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Multilevel Richardson-Romberg extrapolation

Vincent Lemaire∗, Gilles Pagès†

December 19, 2013

Abstract

We propose and analyze a Multilevel Richardson-Romberg (MLRR) estimator which com-
bines the higher order bias cancellation of the Multistep Richardson-Romberg (MSRR) method
introduced in [Pag07] and the variance control resulting from the stratification in the Multilevel
Monte Carlo (MLMC) method (see [Hei01]). Thus we show that, in standard frameworks like
discretization schemes of diffusion processes, an assigned quadratic error ε can be obtained with
our MLRR estimator with a global complexity of log(1/ε)/ε2 instead of (log(1/ε))2/ε2 with the
standard MLMC method, at least when the weak error E [Yh]−E [Y0] of the biased implemented
estimator of Yh can be expanded at any order in h. We analyze and compare these estimators on
two numerical problems: the classical vanilla option pricing by MC simulation and the less classical
Nested Monte Carlo simulation.

Keywords: Multilevel Monte Carlo methods ; Richardson-Romberg Extrapolation ; Multi-Step ; Euler
scheme ; Nested Monte Carlo method ; Stratification, Option pricing.

MSC 2010: primary 65C05, secondary 65C30, 62P05.

1 Introduction

The aim of this paper is to combine the multilevel Monte Carlo method introduced by [Hei01] and
popularized for financial applications by M. Giles in [Gil08] (see also [Keb05] for the statistical Romberg
approach) and the (consistent) multistep Richardson-Romberg extrapolation (see [Pag07]) in order to
minimize the simulation cost of a quantity of interest which can be represented as an expectation of
a non-simulatable random variable Y0 (at least at a reasonable unitary cost). Both above methods
can then take advantage of the existence of a family of (easily) simulatable random variables Yh,
h > 0, which strongly approximate Y0 as h → 0 with a bias E [Yh]−E [Y0] that can be expanded as a
polynomial function of h (or hα, α > 0).

However, the multilevel Monte Carlo method does not fully take advantage of the existence of such
an expansion beyond the first order where the multistep Richardson-Rombeg extrapolation cannot
prevent an increase of the variance of the resulting estimator. Let us be more precise.

Consider a probability space (Ω,A,P) and suppose we have a family (Yh)h>0 of real-valued random
variables in L2(P) associated to a non degenerate Y0∈ L2(P) and satisfying limh→0E

[
(Yh − Y0)

2
]
= 0

where h takes values in an admissible subset of parameters H ⊂ (0,h] having 0 as a limiting value and
such that H

n ⊂ H for every integer n > 1. We also assume that h∈ H. Usually the random variable Yh
results from a time discretization scheme of parameter h or from an inner approximation in a Nested
Monte Carlo so that we will speak of h as the bias parameter in what follows. Furthermore we make
the pseudo-assumption that for every admissible h∈ H, the random variable Yh is simulatable whereas
Y0 is not (at a reasonable cost). For this reason, the specification of h will be often made in connection
with the complexity of the simulation with in mind to make it inverse linear in h.
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We aim at computing an as good as possible approximation of I0 = E [Y0] by a Monte Carlo type
simulation. The starting point is of course to fix a parameter h ∈ (0,h] and to consider a standard

Monte Carlo estimator to compute I0. So, let (Y
(k)
h )k>1 be a sequence of independent copies of Yh

and the estimator I
(h)
N = 1

N

∑N
k=1 Y

(k)
h . By the strong law of numbers and the central limit theorem

we have a well-known control of the renormalized statistical error
√
N(I

(h)
N − E [Yh]) which behaves

as a centered Gaussian variable with variance var(Yh). On the other hand, there is a bias error due
to the approximation of I0 by Ih = E [Yh]. Note that the bias error is also known as weak error when
Yh is a function of a time discretization scheme of a stochastic differential equation solution with step
h. In many applications the bias error can be expanded as follows

E [Yh]−E [Y0] = c1h
α + · · ·+ cRh

αR + o(hαR) (1)

where α is a positive real parameter (usually α = 1
2 , 1 or 2). In this paper we will take account

of this error expansion and provide a very efficient estimator which can be viewed as a coupling be-
tween a Multilevel estimator [Hei01, Keb05, Gil08] and a Multistep Richardson-Romberg extrapolation
[Pag07].

We first present a formal description (in our abstract framework) of the original Multilevel Monte
Carlo as described e.g. in [Gil08]. The main idea is to use the following telescopic summation

E [YhR
] = E [Yh] +

R∑

j=1

E
[
Yhj

− Yhj−1

]
,

where (hj)j=0,...,R is a geometric decreasing sequence of different bias parameters hj = M−jh. For
each level j ∈

{
1, . . . , R

}
the computation of E

[
Yhj

− Yhj−1

]
is done by a standard Monte Carlo

procedure. The key point is that for each level we consider a number of scenario Nj = ⌈Nqj⌉ where

q = (q1, . . . , qR) ∈ S+(R) =
{
q ∈ (0, 1)R,

∑R
j=1 qj = 1

}
and that the random sample of Yhj

and
Yhj−1

are perfectly correlated. More precisely we consider R copies of the biased family denoted

Y (j) = (Y
(j)
h )h∈H, j ∈

{
1, . . . , R

}
attached to independant random copies Y

(j)
0 of Y0. The Multilevel

Monte Carlo estimator then writes

INh,R,q =
1

N1

N1∑

m=1

Y
(1),k
h +

R∑

j=2

1

Nj

Nj∑

m=1

(
Y

(j),k
hj

− Y
(j),k
hj−1

)
(2)

where for every j, (Y (j),k)k>1 is a sequence of independent copies of Y (j). The analysis of the computa-
tional complexity and the study of the bias and the variance of this estimator will appear as particular
case of a generalized multilevel paradigm introduced and analyzed in section 3. This framework, like
the original multilevel MC simulation highly relies on the combination of a strong rate of approxima-
tion of Y0 by Yh and a weak error E [Yh]−E [Y0] expansion. This method has been extensively applied
to various fields of numerical probability (jump diffusions [DH11, Der11], computational statistics and
more general numerical analysis problems (high dimensional parabolic SPDEs, see [BLS13], etc). For
more references we refer to the webpage http://people.maths.ox.ac.uk/gilesm/mlmc_community.
html and the references therein.

On the other hand, the principle of Richardson-Romberg extrapolation is to take advantage of the
first order expansion (1) of the bias error to reduce the order (1 in h if α = 1 in the above crude Monte
Carlo simulation). To this end we consider one biased family denoted Y = (Yh)h∈H attached to the
one random variable Y0. The Richardson-Romberg Monte Carlo estimator writes then

IN
h,h

2

=
1

N

N∑

k=1

(
2Y k

h
2

− Y k
h

)
,

where (Y k)k>1 is a sequence of independent copies of Y . It is clear that this linear combination of
Monte Carlo estimators satisfy the following bias error expansion (of order 2 in h)

E
[
2Yh

2
− Yh

]
−E [Y0] = −c2

2
h2 + o(h2).

2
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Moreover the asymptotic variance of this estimator (as h decreases to 0) satisfies lim
h→0

var(IN
h,h

2

) =

1

N
var(Y0) which is the same as the crude Monte Carlo estimator. It is natural to reiterate this

extrapolation to obtain a linear estimator with bias error of order 3 in h and so on. This extension
called Multistep Richardson-Romberg extrapolation for Monte Carlo estimator is considered in [Pag07]
in the framework of discretization of diffusion processes.

The aim of this paper is to show that an appropriate combination of the Multilevel (ML) Monte
Carlo estimator and the Multistep Richardson-Romberg (MRR) estimator outperform the standard
Multilevel MC.

The paper is organized as follows: in Section 2, we propose a general parametrized framework
to formalize the optimization of a biased Monte Carlo (MC) simulation based on the mean squared
(quadratic) error minimization (also known as MSE). This parameter is a vector π usually represen-
tative of the bias expansion order R, the strong approximation rate, the selected bias refiners, the
stratification strategy, but also the “inner” simulation size (for nested MC), etc. Crude MC and mul-
tistep RR appear as the first two examples, allowing us to make precise few notations as well as our
main assumptions. In Section 3, we first introduce the general family extended multilevel estimators
attached to a “free” “allocation” matrix T and a set of refiners. Among them, we describe in more
details our proposal: the hybrid Multilevel Richardson-Romberg extrapolation estimators, but also the
standard multilevel MC estimators. Then we develop our optimization strategy: an order R being
fixed, minimizing the effort (complexity × variance) by an appropriate stratification strategy, then,
when the refiners are in geometric progression, the order R of the procedure is in turn optimized as a
function of the target quadratic error ε. In Section 4 are presented two typical fields of application:
the time discretization of stochastic processes (Euler scheme) and the nested MC method, for which
a weak expansion of the error at any order is established in the regular case. In Section 5, we present
and comment numerical experiments carried out in the above two fields.

