

≤ (1 + η)4/5δ̂−2
∑

d,k

φ1φ2Dm1Dm2

≤ (1 + η)4/5δ̂−2(r + 1)φ1φ2Dm1D
2
m2
.

Finally

‖f̂m‖2x,2 =
∑

k∈Km

(

r
∑

d=0

âdkϕd(x)

)2

≤ ‖Â‖2Fφ1Dm1

≤ (1 + η)4/5δ̂−2(r + 1)φ21φ2D
2
m1
D2
m2
.

8.2.5 Proof of Theorem 7

We first assume that d1 = d2 = 1. We denote K1
m the projection on Fm1 endowed with the scalar

product (g, h)X =
∫

g(z)h(z)fX(z)dz, and K2
m the projection on Hm2 endowed with the usual scalar

product. The projection Km(f) can be written for any u and any y,

Km(f)(u, y) =
∑

k∈Km

〈f1(u, .), ψmk 〉ψmk (y) = K2
m(f1(u, .))(y)
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where f1(., y) = K1
m(f(., y)). Thus we have the factorization

(Km(f)− f)(u, .) = K2
m(f1(u, .)− f(u, .)) +K2

m(f(u, .))− f(u, .)

and applying Pythagora’s theorem

‖Km(f)− f‖2x,2 = ‖K2
m(f1(x, .)− f(x, .))‖22 + ‖K2

m(f(x, .)) − f(x, .)‖22
≤ ‖f1(x, .)− f(x, .)‖22 + ‖K2

m(f(x, .)) − f(x, .)‖22.

Now, we shall use the following result. Let τ be a univariate function belonging to the Hölder space
H1(α,L) on a interval with length b. If S is the space of piecewise polynomials of degree bounded
by r > α− 1 based on the regular partition with 2J pieces, then there exists a constant C(α, b) only
depending on α and b such that

d∞(τ, S) := inf
t∈S

‖t− τ‖∞ ≤ C(α, b)L2−Jα

(see for example Lemma 12 in Barron et al. (1999)). Let K the orthogonal projection on S endowed
with some scalar product. We denote

|||K||| = sup
t∈L∞\{0}

‖K(t)‖∞
‖t‖∞

.

Then, for all t ∈ S, since K(t) = t,

‖τ −K(τ)‖∞ = ‖τ − t+K(t− τ)‖∞ ≤ (1+|||K|||)‖t− τ‖∞.

We obtain:

‖τ −K(τ)‖∞ ≤ (1+|||K|||) inf
t∈S

‖t− τ‖∞ ≤ (1+|||K|||)C(α, b)L2−Jα.

It remains to bound |||K||| in the following cases.

• Case 1: S is the space of piecewise polynomials of degree bounded by r1, endowed with (., .)X
(S = Fm1 , K = K1

m). It is sufficient to apply Lemma 6 to the function τ(u, y) = t(u)ψmk (y) to
obtain |||K||| ≤ (r1 + 1)‖fX‖∞δ−1.

• Case 2: S is the space of piecewise polynomials of degree bounded by r2, endowed with the
usual dot product (S = Hm2 , K = K2

m). Then it is sufficient to apply the previous case with fX
identically equal to 1, to obtain |||K||| ≤ (r2 + 1).

Finally, we have obtained the following result: if τ is a univariate function belonging to the
Hölder space H1(α,L) then

‖τ −K1
m(τ)‖∞ ≤ C(α,A, r1, ‖fX‖∞/δ)LD−α

m1
,

‖τ −K2
m(τ)‖∞ ≤ C(α, |B|, r2)LD−α

m2
.

Now f(x, .) belongs to the Hölder space H1(α2, L2) then

‖K2
m(f(x, .)) − f(x, .)‖∞ ≤ C2L2D

−α2
m2

with C2 depending on α2, |B| and r2. Moreover, for all y ∈ B, f(., y) belongs to the Hölder space
H1(α1, L1) then

|f1(x, y)− f(x, y)| ≤ ‖K1
m(f(., y))− f(., y)‖∞ ≤ C1(α1, A, r, ‖fX‖∞/δ)L1D

−α1
m1

35



with C1 not depending on y. Finally, since the support of f(x, .), f1(x, .),K2
m(f(x, .)) is compact,

we obtain

‖Km(f)− f‖x,2 ≤ C0(L1D
−α1
m1

+ L2D
−α2
m2

).

