Multilevel Richardson-Romberg extrapolation - Archive ouverte HAL
Rapport Année : 2013

Multilevel Richardson-Romberg extrapolation

Résumé

We propose and analyze a Multilevel Richardson-Romberg (MLRR) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg (MSRR) method introduced in [Pagès 07] and the variance control resulting from the stratification in the Multilevel Monte Carlo (MLMC) method (see [Heinrich 01]). Thus we show that, in standard frameworks like discretization schemes of diffusion processes, an assigned quadratic error $\varepsilon$ can be obtained with our MLRR estimator with a global complexity of log(1/epsilon) epsilon^{-2} instead of (log(1/epsilon))^2 epsilon^{-2} with the standard MLMC method, at least when the weak error E(Y_h) - EY_0 of the biased implemented estimator of Y_h can be expanded at any order in h. We analyze and compare these estimators on two numerical problems: the classical vanilla option pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation.
Fichier principal
Vignette du fichier
MultilevelRR_4.pdf (447.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00920660 , version 1 (19-12-2013)
hal-00920660 , version 2 (30-04-2014)
hal-00920660 , version 3 (19-12-2014)

Identifiants

  • HAL Id : hal-00920660 , version 1

Citer

Vincent Lemaire, Gilles Pagès. Multilevel Richardson-Romberg extrapolation. 2013. ⟨hal-00920660v1⟩
690 Consultations
1141 Téléchargements

Partager

More