Notations: • Let N∗ = {1, 2, . . .} denote the set of positive integers.

• If n = (n1, . . . , nR)∈ (N∗)R, |n| = n1 + · · ·+ nR and n! =
∏

16i6R

ni.

• Let (e1, . . . , eR) denote the canonical basis of R
R (viewed as a vector space of column vectors). Thus

ei = (δij)16j6r where δij stands for the classical Kronecker symbol.
•
〈
., .
〉
denotes the canonical inner product on RR.

• For every x ∈ R, ⌈x⌉ denotes the unique n ∈ N∗ satisfying n − 1 < x 6 n and ⌊x⌋ denotes the
unique n ∈ N satisfying n 6 x < n+ 1.
• If (an)n∈N and (bn)n∈N are two sequences of real numbers, an ∼ bn if an = εnbn with limn ε = 1,
an = O(bn) if (εn)n∈N is bounded and an = o(bn) is limn εn = 0.

2 Preliminaries

2.1 Mixing variance and complexity (effort)

We first introduce some notations and recall basic facts on biased linear estimator. For a fixed
parameter π ∈ Π ⊂ Rd, we consider a linear statistical estimator INπ of I0 ∈ R as N tends to infinity.
By linear we mean on the one hand that

E
[
INπ
]
= E

[
I1π
]
, N > 1,

and, on the other hand, that the numerical cost Cost(INπ ) induced by the simulation of INπ is given by

Cost(INπ ) = N κ(π)

where κ(π) = Cost(I1π) is the cost of a single simulation or unitary complexity.
We also assume that our estimator is of Monte Carlo type in the sense that its variance is inverse

linear in the size N of the simulation:

var(INπ ) =
ν(π)

N

3



where ν(π) = var(I1π) denotes the variance of one simulation. For example, in a crude biased Monte
Carlo π = h ∈ H, in a Multilevel Monte Carlo π = (h,R, q)∈ H×N∗×S+ and in the Multistep Monte
Carlo π = (h,R) ∈ H×N∗.

We are looking for the “best” estimator in this family
{
INπ ,π ∈ Π, N ∈ N∗} namely the estimator

minimizing the computational cost for a given error ε > 0. In the sequel we treat N as a continuous
variable i.e. as if N ∈ R+. A natural choice for measuring the random error INπ − I0 is to consider

the mean squared error E
[
(INπ − I0)

2
]
=
∥∥INπ − I0

∥∥2
2
(the squared L2-norm error), often denoted MSE

in Statistics. Our aim is to minimize the cost of the simulation for a given target error, say ε > 0. So
we are looking for the following generic problem,

(
π(ε), N(ε)

)
= argmin

‖IN
π
−I0‖26ε

Cost(INπ ). (3)

To deal with this minimization problem we introduce the definition of the effort φ
(
π
)
of a linear

Monte Carlo type estimator INπ .

Definition 2.1. The effort of the estimator INπ is defined for every π∈ Π by

φ
(
π
)
= ν(π) κ(π). (4)

By definition of INπ we have that

φ
(
π
)
= ν(π) κ(π) = var(INπ ) Cost(INπ ) = var(I1π) Cost(I

1
π),

for every integer N > 1, so that we obtain the fundamental relation

Cost(INπ ) = N
φ
(
π
)

ν(π)
. (5)

• If the estimators INπ are unbiased i.e. E
[
INπ
]
= I0 for any π∈ Π, then E

[
(INπ − I0)

2
]
= ‖INπ −

I0‖22 = var
(
INπ
)
= 1

N ν(π). The solution of the generic problem (3) then reads

π(ε) =
1

ε2
argmin

π∈Π
φ
(
π
)
, N(ε) =

ν(π(ε))

ε2
=

φ(π(ε))

κ(π(ε))ε2
. (6)

Consequently, the most performing estimator INπ is characterized as a minimizer of the effort
φ
(
π
)
as defined above.

• When the estimators INπ , π∈ Π, are biased, the mean squared error writes

E
[
(INπ − I0)

2
]
= µ2(π) +

ν(π)

N
,

where
µ2(π) =

(
E
[
INπ
]
− I0

)2
=
(
E
[
I1π
]
− I0

)2

denotes the bias error (which does not depend onN). Using that ν(π) = N
(∥∥IN(π) − I0

∥∥2
2
−µ(π)2

)
,

the solution of the generic problem (3) reads

π(ε) = argmin
π∈Π,µ(π)<ε

(
φ
(
π
)

ε2 − µ2(π)

)
, N(ε) =

ν(π(ε))

ε2 − µ2(π(ε))
=

φ(π(ε))

κ(π(ε))(ε2 − µ2(π(ε)))
. (7)
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2.2 Assumptions on weak and strong approximation errors

We consider a family (Yh)h∈H of real-valued random variables associated to a random variable Y0,
indexed by H ⊂ (0,h]. The index set H is a consistent set of step parameters in the sense that h∈ H
and, for every integer n > 1, H

n ⊂ H (hence 0 is a limiting value of H). All random variables Yh are
defined on the same probability space (Ω,A,P). The family satisfies two assumptions which formalize
the string and weak rates of approximation of Y0 by Yh when h → 0 in H. These assumptions are the
basement of multilevel simulation methods (see [Hei01]):

Bias error expansion (weak error rate):

∃α > 0, R̄ > 1, E [Yh] = E [Y0] + c1h
α+ c2h

2α+ · · ·+ c
R̄
hαR̄(1+ η

R̄
(h)), lim

h→0
η
R̄
(h) = 0. (WEα,R̄)

Strong approximation error assumption:

∃β > 0,
∥∥Yh − Y0

∥∥2
2
= E

[∣∣Yh − Y0
∣∣2
]
6 V1h

β . (SEβ)

Note that the parameters α, β and R̄ are structural parameters which depend on the family (Yh)h∈H.
When (Yh)h∈H satisfies (WEα,R̄) for every integer R̄, we will say that (WEα,∞) is fulfilled. Such a
family is said to be admissible (at level R̄ with parameters β and α).

Consistency of strong and weak errors imply in what follows that, if c1 6= 0, β 6 2α. In the sequel
we will consider a free parameter R∈

{
1, . . . , R̄

}
fir which (WEα,R) is always satisfied (with the same

coefficients cr up to r = R).

All estimators considered in this work are based on independent copies (Y
(j)
h )h∈H, (attached to

random variables Y
(j)
0 ) of (Yh)h∈H, j = 1, . . . , R, all supposed to be defined on the same probability

space. Note that, since the above properties (SEβ) and (WEα,R̄), R̄∈ N ∪ {∞}, only depend on the
distribution of (Yh)h∈H, all these copies will also satisfy these two properties.

We associate to a family (Yh)h∈H and a given bias parameter h∈ H, an RR-valued random vector

Yh,n = (Yh, Y h
n2

, . . . , Y h
n
R

)

where the R-tuple of integers n := (n1, n2, . . . , nR)∈ NR, called refiners in the sequel, satisfy

n1 = 1 < n2 < · · · < nR .

One defines likewise Y
(j)
h,n for the (independent) copies (Y

(j)
h )h∈H.

✄ Specification of the refiners: In most applications, one chooses the refiners ni as ni = M i−1 where
M is an integer greater than 1. Indeed, this is the standard choice in the regular Multilevel Monte
Carlo method as described in [Gil08]. Other choices like ni = i are possible (see below).

2.3 Crude Monte Carlo estimator

In our formalism a “crude” Monte Carlo simulation and its cost can be described as follows

Proposition 2.2. Assume (WEα,1) and c1 6= 0. The Monte Carlo estimators of E [Y0] defined by

Ȳ N
h =

1

N

N∑

k=1

Y k
h , h > 0,

where
(
Y k
h

)
k=1,...,N

, is an i.i.d. N -sample of Yh, satisfy

µ(h) = c1h
α(1 + η1(h)), κ(h) =

1

h
, φ(h) =

var(Yh)

h

5



and, for a prescribed L2-error ε > 0, the optimal parameters h∗(ε) and N∗(ε) solution to (3) are

h∗(ε) = (1 + 2α)−
1
2α

(
ε

c1

) 1
α

, N∗(ε) =

(
1 +

1

2α

)
var(Y0)(1 + θ(h∗(ε))

β
2 )2

ε2
.

Furthermore, we have

lim sup
ε→0

ε2+
1
α min

h∈H,
µ(h)<ε

Cost(Ȳ N
h ) 6 c

1
α
1

(
1 +

1

2α

)
(1 + 2α)

1
2α var(Y0).

Proof. The proof is postponed to Annex B.