with C0 depending on A, |B|, r, α1, α2 and ‖fX‖∞ and δ. We can easily generalize this result to the
case d1, d2 ≥ 2 and we obtain:

‖Km(f)− f‖x,2 ≤ C

d
∑

i=1

Li2
−αimi

for C a constant. To conclude it is sufficient to take 2mi equal to L
1
αi

i ∆
1
αi
n up to a constant and

∆n =

(

d
∏

i=1

L
1
αi

i

)− α
2α+1

(δn)
α

2α+1 ,

and to use Theorem 3.

8.3 Proof of Theorem 5

As usual, we build functions fε ∈ H2(α,L) which are distant in terms of the ‖.‖x,2-norm and close
in terms of the Kullback-Leibler divergence. Let B a compact subset of R. The construction begins
with ψ a very regular wavelet with compact support and such that ψ(0) 6= 0,

∫

ψ = 0. We can choose
ψ such that for all u, u′ |ψ(⌊α1⌋)(u)−ψ(⌊α1⌋)(u′)| ≤M1|u−u′|α1−⌊α1⌋ and |ψ(⌊α2⌋)(u)−ψ(⌊α2⌋)(u′)| ≤
M2|u − u′|α2−⌊α2⌋ for M1 and M2 two constants. For J = (j1, j2) ∈ Z2 to be chosen below and
k ∈ Z, we set for any u ∈ R and any y ∈ R,

ψJk(u, y) = 2(j1+j2)/2ψ(2j1(u− x))ψ(2j2y − k).

Let f0(u, y) = g(y) where g is a density function, constant with value c0 > 0 on B, such that
f0 ∈ H2(α,L/2). Now we set RJ the maximal subset of Z such that the functions (ψ(2j2 .−k))k∈RJ

have disjoint supports included in B. The cardinal of RJ is |RJ | = c2j2 , with c a positive constant
which only depends on B. We consider fX a fixed density satisfying assumptions of the theorem
and for all ε = (εk)k∈RJ ∈ {−1, 1}|RJ |, for any u ∈ R and any y ∈ R, we set

fε(u, y) = f0(u, y) +
1√
δ∗n

∑

k∈RJ

εkψJk(u, y),

where, for short, we have denoted
δ∗ = fX(x).

We remark that, since the ψJk’s have disjoint supports, the sum in the previous equality is actually
composed of a single term for any u ∈ R and any y ∈ R.

Let us prove that fε has the appropriate smoothness. Let f = fε − f0 and ℓi = ⌊αi⌋, i = 1, 2.
On the first hand, for any u, u′ and y,

∣

∣

∣

∣

∂⌊α1⌋f

∂x⌊α1⌋ (u
′, y)− ∂⌊α1⌋f

∂x⌊α1⌋ (u, y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2(j1+j2)/2√
δ∗n

∑

k∈RJ

εkψ(2
j2y − k)2ℓ1j1

(

ψ(ℓ1)(2j1(u − x))− ψ(ℓ1)(2j1(u′ − x))
)

∣

∣

∣

∣

∣

≤ ‖ψ‖∞
2(j1+j2)/22ℓ1j1√

δ∗n
M1|2j1(u− u′)|α1−ℓ1 ≤M1‖ψ‖∞

2(j1+j2)/22α1j1

√
δ∗n

|u′ − u|α1−⌊α1⌋.

36



On the second hand, since for fixed y and y′, there exist at most two integers k ∈ RJ such that
ψ(ℓ2)(2j2y − k)− ψ(ℓ2)(2j2y′ − k) 6= 0, we have for any u, y and y′,

∣

∣

∣

∣

∂⌊α2⌋f

∂y⌊α2⌋ (u, y
′)− ∂⌊α2⌋f

∂y⌊α2⌋ (u, y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2(j1+j2)/2√
δ∗n

ψ(2j1(u− x))
∑

k∈RJ

εk2
ℓ2j2

(

ψ(ℓ2)(2j2y − k)− ψ(ℓ2)(2j2y′ − k)
)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

2(j1+j2)/22ℓ2j2√
δ∗n

ψ(2j1(u− x))

∣

∣

∣

∣

∑

k∈RJ

|εk||ψ(ℓ2)(2j2y − k)− ψ(ℓ2)(2j2y′ − k)|

≤ ‖ψ‖∞
2(j1+j2)/22ℓ2j2√

δ∗n
2M2|2j2(y − y′)|α2−ℓ2 ≤ 2M2‖ψ‖∞

2(j1+j2)/22α2j2

√
δ∗n

|y′ − y|α2−⌊α2⌋.