Remark 2.3. For crude Monte Carlo simulation, Assumption (SEβ) is not necessary. Note that, at
order 1, one can almost always assume c1 6= 0 considering the first nonzero term hα in the expansion
(if any).

2.4 Multistep Richardson-Romberg extrapolation (MRR)

In [Pag07] is proposed a so-called Multistep Richardson-Romberg estimator in the framework of Brow-

nian diffusions. It relies on R (refined) Euler schemes X̄
( h
ni

)
, 1 6 i 6 R defined on a finite interval

[0, T ] (t > 0) where the bias parameter h = T
n , n > 1. In that case, the refiners are set as ni = i,

i = 1, . . . , R, (in order to produce a better control of both the variance and the complexity for the
proposed estimator, see Remark 2.5 below). The main results are obtained when all of them are
consistent i.e. all the Brownian increments are generated from the same underlying Brownian motion.
As a consequence, under standard smoothness assumptions on the coefficients of the diffusion, the
family Yh = X̄(h), h∈ {T

n , n > 1}, makes up an admissible family in the above sense as will be seen
further on in more details.

For a refiner vector (n1, n2, . . . , nR) we define the weight vector w = (w1, . . . ,wR) as the unique
solution to the Vandermonde system V w = e1 where

V = V (1, n−α
2 , . . . , n−α

R
) =




1 1 · · · 1
1 n−α

2 · · · n−α
R

...
... · · · ...

1 n
−α(R−1)
2 · · · n−α(R−1)

R


 .

This solution w has a closed form given by Cramer’s rule (see Lemma A.1 in Appendix A for more
details).

∀i ∈
{
1, . . . , R

}
, wi =

(−1)R−in
α(R−1)
i∏

16j<i

(nα
i − nα

j )
∏

i<j6R

(nα
j − nα

i )
. (8)

We also derive the following identity of interest

w̃R+1 :=
R∑

i=1

wi

nαR
i

=
(−1)R−1

n!α
. (9)

Note that all coefficientswi depend on the order R of the combined extrapolation. For the standard
choices ni = i or ni = M i−1, i = 1, . . . , R, we obtain the following expressions

wi =





(−1)R−iiαR
∏

j=0(i
α − jα)

∏R
i+1(j

α − iα)
if nj = j, j ∈

{
1, . . . , R

}

(−1)R−iM−α
2
(R−i)(R−i+1)

∏i−1
j=1(1−M−jα)

∏R−i
j=1 (1−M−jα)

if nj = M j−1, j ∈
{
1, . . . , R

}
(10)
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Note that when α = 1 and nj = j, then wi =
(−1)R−iiR

i!(R− i)!
, i = 1, . . . , R.

Assume now that (WEα,R̄) holds. In order to design a estimator which kills the bias put to order

R, we focus on the random variable resulting from the linear combination
〈
w, Yh,n

〉
.

The first equation of the Vandermonde system V w = e1, namely
∑R

r=1wr = 1, implies that

lim
h→0

E
[〈
w, Yh,n

〉]
= E [Y0] .

Furthermore, when expanding the (weak) error, one checks that the other R − 1 equations satisfied
by the weight vector w make all terms in front of the cr, r = 1, . . . , R− 1 vanish. Finally, we get

E
[〈
w, Yh,n

〉]
= E [Y0] + cRw̃R+1h

αR
(
1 + ηR,n(h)

)
(11)

where

ηR,n(h) =
1

w̃R+1

R∑

r=1

wr

nαR
r

ηR

( h

nr

)
→ 0 as h → 0. (12)

Proposition 2.4. Assume (WEα,R̄). The Multistep Richardson-Romberg estimator of E [Y0] defined
by

Ȳ N
h,n =

1

N

N∑

k=1

〈
w, Y k

h,n

〉
=
〈
w,

1

N

N∑

k=1

Y k
h,n

〉
(13)

where
(
Y k
h,n

)

k=1,...,N
, is an i.i.d. N -sample of Yh,n, satisfies

µ(h) = (−1)R−1cR

(
hR

n!

)α (
1 + ηR,n(h)

)
, κ(h) =

|n|
h
, φ(h) =

|n| var(
〈
w, Yh,n

〉
)

h

and, for a prescribed L2-error ε > 0 and a fixed R > 2, the optimal parameters h∗(ε) and N∗(ε)
solution of (3) are

h∗(ε) = (1 + 2αR)−
1

2αR

(
ε

cR

) 1
αR

, N∗(ε) =

(
1 +

1

2αR

)
var(Y0)(1 + θ(h∗(ε))

β
2 )2

ε2
.

Furthermore, we have

inf
h∈H

µ(h)<ε

Cost(Ȳ N
h ) ∼

(
(1 + 2αR)1+

1
2αR

2αR

)
c

1
αR
R

∣∣n
∣∣ var(Y0)

n!
1
R ε2+

1
αR

as ε → 0.

Proof. The proof is postponed to Annex B (but takes advantage of the formalism developed in the
next section).

Remark 2.5. In this approach the bias reduction suffers from an increase of the simulation cost by a
|n| factor. The choice of the refiners in [Pag07], namely ni = i, i = 1, . . . , R, is justified by the control

of the ratio

∣∣n
∣∣

n!
1
R
: for such a choice it behaves linearly in R – like e

2(R + 1) – for large values of R,

whereas with ni = M i−1 it goes to infinity like M
R−1
2 .

3 A paradigm for Multilevel simulation methods

3.1 General framework

Multilevel decomposition

In spite of the above asymptotics which shows that when R increases as a function of the cost/the
quadratic error, the multistep method behaves like an unbiased Monte Carlo simulation, one observes
in practice that the factor |n| in front of var(Y0) reduces the impact of the bias reduction.

7



An idea is then to introduce independent linear combination of copies of Ȳh,n to reduce the variance
taking advantage of the basic fact that if X and X ′ are independent with the same distribution then

E
[
X+X′

2

]
= E [X] and var(X+X′

2 ) = 1
2 var(X), combined with an appropriate stratification strategy

to control the complexity of the resulting estimator. So, let us consider now R independant copies

(Y
(j)
h,n), j = 1, . . . , R of the random vector Yh,n and the linear combination

R∑

j=1

〈
Tj , Y

(j)
h,n

〉
=

R∑

i,j=1

Tj
i Y

(j)
h
ni

where T = [T1 . . .TR] is an R×R matrix with column vectors Tj∈ RR satisfying the constraint

∑

16i,j6R

Tj = 1.

Under Assumption (WEα,R̄),

E

[ R∑

j=1

〈
Tj , Y

(j)
h,n

〉]
−E [Y0] =

R∑

j=1

〈Tj ,E
[
Y

(j)
h,n

]
〉 −E [Y0]

=

R∑

i=1

( R∑

j=1

Tj
i

)
E
[
Y h

ni

]
−E [Y0]

=
R∑

i=1

( R∑

j=1

Tj
i

)(
E
[
Y h

ni

]
−E [Y0]

)
= o(hα).

The convergence also holds (without rate) as soon as Yh strongly converges toward Y0 (in L2).

As emphasized further on, we will also need that all column vectors Tj , j 6= 1 have zero sum. In
turn, this leads to introduce the notion of Multilevel estimator(s) as a family of stratified estimators of

EY0 attached to the random vectors
〈
Tj , Y

(j)
h,n

〉
, j = 1, . . . , R. This leads to the following definitions.

Definition 3.1 (Allocation matrix). Let R > 2. An R × R-matrix T = [T1 . . .TR] is an R-level
allocation matrix if

T1 = e1,
d∑

i,j=1

Tj
i = 1 and

R∑

i=1

Tj
i = 0, j = 2, . . . , R. (14)

Definition 3.2 (General Multilevel estimator). Let R > 2. A Multilevel estimator of order R attached
to a stratification strategy q = (q1, . . . , qR) with qj > 0, j = 1, . . . , R and

∑
j qj = 1 and an allocation

matrix T is defined for every integer k > 1 by

Ȳ N,q
h,n =

R∑

j=1

1

Nj

Nj∑

k=1

〈
Tj , Y

(j),k
h,n

〉
(15)

where
(
Y

(j),k
h,n

)

k=1,...,N
is an i.i.d. N -sample of Y

(j)
h,n and, for all j ∈

{
1, . . . , R

}
, Nj = ⌈qjN⌉ (allocated

budget to compute E
[〈
Tj , Y

(j)
h,n

〉]
).

• If furthermore the R-level allocation matrix T satisfies

R∑

j=1

Tj = eR , where eR = (0, 0, . . . , 1),

the estimator is called a Multilevel Monte Carlo estimator of order R.
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• If, furthermore, the R-level allocation matrix T satisfies

R∑

j=1

Tj = w, where w is the unique solution to (8),

the estimator is called a Multilevel Richardson-Romberg estimator of order R.

Remark 3.3. Note that the assumption T1 = e1 is not really necessary. It simply allows for more
concise formulas in what follows.

Within the abstract framework of a parametrized Monte Carlo simulation described in Section 2.1,
the structure parameter π of the multilevel estimator (Ȳ N,q

h,n )N>1 defined by (15) is

π = (π0, q) where

{
q = (q1, . . . , qR)∈ (0, 1)R,

∑
i qi = 1,

π0 = (h, n1, . . . , nR , R,T) ∈ Π0.

Cost, complexity and effort of a Multilevel estimator

In order to optimize (minimize) the effort φ(π) of the estimator (15), let us evaluate its unitary
computational complexity. For a simulation size N , the cost satisfies

Cost(Ȳ N,q
h,n ) =

R∑

j=1

Nj

R∑

i=1

1

h
ni1{Tj

i 6=0} = N κ(π) (16)

where κ(π) is the unitary complexity

κ(π) =
1

h

R∑

j=1

qj

R∑

i=1

ni1{Tj
i 6=0}. (17)

However, it may happen, like for nested Monte Carlo (see Section 4.2), that the internal consistency
of the family Yh leads to spare the computational cost, the computational complexity being entirely
due to the most refined “scheme”. In such a case one has

κ(π) =
1

h

R∑

j=1

qj max
16i6R

(
ni1{Tj

i 6=0}
)
.

The effort of such a Multilevel estimator is given by

φ(π) = ν(π) κ(π) =




R∑

j=1

1

qj
var
(〈

Tj , Y
(j)
h,n

〉)

 κ(π). (18)

Bias error of a Multilevel estimator

We now establish the bias error in this general framework. The following bias error result is straight-
forward from the weak error decomposition (WEα,R̄) and the allocation matrix T assumption.

Proposition 3.4. (i) Multilevel Richardson-Romberg estimator: Assume (WEα,R̄). Let R∈ {2, . . . , R̄}
be the order of a Multilevel Richardson-Romberg estimator. For any admissible stratification
strategy q = (q1, . . . , qR), the bias error reads

µ(π0, q) = (−1)R−1cR

(
hR

n!

)α (
1 + ηR,n(h)

)
(19)

where ηR,n(h) = (−1)R−1n!α
R∑

r=1

wr

nαR
r

ηR

( h

nr

)
(see (12)) and ηR is defined in (WE)α,R).

9



(ii) Multilevel Monte Carlo estimator: Assume (WEα,1). For any admissible stratification strat-
egy q=(q1, . . . , qR) of a Multilevel Monte Carlo estimator of order R > 2, the bias error reads

µ(π0, q) = c1

(
h

nR

)α(
1 + η1

(
h

nR

))
(20)

where η1 is defined in (WEα,1).

Toward to the optimal parameters

The optimization problem (7) is not attainable, so we decompose it in two successive steps:

Step 1: Minimize the effort φ over all stratification strategies q = (qj)16j6R (as a function of a fixed
bias parameter h). In practice we will optimize an upper-bound φ̄ of the true problem

q∗ = argmin
q∈S+(R)

φ̄(π0, q), where φ(π) 6 φ̄(π), and φ∗(π0) = φ(π0, q
∗). (21)

This phase is solved in Theorem 3.6 below (an explicit expression for φ̄ is provided in (24)). The
quantity φ∗(π0) is called the optimal stratified effort (with a slight abuse of terminology since φ̄

is only an upper bound of φ).

Step 2: Minimizing the resulting cost as a function of the remaining parameters π0 for a given target
error ε (and determine the resulting size of the simulation and its cost):

π0(ε) = argmin
π0∈Π0

µ(π0,q∗)<ε

(
φ∗(π0)

ε2 − µ2(π0, q∗)

)
, N(π0(ε)) =

φ∗(π0(ε))

κ(π0(ε), q∗)(ε2 − µ2(π0, q∗))
.

This second phase is solved asymptotically when ε goes to 0 in Theorem 3.8 and Proposition 3.11,
with closed forms for some h∗ and R∗ as functions of ε and of the structural parameters coming
from assumptions (WEα,R̄) and (SEβ).

3.2 Optimally stratified effort (Step 1)

Through our investigations on these estimators, we will make extensive use in what follows of the
following lemma which is a straightforward consequence of Schwarz’s Inequality.

Lemma 3.5. For all j ∈
{
1, . . . , R

}
, let aj > 0, bj > 0 and qj > 0 such that

R∑

j=1

qj = 1.Then




R∑

j=1

aj
qj






R∑

j=1

bjqj


 >




R∑

j=1

√
ajbj




2

and the equality case occurs if and only if qj = µ
√
ajb

−1
j with µ =

(∑R
k=1

√
akb

−1
k

)−1
.

In practice we will optimize an upper-bound of the true problem.

Theorem 3.6. Assume (SEβ) holds, and let θ =
√

V1
var(Y0)

. Then the optimally stratified effort φ∗

defined by (21) satisfies

φ∗(π0) 6 φ̄(π0, q
∗) =

var(Y0)

h


1 + θh

β
2

R∑

j=1

( R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)( R∑

i=1

ni1{
T

j
i 6=0
}
) 1

2




2

10



where q∗ = q∗(π0) is an optimal strategy given by




q∗1(π0) = µ∗(1 + θh
β
2 )

q∗j (π0) = µ∗θh
β
2

( R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)( R∑

i=1

ni1{
T

j
i 6=0
}
)− 1

2

, j = 2, . . . , R,
(22)

and µ∗ is the normalizing constant such that
∑R

j=1 q
∗
j = 1.

Proof. Under assumption (14), we have
〈
T1, Y

(1)
h,n

〉
= Y

(1)
h and, for every j∈ {2, . . . , R},

〈
Tj , Y

(j)
h,n

〉
=

〈
Tj , Y

(j)
h,n − Y

(j)
0 1

〉
since

〈
Tj ,1

〉
= 0. Hence, using Minkowski inequality and the strong error assump-

tion, we get

∀j > 2, var
(〈

Tj , Y
(j)
h,n

〉)
=

∥∥∥∥∥

R∑

i=1

Tj
i

(
Y

(j)
h
ni

− Y
(j)
0

)∥∥∥∥∥

2

2

6 V1h
β

(
R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)2

.

The variance of the Multilevel estimator is then

var
(
Ȳ N,q
h,n

)
6

1

N



var
(
Y

(1)
h

)

q1
+ V1h

β
R∑

j=2

1

qj

(
R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)2

 . (23)

On the other hand we have,

var
(
Y

(1)
h

)
= var (Yh) 6 E [Yh −E [Y0]]

2

6
∥∥Yh − Y0

∥∥2
2
+ 2E [(Yh − Y0)(Y0 −E [Y0]] + var (Y0)

6 var(Y0) + V1h
β + 2

√
V1h

β/2
√

varY0 = var(Y0)(1 + θh
β
2 )2.

Combining (17), the above inequality (23) and the above upper-bound for var
(
Y

(1)
h

)
, we derive the

following upper bound for the effort φ(π) 6 φ̄(π) with

φ̄(π) =
var(Y0)

h


(1 + θh

β
2 )2

q1
+ θ2hβ

R∑

j=2

1

qj

(
R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)2





R∑

i,j=1

qjni1{
T

j
i 6=0
}

 . (24)

Applying Lemma 3.5 with a1 = (1+θh
β
2 )2, b1 = 1 and aj = θ2hβ

(
R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)2

, bj =

R∑

i=1

ni1{
T

j
i 6=0
},

j∈
{
2, . . . , R

}
completes the proof.

Remark 3.7 (About variance minimization). Note that we have shown the following in the above
proof : for every stratification strategy q = (q1, . . . , qR),

var
(
Ȳ N,q
h,n

)
6

var(Y0)

N


(1 + θh

β
2 )2

q1
+ θ2hβ

R∑

j=2

1

qj

(
R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)2

 .

Applying Lemma 3.5 with a1 = (1 + θh
β
2 )2, b1 = 1 and aj = θ2hβ

(
R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)2

, bj = 1, j ∈
{
2, . . . , R

}
we obtain (since

∑R
j=1 qjbj = 1)

inf
q∈S+(R)

var
(
Ȳ N,q
h,n

)
6 var(Y0)


1 + θh

β
2

R∑

j=1

R∑

i=1

∣∣Tj
i

∣∣n−β
2

i




2
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with an optimal choice (for minimizing the variance) is q†1 = µ†(1+θh
β
2 ) and q†j = µ†θh

β
2

( R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)

with µ† the normalizing constant such that
∑n

j=1 q
†
j =1. It has to be noticed that this choice is not op-

timal or even asymptotically optimal when dealing with the global cost minimization of the simulation.