Then fε ∈ H2(α,L) if the following condition is verified:

Condition C:
M12

j1α12(j1+j2)/2√
δ∗n

≤ L1

2‖ψ‖∞
,

2M22
j2α22(j1+j2)/2√
δ∗n

≤ L2

2‖ψ‖∞
.

Moreover
∫

fε =
∫

f0 = 1 so fε is a density as soon as fε ≥ 0. To ensure this inequality, it is
sufficient that

inf
B
g −

∥

∥

∥

∥

∥

1√
δ∗n

∑

k∈RJ

εkψJk

∥

∥

∥

∥

∥

∞

≥ c0 −
1√
δ∗n

2(j1+j2)/2‖ψ‖2∞ ≥ c0/2 > 0

which is true if Condition C is satisfied and j1, j2 are large enough.
Now, we set

d = inf
ε6=ε′

‖fε − fε′‖x,2/2

and for any ε ∈ {−1,+1}|RJ|, put ε∗k = (ε′1, . . . , ε
′
|RJ |) such that:

ε′i =

{

εi if i 6= k,
−εi if i = k.

We use Lemma 10.2 of Härdle et al. (1998) and we compute Pε(Λ(fε∗k, fε) > exp(−λ)) for λ > 0,
where the notation Pε denotes the probability distribution where observations (Xi, Yi) are i.i.d. with
common density (u, v) 7→ fX(u)fε(u, v) and

Λ(fε∗k, fε) =
n
∏

i=1

fε∗k(Xi, Yi)

fε(Xi, Yi)
.

Setting for any u ∈ R and any v ∈ B,

UJk(u, v) = −εkψJk(u, v)
fε(u, v)

,

we have:

log(Λ(fε∗k, fε)) =
n
∑

i=1

log

(

1− 2√
δ∗n

εkψJk(Xi, Yi)

fε(Xi, Yi)

)

=

n
∑

i=1

log

(

1 +
2√
δ∗n

UJk(Xi, Yi)

)

=
n
∑

i=1

Θ

(

2√
δ∗n

UJk(Xi, Yi)

)

+
2√
δ∗n

UJk(Xi, Yi)−
2

δ∗n
U2
Jk(Xi, Yi),
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where Θ(u) = log(1 + u)− u+ u2/2. First note that

∥

∥

∥

∥

2√
δ∗n

UJk

∥

∥

∥

∥

∞
≤ 2√

δ∗n

‖ψJk‖∞
c0/2

=
4c−1

0√
δ∗n

‖ψ‖2∞2(j1+j2)/2 = o(1),

by using Condition C and if j1 → +∞, j2 → +∞. Now, we set

un =

n
∑

i=1

Θ

(

2√
δ∗n

UJk(Xi, Yi)

)

.

Since fX is assumed to be continuous, if j1 is large enough, supu,ψ(2j1 (u−x)) 6=0 fX(u) ≤ 2δ∗. Then, if
Eε denotes the expectation with respect to Pε,

Eε[|un|] ≤ nEε

[∣

∣

∣

∣

Θ

(

2√
δ∗n

UJk(X1, Y1)

)∣

∣

∣

∣

]

≤ n

∫∫
∣

∣

∣

∣

2√
δ∗n

UJk(u, y)

∣

∣

∣

∣

3

fX(u)fε(u, y)dudy

≤ 16√
δ∗n

∫∫ |ψJk(u, y)|3
f3
ε (u, y)

fε(u, y)dudy

≤ 16√
δ∗n

(c0
2

)−2

‖ψJk‖∞

≤ 64c−2
0 ‖ψ‖2∞

(

2j1+j2

δ∗n

)1/2

,

which goes to 0 by using Condition C and if j1 → +∞, j2 → +∞. Now we set

vn =

n
∑

i=1

2

δ∗n
U2
Jk(Xi, Yi), wn =

n
∑

i=1

2√
δ∗n

UJk(Xi, Yi).