3.3 Resulting cost optimization (Step 2)

3.3.1 Bias parameter optimization (first approach)

In this first approach we fix the order R > 2, the allocation matrix T and the refiners n1, . . . , nR so
that we optimize only the bias parameter h with respect to ε so that

π0(ε) = h(ε, n1, . . . , nR , R,T).

We recall that φ∗(h) 6 φ̄(h, q∗) =: φ̄∗(h) where

φ̄∗(h) =
var(Y0)

h


1 + θh

β
2

R∑

j=1

( R∑

i=1

∣∣Tj
i

∣∣n−β
2

i

)( R∑

i=1

ni1{
T

j
i 6=0
}
) 1

2




2

. (25)

Theorem 3.8 (Bias parameter optimization). Assume (SEβ). Let R > 2 and let ni, i = 1, . . . , R be
fixed refiners.

(a) Multilevel RR: Assume (WEα,R̄). Let R ∈ {2, . . . , R̄} be such that cR 6= 0. A Multilevel
Richardson-Romberg estimator of order R satisfies

inf
h∈H

µ(h,q∗)<ε

Cost
(
Ȳ N,q∗

h,n

)
∼
((1 + 2αR)1+

1
2αR

2αR

)c
1

αR
R var(Y0)

n!
1
R ε2+

1
αR

as ε → 0

with q∗ defined in (22). This asymptotically optimal bound is achieved with a bias parameter
given by

h∗(ε,R) = (1 + 2αR)−
1

2αR

(
ε

cR

) 1
αR

n!
1
R . (26)

(b) Multilevel MC: A Multilevel Monte Carlo estimator Ȳ N,q∗

h,n of order R > 2 satisfies

inf
h∈H

µ(h,q∗)<ε

Cost
(
Ȳ N,q∗

h,n

)
∼
((1 + 2α)1+

1
2α

2α

)c
1
α
1 var(Y0)

nRε
2+ 1

α

as ε → 0

with q∗ defined in (22). This asymptotically optimal bound is achieved with a bias parameter
given by

h∗(ε,R) = (1 + 2α)−
1
2α

(
ε

c1

) 1
α

nR . (27)

Proof. (a) By definition of the effort φ and the bias µ of the estimator we have (see Section (2.1))

Cost
(
Ȳ N,q∗

h,n

)
=

φ∗(h)
ε2 − µ2(h, q∗)

.

It follows from that the cost mimimization problem is upper-bounded by the more tractable problem

inf
h∈H,µ(h,q∗)<ε

hφ̄∗(h)
h(ε2 − µ2(h, q∗))

12



with a bias µ(h, q∗) satisfying (19). First note that limh→0 hφ̄(h, q
∗) = var(Y0). We will consider

now the denominator h(ε2 − µ2(h, q∗)). Elementary computations show that, for fixed real numbers
a, R′ > 0, the function ga,R′ defined by ga,R′(ξ) = ξ(1− a2ξ2R

′
), ξ > 0, satisfies

ξ(a,R′) := argmaxξ>0ga,R′(ξ) =
(
(2R′ + 1)

1
2a
)− 1

R′ and max
(0,+∞)

ga,R′ =
2R′

(2R′ + 1)1+
1

2R′
a−

1
R′ .

Then, set R′ = Rα, ã =
|w̃R+1cR |

ε . Inspired by what precedes we make the suboptimal choice h(ε) =

h(ε,R, α) = ξ
(
ã, αR

)
=

(
ε

(2αR+ 1)
1
2 cR

) 1
αR

n!
1
R corresponding to the case ηR,n ≡ 0. It is clear that

for small enough ε, µ2(h, q∗) < ε2 which makes this choice admissible. Hence

inf
h∈H,µ(h,q∗)<ε

φ∗(h)
ε2 − µ2(h, q∗)

6

(
1 +

1

2αR

)
(2αR+ 1)

1
2αR c

1
αR
R

h(ε)φ̄∗(h(ε))

n!
1
R ε2+

1
αR

1

1− (ηR,n(h(ε))+1)2−1
2αR

. (28)

The “limsup” side of the result follows since limh→0 ηR,n(h) = 0.
On the other hand, it follows from the definition (18) of the effort φ

φ∗(h) =
1

h




R∑

j=1

1

q∗j
var
(〈

Tj , Y
(j)
h,n

〉)





R∑

i,j=1

qjni1{
T

j
i 6=0
}

 ,

and Schwarz’s Inequality that

φ∗(h) >
1

h




R∑

j=1

√
var
(〈

Tj , Y
(j)
h,n

〉)
√√√√

R∑

i=1

ni1{Tj
i 6=0}




2

>
1

h
max
16j6R

(
var
(〈

Tj , Y
(j)
h,n

〉) R∑

i=1

ni1{Tj
i 6=0}

)

>
1

h
max
16j6R

var
(〈

Tj , Y
(j)
h,n

〉)

since ni > n1 = 1, i = 1, . . . , R. Denoting g(h) = max16j6R var
(〈

Tj , Y
(j)
h,n

〉)
one clearly has

limh→0 g(h) = var(Y0) under the strong approximation assumption and, as a consequence, limh→0 hφ(h) =
var(Y0). Hence, the cost mimimization problem is lower bounded by the more explicit problem

inf
h∈H

µ(h,q∗)<ε

g(h)

h(ε2 − µ2(h, q∗))
.

Let η∈ (0, 1). There exists εη > 0 such that, for every h∈ (0, h(εη)),

|g(h)− var(Y0)| 6 η var(Y0) and |ηR,n(h)| 6 η.

Let ε∈ (0, εη). We derive from Equation (19) that

µ(h(εη), q
∗)2 >

ε2η(1− η)

2αR+ 1
.

Consequently if ε <
εη

√
1−η√

2αR+1
, for every h > 0 such that µ2(h, q∗) < ε2, one has

g(h)

h(ε2 − µ(h, q∗)2)
>

var(Y0)(1− η)

h(ε2 − (1− η)(w̃R+1cR)
2h2αR)

.

13



Taking advantage of what was done in the “lim sup” part, we get

inf
h∈H

µ(h,q∗)<ε

g(h)

h(ε2 − µ(h, q∗)2)
>

(
1 +

1

2αR

)
(2αR+ 1)

1
2αR c

1
αR
R

var(Y0)

n!
1
R ε2+

1
αR

(1− η)1+
1

2αR .

Letting ε and η successively go to zero, yields the lim inf side.

(ii) Owing to (20), the bias µ(h, q) is now given by

µ(h, q) =
( h

nR

)α(
c1 + η1

( h

nR

))
with lim

h→0
η1(h) = 0.

Following the lines of the proof of (i) with R′ = α completes the proof.

Remark 3.9. • The fact that the function limh→0 hφ
∗(h) = var(Y0) follows from the strong con-

vergence of Yh toward Y0 and the rate of this convergence plays no explicit rôle in this asymptotic
rate of the cost as ε → 0. However, this strong rate is important to design a practical stratifi-
cation among the R independent Brownian motions, which is the key to prevent an explosion of
this term.

• When cR = 0 the same reasoning can be carried out by considering any small parameter ǫR0 > 0.
Anyway in practice cR is usual not known and the impact of this situation is briefly discussed
further on in Section 3.3.3.

• When c1 = 0, specific weights can be computed (see Practitioner’s corner in Section 5.1 further
on).

Remark 3.10. The asymptotic number of simulation N provided by (5.2) satisfies

N(ε) ∼
(
1 +

1

2αR

)
var(Y0)

ε2




R∑

j=1

q∗j

R∑

i=1

ni1{
T

j
i 6=0
}



−1

as ε → 0

for a Multilevel Richardson-Romberg estimator and

N(ε) ∼
(
1 +

1

2α

)
var(Y0)

ε2




R∑

j=1

q∗j

R∑

i=1

ni1{
T

j
i 6=0
}



−1

as ε → 0

for a Multilevel Monte Carlo estimator.

3.3.2 Templates for R-level allocation matrix T

We now fix the structure of the allocation matrix T. The standard Multilevel allocation matrix used
by [Hei01, Gil08] comes from the telescopic summation

E
[
Y h

n
R

]
= E

[
Yh
]
+

R∑

j=1

E
[
Y h

nj

− Y h
nj−1

]
,

In our general framework, we consider T the allocation matrix of type (b) defined Tj = ej − ej−1 for
j ∈

{
2, . . . , R

}
i.e.

T =




1 −1 0 · · · · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 1 −1
0 · · · · · · · · · 0 1




. (MLMC)
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In this particular case the upper-bound φ̄∗ of φ∗ writes

φ̄∗(π0) =
var(Y0)

h


1 + θh

β
2

R∑

j=1

(
n
−β

2
j−1 + n

−β
2

j

)√
nj−1 + nj




2

, (29)

with the convention n0 = (n0)
−1 = 0.

The corresponding allocation matrix for our Multilevel Richardson-Romberg estimator is T an

allocation matrix of type (c) defined by Tj = −Wj ej−1+Wj ej for j ∈
{
2, . . . , R

}
with Wj =

R∑

k=j

wk

and w is given by (8) i.e.

T =




1 −W2 0 · · · · · · 0
0 W2 −W3 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 WR−1 −WR

0 · · · · · · · · · 0 WR




. (MLRR)

The majorant φ̄∗ now reads

φ̄∗(π0) =
var(Y0)

h


1 + θh

β
2

R∑

j=1

∣∣Wj

∣∣
(
n
−β

2
j−1 + n

−β
2

j

)√
nj−1 + nj




2

, (30)

with the convention n0 = (n0)
−1 = 0. In the sequel we will mainly focus on the above choice (MLRR)

for the allocation matrix T. Alternative choices for the allocation matrix T are proposed in Section 5.1.

3.3.3 Bias parameter and order R optimization (second approach) for geometric refiners

In this second approach we consider geometric refiners (with “root” M) of the form

ni = M i−1, i = 1, . . . , R,

These are the refiners considered in regular multilevel Monte Carlo framework.

π0(ε) =
(
h(ε,M,R(ε),T), R(ε,M,T)

)
.

Theorem 3.11. Assume (SEβ) holds for β > 0.

(a) (MLRR) estimator. Assume that (WEα,∞) holds for an α > β/2, sup
R∈N

sup
h′∈(0,h)

|ηR(h
′)| < +∞

for every h∈ H and that lim
R→+∞

c
1
R
R = c̃ ∈ (0,+∞). The Multilevel Richardson-Romberg estimator

with allocation matrix T in (MLRR) satisfies

lim sup
ε→0

v(β, ε)× inf
h∈H,R>2

µ(h,R,q∗)<ε

Cost
(
Y N,q
h,n

)
6 K(α, β,M) (31)

with v(β, ε) =





ε2 (log(1/ε))−1 if β = 1,

ε2 if β > 1,

ε2e
− 1−β√

α

√
2 log(1/ε) log(M)

if β < 1.
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These bounds are achieved with an order

R∗(ε) =

1
2
+

log(hc̃
1
α )

log(M)
+

√
(1
2
+

log(hc̃
1
α )

log(M)

)2
+ 2

log(1/ε)

α log(M)

 ,

satisfying limε→0R
∗(ε) = +∞ and a bias parameter h∗ = h∗(ε,R(ε)) given by (26). The finite

real constant K(α, β,M) depends on M and on the structural parameters α, β, V1, var(Y0),h,
namely

K(α, β,M) =





2V1
α

(
Wα(M)M(1+M)(1+M− 1

2 )2

log(M)

)
if β = 1,

var(Y0)M
h

(
1 + θh

β
2
Wα(M)M

β−1
2

√
1+M(1+M−β

2 )

1−M
1−β
2

)2

if β > 1,

V1h
1−β c̃

(1−β)
α

(
W

2
α(M)M(1+M)(1+M−β

2 )2

(M
1−β
2 −1)2

)
if β < 1.

(b) (MLMC) estimator. Assume that (WEα,1) holds for an α > β. The Multilevel Monte Carlo
estimator (with allocation matrix T defined in (MLMC)) satisfies

lim sup
ε→0

v(β, ε)× inf
h∈H,R>2

µ(h,R,q∗)<ε

Cost
(
Y N,q
h,n

)
6 K(α, β,M) (32)

with v(β, ε) =





ε2 (log(1/ε))−2 if β = 1,

ε2 if β > 1,

ε2+
1−β
α if β < 1.

These bounds are achieved with an order

R∗(ε) =

1 +
log
(
(1 + 2α)

1
2α c

1
α
1 h
)

log(M)
+

log(1/ε)

α log(M)

 ,

satisfying limε→0R
∗(ε) = +∞ and a bias parameter h∗ = h∗(ε,R(ε)) given by (27). The finite

real constant K(α, β,M) depends on M and the structural parameters α, β, V1, var(Y0),h, namely

K(α, β,M) =





(
1 + 1

2α

)
V1
α2

(
M(1+M)(1+M− 1

2 )2

log(M)2

)
if β = 1,

(
1 + 1

2α

) var(Y0)M
h

(
1 + θh

β
2
M

β−1
2

√
1+M(1+M−β

2 )

1−M
1−β
2

)2

if β > 1,

(1+2α)1+
1−β
2α

2α V1h
1−βc

(1−β)
α

1

(
M(1+M)(1+M−β

2 )2

(M
1−β
2 −1)2

)
if β < 1.

Remark 3.12. • In Appendix B, it is proved that lim
M→+∞

Wα(M) = 1 and, to be more precise,

that Wα(M)− 1 ∼ M−α as M → ∞.

• The assumption on the functions ηR and the sequence (cR)R>1 in (ii) of the above proposition
are reasonable although probably impossible to check in practice. In particular, note that as soon
as the sequence (cR)R>1 has at most a polynomial growth as a function of R, it satisfies the
assumption since c̃ = 1.

• When c̃ = 0, one can replace cR in the proof below by ǫR0 (see also Remark ) and carry one the
computations (with c̃ = ǫ0). This constant has an impact when β < 1: when ǫ0 → 0, K(α, β,M)
goes to 0 which emphasizes that we are not on the right asymptotics.
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• If β = 1, MLRR is asymptotically more efficient than MLMC by a factor log
(
1/ε) → +∞ as

ε → 0. When β < 1, MLRR (with M = 2) is asymptotically infinitely more efficient than MLMC

by a factor ε−
1−β
α e−

1−β
α

√
2 log 2α log(1/ε) which goes to +∞ as ε → 0 in a very steep way. To be

precise the ratio is greeter than 1 as soon as

ε 6 2−
2
α .

It seems clear that it is for this setting that Multilevel RR is the most powerful with respect to
regular Multilevel MC.
When β > 1, both Multilevel methods achieve the same rate ε−2 as a virtual unbiased MC
method based on the direct simulation of Y0.

Proof. We provide a detailed poof of claim (a), that of (b) following the same lines.
Step 1: We start from Equation (28) in the proof of Theorem 3.8 which reads

inf
h∈H

µ(h,q∗)<ε

Cost
(
Y N,q∗

h,n

)
6

(
1 +

1

2αR

)
φ̄∗(h∗(ε))

ε2
1

1− (ηR,n(h∗(ε))+1)2−1
2αR

with

φ̄∗(h∗(ε)) =
1

h∗(ε)
var(Y0)


1 + θh∗(ε)

β
2

R∑

j=1

∣∣Wj

∣∣
(
n
−β

2
j−1 + n

−β
2

j

)√
nj−1 + nj




2

,

with the convention n0 = (n0)
−1 = 0. The idea is to choose R = R∗(ε) as large as possible provided

the optimal bias parameter h∗ does not explode. The choice of refiners ni = M i−1 implies that

n! = M
R(R−1)

2 then

h∗(ε,R) = (1 + 2αR)−
1

2αR c
− 1

αR
R ε

1
αRM

R−1
2 .

Note that, under the assumption made on the sequence (cR)R>1, we have limR→+∞(1+2αR)−
1

2αR c
− 1

αR
R =

c̃−
1
α . We choose to saturate the constraint h∗ 6 h so this leads to impose formally (for big enough R)

h∗(ε,R) = c̃−
1
α ε

1
αRM

R−1
2 = h.

(where we temporarily forget that R be should an integer). As a consequence we are naturally led to
search for the positive zero R+(ε) of the polynomial

P (R) =
R(R− 1)

2
log(M)−R log(c̃−

1
αh)− 1

α
log(1/ε),

which reads R+(ε) = 1
2 + log(c̃−

1
α h)

log(M) +

√(
1
2 + log(c̃−

1
α h)

log(M)

)2
+ 2 log(1/ε)

α logM and denoting R∗(ε) = ⌊R+(ε)⌋

we obtain P (R∗(ε)) 6 0. Hence, h∗(ε,R∗(ε)) = he
P (R∗)
R∗ −P (R+)

R+ 6 h and

1

h∗(ε,R∗(ε))
6

1

h
e
(R+−R∗)

(
log(M)

2
+

log(1/ε)

α(R∗)2

)

,

so that lim sup
ε→0

1

h∗(ε,R∗(ε))
6

M

h
.