Then, using similar arguments, we obtain:

Eε[vn] =
2

δ∗
Eε[U

2
Jk(X1, Y1)]

=
2

δ∗

∫∫

ψ2
Jk(u, y)

f2
ε (u, y)

fX(u)fε(u, y)dudy

≤ 8c−1
0

and
Eε[w

2
n] ≤ 2Eε[vn] ≤ 16c−1

0 .

The Markov inequality implies that there exist λ and p0 only depending on c0 such that Pε(Λ(fε∗k, fε) >
exp(−λ)) ≥ p0. Then, mimicking the proof of Lemma 10.2 of Härdle et al. (1998), we obtain for
any estimator Tn,

max
ε

Eε

∫

B

|fε(x, y)− Tn(x, y)|2dy ≥ |RJ |d2
2

exp(−λ)p0.

Since |RJ | = c2j2 and d = 1√
δ∗n

‖ψJk‖x,2 = 2j1/2ψ(0)√
δ∗n

, we obtain:

inf
Tn

max
ε

Eε

∫

B

|fε(x, y)− Tn(x, y)|2dy ≥ C
2j1+j2

δ∗n
,
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where C only depends on c0 and c. Now for all n we choose J = J(n) = (j1(n), j2(n)) such that for
i = 1, 2

ci
2
L
1/αi

i (∆n)
1/αi ≤ 2ji ≤ ciL

1/αi

i (∆n)
1/αi

with

∆n =
(

L
1/α1

1 L
1/α2

2

)− α
2α+1

(δ∗n)
α

2α+1 ,

c1 and c2 such that
M12

j1α12(j1+j2)/2√
δ∗n

≤ L1M1c
α1
1

√
c1c2 ≤ L1

2‖ψ‖∞
,

2M22
j2α22(j1+j2)/2√
δ∗n

≤ 2L2M2c
α2
2

√
c1c2 ≤ L2

2‖ψ‖∞
so that Condition C is satisfied. Since

2j1+j2

δ∗n
≥ c1c2

4
L
1/α1

1 L
1/α2

2 ∆1/α
n (δ∗n)−1 =

c1c2
4

(

L
1/α1

1 L
1/α2

2

)
2α

2α+1

(δ∗n)
−2ᾱ
2ᾱ+1

we obtain

inf
Tn

sup
(f,fX )∈H̃(α,L)

{

(fX(x))
2ᾱ

2ᾱ+1Ef‖f − Tn‖2x,2
}

≥ inf
Tn

sup
(f,fX)∈H̃(α,L)

{

(fX(x))
2ᾱ

2ᾱ+1Ef

∫

B

|f(x, y)− Tn(x, y)|2dy
}

≥ C′
(

L
1/α1

1 L
1/α2

2

)
2α

2α+1

n
−2ᾱ
2ᾱ+1 ,

where C′ is a constant not depending on L and n.

A Proof of Theorem 4

Without loss of generality, we assume that d1 = 1 and we set β = β1, β
(m) = β

(m)
1 and L̃ = L̃1.

We build an estimator f̂X that satisfies (3.3), δ̂−1 ≤ log logn and (6.1). In this section, we denote
‖g‖∞ = supt∈R

|g(t)| for any function g. Let K a bounded kernel of order ⌊β(m)⌋ and L2-integrable.
We consider as estimator for fX the density estimator defined in Giné and Nickl (2009) with the
observations (Xn+1, . . . , X2n). This estimator is obtained from a classical Lepski method based on
kernel estimators of kernel K and bandwidth h. Consider the set of bandwidths:

HX = {γ−k : k ∈ N and (logn)2/n ≤ γ−k ≤ (log(n))−1}

with some γ > 1. Note that the cardinality of HX is of order logn. The estimator defined in
Giné and Nickl (2009) consists in, given a family of kernel estimators (pn(h)) with kernel K and

bandwidth h ∈ HX , selecting ĥ with a Lepski method that compares the sup-norm of differences
of the estimators pn(h). The final estimator is f̃X = pn(ĥ). It can be proved, using the Talagrand
inequality and following the same proof as Lemma 1 of Giné and Nickl (2009), that these estimators
satisfy

P (‖pn(h)− E (pn(h)) ‖∞ ≥ t) ≤ exp
{

−C2nht
2
}

(A.1)

for 1 ≥ t ≥ C1

√

| log h|
nh where C1 and C2 depend on ‖fX‖∞ and the kernel K. Such an inequality

is also in Giné and Nickl (2010) for a specific wavelet estimator (see their inequality (32)). If
fX ∈ H1(β, L), Giné and Nickl prove that

‖E (pn(h))− fX‖∞ ≤ C3h
β , (A.2)

where C3 is a constant depending on K, β and L̃.
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Let µ = min(λ, 1)/ log logn. Inequality (A.2) implies that for n large enough (depending on β,
C3 and λ) and for all h ∈ HX , ‖E (pn(h))− fX‖∞ ≤ µ/2. Then for n ≥ N(λ, β, C1, C3),

P (‖pn(h)− fX‖∞ ≥ µ) ≤ P (‖pn(h)− E (pn(h)) ‖∞ ≥ µ/2)

≤ exp
{

−C2(log(n))
2(µ/2)2

}

≤ exp
{

−C′
2(log(n))

7/4
}

,

where C′
2 depends on C2 and λ. Since the cardinal of HX is of order log n, this implies that f̃X

satisfies, for n ≥ N(λ, β, C1, C3)

P(‖f̃X − fX‖∞ > µ) ≤ Be−(logn)3/2 , (A.3)

where B depends on λ and C2. Moreover, we can prove following the same lines as Giné and Nickl
(2009), for 0 < β < r, that we have

sup
f∈H1(β,L̃)

E‖f̃X − fX‖q∞ ≤ C

(

logn

n

)qβ/(2β+1)

,

where C is a constant. So f̃X satisfies (6.1). Now we consider the estimator f̂X = max
{

1
log logn , f̃X

}

.

Let An =
{

supt∈Vn(x) |f̃X(t)− fX(t)| ≥ 1
log logn

}

. On Acn, using assumption (H3), we have for any

t ∈ Vn(x),

f̃X(t) ≥ δ − sup
t∈Vn(x)

|f̃X(t)− fX(t)| > δ − 1

log logn
.

Then for n large enough, on Acn, we have f̂X = f̃X on Vn(x). Finally, using (A.3), for n larger than
N(δ, λ, β, C1, C3)

P

(

sup
t∈Vn(x)

∣

∣

∣

∣

∣

f̂X − fX

f̂X

∣

∣

∣

∣

∣

> λ

)

≤ P( sup
t∈Vn(x)

∣

∣

∣̂fX − fX

∣

∣

∣ >
λ

log logn
)

≤ P(‖f̃X − fX‖∞ >
λ

log logn
) + P(An) ≤ 2Be−(logn)3/2 ,

which implies that f̂X satisfies (3.3). By takingB larger, the result is also true for n < N(δ, λ, β, C1, C3).

Finally, B depends on λ, δ, ‖fX‖∞, β, L̃ and the kernel. We can prove similarly that f̂X satisfies (6.1).

B Proofs of technical results

B.1 Proof of Lemma 3

We apply the Talagrand concentration inequality given in Klein and Rio (2005) to the functions
si(x) = τa(x) − E(τa(Ui)) and we obtain

P(sup
a∈A

|νn(a)| ≥ H + λ) ≤ 2 exp

(

− nλ2

2(v + 4HM) + 6Mλ

)

.

Then we modify this inequality following Birgé and Massart (1998) Corollary 2 p.354. It gives

P(sup
a∈A

|νn(a)| ≥ (1 + ζ)H + λ) ≤ 2 exp

(

−n
3
min

(

λ2

2v
,
min(ζ, 1)λ

7M

))

. (B.1)

To conclude, we set λ = ζH .
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B.2 Proof of Lemma 5

We have:

‖f1 ∗ f2‖2x,2 =

∫

(f1 ∗ f2)2(x, y)dy =

∫ (∫∫

f1(x − u, y − v)f2(u, v)dudv

)2

dy

≤
∫ (∫∫

f2
1 (x− u, y − v)|f2(u, v)|dudv ×

∫∫

|f2(u, v)|dudv
)

dy

= ‖f2‖1
∫∫

‖f1(x− u, ·)‖22|f2(u, v)|dudv ≤ sup
t∈Vn(x)

‖f1‖2t,2 × ‖f2‖21.