Let us show that our choice h∗(ε,R∗(ε)) for the bias parameter (see (26)) is admissible – i.e.
µ(h∗(ε,R∗(ε)), R∗(ε), q∗)2 < ε2 – at least for small enough ε. Elementary computations show that

µ
(
h∗(ε,R∗(ε))

)2
= (c

R∗(ε)w̃R∗(ε)+1
)2(h∗(ε,R∗(ε)))2αR

∗(ε)

= ε2e−αR∗(ε) log(1+2αR∗(ε))
(
1 + ηR∗(ε),n

(
h∗(ε,R∗(ε))

))2
.
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Our choice for R∗(ε) implies that h∗(ε,R∗(ε)) is upper-bounded by h. Claim 6 of Proposition A.2 in
Appendix A and the assumption on ηR imply that,

sup
0<h′<h

|ηR∗(ε),n(h
′)| 6 Bα(M) sup

h′∈(0,h)
|ηR∗(ε)(h

′)| 6 Bα(M) sup
R>1

sup
h′∈(0,h)

|ηR(h′)| < +∞.

As a consequence of the assumption made on the functions ηR , it is clear that µ
(
h∗(ε,R∗(ε)), R∗(ε), q∗

)2
=

o(ε2) since R∗(ε) → +∞ as ε → 0. Hence our choice of bias parameter is admissible at least for small
enough ε.

Likewise, the assumption on the functions ηR implies that limε→0

(
ηR∗(ε),n(h(ε,R

∗(ε)))+1
)2

−1

2αR∗(ε) = 0.
We have then proved that

lim sup
ε→0

l(ε,R∗(ε)) inf
h∈H

µ(h,R,q∗)<ε

Cost
(
Y N,q∗

h,n

)
6

M var(Y0)

h

with

l(ε,R) = ε2


1 + θh∗(ε,R)

β
2

R∑

j=1

∣∣Wj

∣∣
(
n
−β

2
j−1 + n

−β
2

j

)√
nj−1 + nj




−2

.

It follows from Claim 5 of Proposition A.2 in Appendix A that maxj=1,...,R

∣∣Wi

∣∣ 6 Wα(M). On the
other hand, standard computations show that, for every j = 2, . . . , R,

(
n
−β

2
j−1 + n

−β
2

j

)√
nj−1 + nj = Mβ−1M j 1−β

2
(
1 +M−β

2
)(
1 +M

) 1
2 (33)

and that, with our convention on n0, it still holds true as an inequality (6) for j = 1. So

l(ε,R) > ε2


1 + θh∗(ε,R)

β
2 Wα(M)Mβ−1

√
1 +M(1 +M−β

2 )

R∑

j=1

M j 1−β
2




−2

.

Step 2: Now we will inspect successively three cases for strong rate convergence parameter β.

Case β = 1 In this case we have

l(ε,R∗(ε)) > ε2
(
1 + θh∗(ε,R∗(ε))

β
2 Wα(M)

√
1 +M(1 +M− 1

2 )R∗(ε)
)−2

,

> ε2
(
1 + θh

β
2 Wα(M)

√
1 +M(1 +M− 1

2 )R+(ε)
)−2

,

and since R2
+(ε) ∼ 2

α log(M) log(1/ε) as ε → 0, we get (31) with (keep in mind that V1 = var(Y0)θ
2)

K(α, 1,M) =
2V1

α

(
Wα(M)M(1 +M)(1 +M− 1

2 )2

log(M)

)
.

Case β > 1 Noting that
∑R

j=1M
j 1−β

2 6
M

1−β
2

1−M
1−β
2

, we have

l(ε,R∗(ε)) > ε2

(
1 + θh

β
2
Wα(M)M

β−1
2

√
1 +M(1 +M−β

2 )

1−M
1−β
2

)−2

,

which yields (31) with

K(α, β,M) =
var(Y0)M

h

(
1 + θh

β
2
Wα(M)M

β−1
2

√
1 +M(1 +M−β

2 )

1−M
1−β
2

)2

.

18



Case β < 1 In that setting, we note this time that
∑R

j=1M
j 1−β

2 6
M(R+1)

1−β
2

M
1−β
2 −1

so that,

l(ε,R∗(ε)) > ε2

(
1 + θh

β
2
Wα(M)

√
1 +M(1 +M−β

2 )

M
1−β
2 − 1

M (R+(ε)−1) 1−β
2

)−2

.

Recall that R+(ε) is such that h∗(ε,R+(ε)) = h so that we obtain M
R+(ε)−1

2 = h c̃
1
α ε

− 1
αR+(ε) . We

have ε
− 1

αR+(ε) ∼ e

√
log(M)

2α
log(1/ε) as ε → 0. Elementary, although tedious computations yield (31)

with

β < 1, K(α, β,M) = V1h
(1−β)c̃

2(1−β)
α

(
W2

α(M)M(1 +M)(1 +M−β
2 )2

(M
1−β
2 − 1)2

)
.

(b) The choice for R∗(ε) follows from the formal constraint

lim sup
ε→0

[
h∗(ε,R∗(ε)) = (1 + 2α)−

1
2α c

− 1
α

1 ε
1
αMR∗(ε)−1

]
= h.

Then, the proof follows the same lines as the above proof for part (a).

Remark 3.13 (On the constraint h). In the proof we choose to saturate the constraint h∗ 6 h. If we
consider h∗ = χ where χ is a free parameter in (0,h], then the asymptotic constants K(α, β,M) for
the renormalized optimized cost in Theorem 3.11 depend on χ and one verifies the following facts:

• When β < 1, one can write K(α, β,M, χ) = χ1−βK(α, β,M, 1) which this time suggests to start
the simulation with a small upper bias parameter χ < h.

• When β > 1, the asymptotic cost of the simulation increases in ε2 like a (virtual) unbiased one.
In that very case, it appears that the asymptotic constant K(α, β,M, χ) can itself be optimized
as a function of χ. Namely, if we set

κ1 =
var(Y0)M

χ
and κ2 = θ2

Wα(M)2Mβ−1(1 +M)(1 +M−β)

(1−M
1−β
2 )2

,

then

χopt = β
− 2

β+1κ
− 1

β+1

2 and K(α, β,M, χopt) = (β + 1)2β
− 2

β+1 κ1 κ
1

β+1

2 .

• When β = 1, the asymptotic constant K(α, β,M, χ) does not depend on χ. This suggests that
the choice of the upper bias parameter is not decisive, at least for high accuracy computations (ε
close to 0). The choice χ = h remains the most natural.

4 Examples of applications

4.1 Brownian diffusion approximation

Euler scheme In fact, the Richardson-Romberg method is known as an efficient mean to reduce
the time discretization error induced by the use of an Euler scheme to simulate a Brownian diffusion.
In this field of Numerical Probability, its introduction goes back to Talay and Tubaro in their seminal
paper [TT90] on weak error expansion, followed by the case of non smooth functions in [BT96] (see
also [Guy06] for more recent developments on this topic). It relies on the following theorem.

Theorem 4.1. Let b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → M(d, q) and (Wt)t>0 a q-dimensional
standard Brownian motion defined on a probability space (Ω,A,P). Let X = (Xt)t∈[0,T ] be a diffusion
process, strong solution the Stochastic Differential Equation (SDE)

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ] , X0 = x0 ∈ Rd, (34)
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and its continuous Euler scheme X̄h = (X̄h
t )t∈[0,T ] with bias parameter (step) h = T/n defined by

X̄h
t = X0 +

∫ t

0
b
(
X̄h

s

)
ds+

∫ t

0
σ
(
X̄h

s

)
dWs, where s = kh on [kh, (k + 1)h) .

(a) Regular setting (Talay-Tubaro [TT90]): If b and σ are infinitely differentiable with bounded partial
derivatives and if f : Rd → R is an infinitely differentiable function, whose all partial derivatives have
polynomial growth, then for a fixed maturity T > 0 and for every integer R ∈ N∗

E
[
f(X̄h

T )
]
−E [f(XT )] =

R∑

k=1

ckh
k +O

(
hR+1

)
, (35)

where the coefficients ck depend on b, σ, f , T but not on h.

(b) (Hypo-)Elliptic setting (Bally-Talay [BT96]): If b and σ are infinitely differentiable with bounded
partial derivatives and if σ is uniformly elliptic in the sense that

∀x∈ Rd, ∀ t∈ [0, T ], σσ∗(x) > ε0Iq, ε0 > 0

or more generally if (b, σ) satisfies the strong Hörmander’s hypo-ellipticity assumption, then (35) holds
true for every bounded Borel function f : Rd → R.

Claim (b) can in fact be extended to hypo-elliptic diffusions (whose coefficients satisfy a strong
hypoelliptic assumption “à la Hörmander”).