B.3 Proof of Lemma 4

The lemma is a consequence of (3.3) used with λ = ρ− 1, λ = 1− ρ−1, λ = ρ2 − 1 or λ = 1− ρ−2.

Indeed, under (3.3), with probability 1 − κ exp(−(logn)3/2), for all t ∈ Vn(x), |fX(t) − f̂X(t)| ≤
λ|̂fX(t)|, which implies

(1 − λ)|̂fX(t)| ≤ |fX(t)| ≤ (1 + λ)|̂fX (t)|
and then

(1 + λ)−1|fX(t)| ≤ |̂fX(t)| ≤ (1− λ)−1|fX(t)|.
Thus, with probability 1− κ exp(−(logn)3/2), (1 + λ)−1δ ≤ δ̂ ≤ (1− λ)−1δ and (1 + λ)−1‖fX‖∞ ≤
‖f̂X‖∞ ≤ (1− λ)−1‖fX‖∞.

B.4 Proof of Lemma 6

Let l the index such that x belongs to the interval Il. We denote

ϕd = ϕml,d, ψk = ψmk ,

I(τ) =

(∫∫

ϕd(u)ψk(y)τ(u, y)fX(u)dudy

)

0≤d≤r,k∈Km

and
Km(τ)(x, y) =

∑

k

∑

d

bd,kϕd(x)ψk(y).

Lemma 1 shows that the matrix of coefficients B = (bd,k)0≤d≤r,k∈Km verifies the equation GB =
I(τ), with

G = E(Ĝ) = (〈ϕd1 , ϕd2〉X)0≤d1,d2≤r .

Now, using (8.9),

‖Km(τ)‖2x,2 =
∑

k

(
∑

d

bd,kϕd(x))
2 ≤

∑

d

ϕ2
d(x)

∑

k

∑

d

b2d,k

≤ φ1Dm1‖B‖2F ≤ φ1Dm1‖G−1‖22‖I(τ)‖2F
≤ φ1Dm1δ

−2‖I(τ)‖2F .
Now we denote ProjHm2

the usual L2 orthogonal projection on Hm2 and 〈·, ·〉 the standard L2

dot product. Notice that for any function s ∈ L2(R),
∑

k∈Km
〈s, ψk〉2 =

∫

|ProjHm2
(s)|2(y)dy ≤

∫

s2(y)dy. Then

‖I(τ)‖2F =

r
∑

d=0

∑

k∈Km

〈
∫

ϕd(u)τ(u, .)fX (u)du, ψk〉2

≤
r
∑

d=0

∫
(
∫

ϕd(u)τ(u, y)fX(u)du

)2

dy ≤
∫
(
∫

Il

τ2(u, y)f2X(u)du

)

dy
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using that for any function s,
∑

d(
∫

sϕd)
2 ≤

∫

Il
s2. Next, using that Il is an interval with length

4A(r + 1)D−1
m1

,

‖I(τ)‖2F ≤ sup
t∈Il

‖τ‖2t,2
∫

Il

f2X(u)du ≤ 4A(r + 1)D−1
m1

‖fX‖2∞ sup
t∈Il

‖τ‖2t,2.

Finally

‖Km(τ)‖2x,2 ≤ φ1Dm1δ
−24A(r + 1)D−1

m1
‖fX‖2∞ sup

t∈Il
‖τ‖2t,2

≤ (r + 1)2‖fX‖2∞δ−2 sup
t∈Vn(x)

‖τ‖2t,2

and the lemma is proved.

C Tables for simulation results

In this appendix, for each example and each procedure, we give the approximated mean squared
error based on N = 100 samples for different values of n, different values of the parameter η and
different values of x. We give in bold red the minimal value of the approximated mean squared
error. For the kernel estimator and Examples 1 and 2, we distinguish the case where fX is known
or not.

Ex 1 fX known fX unknown
η −0.2 0.5 1 2 3 −0.2 0.5 1 2 3

n = 250 1.285 0.061 0.017 0.020 0.029 1.368 0.033 0.028 0.042 0.062
n = 500 0.673 0.019 0.009 0.010 0.018 0.685 0.016 0.009 0.011 0.018
n = 1000 0.336 0.013 0.006 0.006 0.009 0.329 0.013 0.006 0.007 0.010

Table 1: Mean squared error for the kernel estimator at x = 0.5 for Example 1

Ex 1 fX unknown
η −0.2 0.5 1 2 3

n = 250 0.492 0.192 0.222 0.232 0.231
n = 500 0.087 0.076 0.119 0.211 0.229
n = 1000 0.051 0.047 0.055 0.070 0.138

Table 2: Mean squared error for the projection estimator at x = 0.5 for Example 1

Ex 2 fX known fX unknown
η −0.2 0.5 1 2 3 −0.2 0.5 1 2 3

n = 250 0.038 0.008 0.006 0.007 0.009 0.042 0.008 0.006 0.008 0.009
n = 500 0.021 0.006 0.004 0.005 0.006 0.025 0.006 0.004 0.005 0.007
n = 1000 0.01 0.004 0.003 0.004 0.005 0.012 0.004 0.003 0.004 0.005

Table 3: Mean squared error for the kernel estimator at x = 0.5 for Example 2
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Ex 2 fX unknown
η −0.2 0.5 1 2 3

n = 250 0.154 0.104 0.128 0.152 0.158
n = 500 0.064 0.070 0.090 0.103 0.123
n = 1000 0.047 0.060 0.063 0.074 0.088

Table 4: Mean squared error for the projection estimator at x = 0.5 for Example 2

Ex 3 fX unknown
x\η −0.2 0.5 1 2 3

0 0.514 0.016 0.013 0.012 0.019
n = 250 0.36 0.092 0.062 0.080 0.112 0.134

1 1.709 0.015 0.009 0.009 0.016

0 0.269 0.013 0.013 0.009 0.010
n = 500 0.36 0.109 0.040 0.039 0.063 0.094

1 0.601 0.010 0.009 0.006 0.008

0 0.126 0.011 0.011 0.008 0.006

n = 1000 0.36 0.104 0.029 0.024 0.037 0.056
1 0.265 0.006 0.007 0.004 0.004

Table 5: Mean squared error for the kernel estimator at x = 0, x = 0.36 and x = 1 for Example 3

Ex 3 fX unknown
x\η −0.2 0.5 1 2 3
0 0.029 0.035 0.041 0.051 0.060

n = 250 0.36 0.186 0.188 0.183 0.172 0.170

1 0.033 0.038 0.044 0.064 0.099

0 0.020 0.028 0.033 0.036 0.038
n = 500 0.36 0.169 0.184 0.177 0.172 0.170

1 0.027 0.029 0.030 0.032 0.035

0 0.012 0.018 0.023 0.031 0.034
n = 1000 0.36 0.160 0.161 0.166 0.170 0.169

1 0.023 0.025 0.028 0.029 0.028

Table 6: Mean squared error for the projection estimator at x = 0, x = 0.36 and x = 1 for Example 3
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Ex 4 fX unknown
x\η −0.2 0.5 1 2 3
0 0.016 0.007 0.007 0.009 0.013

n=250 0.36 0.082 0.03 0.037 0.048 0.055
1 0.026 0.006 0.006 0.009 0.0119

0 0.009 0.004 0.004 0.006 0.009
n=500 0.36 0.057 0.019 0.023 0.034 0.043

1 0.016 0.005 0.005 0.006 0.008

0 0.004 0.003 0.003 0.004 0.005
n=1000 0.36 0.037 0.013 0.014 0.021 0.03

1 0.008 0.003 0.003 0.004 0.005

Table 7: Mean squared error for the kernel estimator at x = 0, x = 0.36 and x = 1 for Example 4

Ex 4 fX unknown
x\η −0.2 0.5 1 2 3
0 0.028 0.030 0.032 0.036 0.040

n = 250 0.36 0.103 0.102 0.099 0.096 0.095

1 0.030 0.036 0.038 0.049 0.066

0 0.022 0.024 0.024 0.029 0.032
n = 500 0.36 0.098 0.099 0.097 0.094 0.094

1 0.026 0.027 0.028 0.033 0.036

0 0.020 0.020 0.021 0.021 0.023
n = 1000 0.36 0.082 0.083 0.093 0.095 0.094

1 0.023 0.023 0.022 0.026 0.028

Table 8: Mean squared error for the projection estimation in x = 0, x = 0.36, x = 1 for Example 4
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