To deal with our abstract multilevel framework we consider for a fixed horizon T > 0, the family of
Euler schemes X̄h with step h∈ H = {T

n , n > 1}, and for a smooth enough function f with polynomial
growth, Yh = f(X̄h

T ) and Y0 = f(XT ). The above Theorem says that condition (WEα,R̄) is satisfied
with R̄ = +∞ and α = 1. Note that for a fixed R̄, one may relax the differentiability assumption on
b, σ and f by simply assuming that these three functions are CR̄+5

b on [0, T ]×Rd.
On the other hand, as soon as f : Rd → R is Lipschitz, it is classical background that (SEβ)

is satisfied with β = 1 as an easy consequence of the fact that the (continuous) Euler scheme X̄h

converges for the sup-norm toward X in L2 (in fact in every Lp-space) as the step h goes to 0. In
such a setting, we can apply multilevel estimator with α = β = 1 (which corresponds to claim (a) in
Proposition 3.11).

Milstein scheme The Milstein scheme (provided it can be implemented) satisfies (SE2) as a second
order scheme but still (WE∞,1) as concerns weak error expansion (like the Euler scheme). Conse-
quently, the multilevel RR extrapolation can be applied to that scheme with α = 1 and β = 2 (which
corresponds to claim (b) in Proposition 3.11).

Path-dependent functionals When a functional F : C([0, T ],Rd) → R is Lipschitz for the sup-
norm, it is straightforward that F (X̄h) and F (X) satisfy (SE1) with H = {T

n , n > 1}, (but this
is no longer true if one considers the stepwise constant Euler scheme since the rate of convergence
is then

√
log n/n ≍ √−h log h). More generally, if F is α-Hölder, α ∈ (0, 1], then this family

satisfies (SEα). True expansions of the weak error are not available in the general case, however

first order expansion have been established for specific functionals like F (w) = f
( ∫ T

0 w(s)ds
)

or

F (w) = f(w(T ))1{τD(w)>T} where τD(w) is the exit time of a domain D of Rd which show that they
satisfy Assumption (WE1,1) (see e.g. [Lap01, Gob00]). This strongly suggests to carry out numerical
experiments by implementing the multilevel RR extrapolation method with parameters β = α = 1
on such functionals. This has already been done successfully with the multistep RR extrapolation
in [Pag07] taking advantage of the fact that, in severals situations, the continuous Euler scheme
can be simulated (this is the purpose of the so-called Brownian diffusion bridge method). More re-
cently, new results on first order weak error expansions have been obtained for functionals of the form
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F (w) = f
(
supt∈[0,T ]w(t)

)
(see [GHM09] and [AJKHin]). Thus, for the weak error expansion, it is

shown in [AJKHin] that, for every η > 0, there exists a real constant Cη > 0 such that

∣∣∣Ef
(
XT , sup

t∈[0,T ]
Xt

)
−Ef

(
X̄n

T
, sup
t∈[0,T ]

X̄n
t

)∣∣∣ 6
Cη

N
3
2
−η

.

Remark 4.2. Note that, as concerned the (MLMC) estimator, in the general setting of the dis-
cretization of a Brownian diffusion by an Euler scheme, a Central Limit Theorem (with stable weak
convergence) has been obtained in [BAK12]. It seems clear that a similar approach applied to the mul-
tilevel Richardson-Romberg estimator (MLRR), which is, computationally speaking, but a weighted
version of the Multilevel estimator, also yields a similar Central Limit Theorem.

4.2 Nested Monte Carlo

The purpose of the so-called nested Monte Carlo method is to compute by simulation quantities of
the form

E
[
f
(
E [X |Y ]

)]

where (X,Y ) is couple of R ×Rq
Y -valued random variable defined on a probability space (Ω,A,P)

with X ∈ L1(P) and f : R → R is a Lipschitz continuous function with Lipschitz coefficient [f ]Lip.
Such quantities often appear in financial application like compound option pricing or risk estimation
(see [BDM11]) and in actuarial sciences (see [DL09]) where nested MC is widely implemented.

We make the following more stringent assumption : there exists F : Rq
Z ×Rq

Y → R be a Borel
function and a random variable Z : (Ω,A) → Rq

Z independent of Y such that

X = F (Z, Y ).

Then, if X∈ L1(P), one has the following representation

E [X |Y ] (ω) =
(
E [F (Z, y)]

)

|y=Y (ω)
=

∫

R
q
Z

F (z, Y (ω))PZ(dz).

To comply with the multilevel framework, we set

H = {1/K, K > 1}, Y0 = f
(
E [X |Y ]

)
, Y 1

K
= f

(
1

K

K∑

k=1

F (Zk, Y )

)

where (Zk)k>1 is an i.i.d. sequence of random vectors with the same distribution as Z and defined on
(Ω,A,P) and independent of Y (up to an enlargement of the probability space if necessary).

The following proposition shows that the nested Monte Carlo method is eligible for multilevel
simulation when f is regular enough with the same parameters as the Euler scheme for Brownian
diffusions.

Proposition 4.3. Assume X∈ L2R(P). If f is Lipschitz continuous and 2R times differentiable with
f (k) bounded, k = R, . . . , 2R, the nested Monte Carlo satisfies (SEβ) with β = 1 and (WEα,R̄) with
α = 1 and R̄ = R.

Remark 4.4. When f is no longer smooth, typically because it is the indicator function of an inter-
val, it is still possible to show that nested Monte Carlo is eligible for multilevel Richardson-Romberg
approach e.g. in the more constrained framework developed in [JHJ09, GJ10] where X can be viewed
as an additive perturbation of Y . Assuming enough regularity in y on the joint density gN (y, z) of
Y and the renormalized perturbation, yields an expansion of the weak error (but in a different scale).
However, in this work we focus on the regular case (see [LP14] for applications to non regular case
and actuarial sciences).
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The proof straightforwardly follows form the two lemmas below.

Lemma 4.5 (Strong approximation). Assume f is Lipschitz continuous. For every h∈ H,

∥∥Y0 − Yh
∥∥2

2
6 [f ]2Lip

(
‖X‖2

2
−
∥∥E(X |Y )

∥∥2
2

)
h

so that (Yh)h∈H satisfies (SEβ) with β = 1.

Proof. Let h = 1
K and set EY (X) = E(X |Y ) for convenience.

∥∥Y0 − Yh
∥∥2

2
=

∥∥∥f(EY (X))− f
( 1

K

K∑
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F (Zk, Y )
)∥∥∥

2

2

6 [f ]2Lip
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∥∥∥
2

2

=
∥∥EY (X)

∥∥2
2
+

1

K2
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∥∥F (Zk, Y )
∥∥2
2
− 2
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E
(
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)

+
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K2
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(
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=

∫

R
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∫
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∫

R
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Plugging these two identities in the first expansion finally yields

∥∥Y0 − Yh
∥∥2

2
6

[f ]2Lip
K

(∥∥F (Z, Y )
∥∥2
2
−
∥∥EY (X))

∥∥2
2

)
=

[f ]2Lip
K

(
‖X‖22 −

∥∥EY (X))
∥∥2
2

)
. ✷

Lemma 4.6 (Weak error). Let f : R → R be a 2R times differentiable function with f (k), k =
R, . . . , 2R, bounded over the real line. Assume X∈ L2R(P). Then there exists c1, . . . , cR−1 such that

EYh = EY0 +
R−1∑

r=1

crh
r +O

(
hR
)
, h∈ H .

Consequently (Yh)h∈H∪{0} satisfies (WEα,R−1) with with α = 1.

Proof. Let K > 1 and X̃k = F (Zk, Y ) − EY F (Zk, Y ) = F (Zk, Y ) − Y0, k = 1, . . . ,K. By the
multinomial formula we get

(X̃1 + · · ·+ X̃K )
k =

∑

k1+···+kK=k

k!

k1! · · · kK !
X̃k1

1 · · · X̃kK
K
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so that taking conditional expectation given Y yields

EY (X̃1 + · · ·+ X̃K )
k = k!

∑

k1+···+kK=k

K∏

i=1

EY X̃ki

ki!
.

since EY X̃ki
i = EY X̃ki . Noting that EY X̃i = 0, we get that
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k = k!

∑

k1+···+kK=k, ki 6=1
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EY X̃ki

ki!
.

Let I = I(k) denote the generic set of indices i such that ki 6= 0. It is clear that 1 6 |I| 6 k/2. By
symmetry we have now that
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As a consequence, for every integer R > 1
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By the Marcinkiewicz-Zygmund Inequality we get
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where BMZ
p = 18 p

3
2

(p−1)
1
2
, p > 1 (see [Shi96] p.499). Now we write the polynomial x(x−1) · · · (x−ℓ+1)

on the canonical basis 1, x, . . . , xn,. . . as follows

x(x− 1) · · · (x− ℓ+ 1) =

ℓ∑

m=0

bℓ,mxm (bℓ,ℓ = 1 and bℓ,0 = 0)

so that
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where KRO(K−R) is bounded by a deterministic constant. For every r∈ {1, . . . , R− 1}, set

JR,r =
{
(k, l,m)∈ N

3, 1 6 k 6 2R− 1, 1 6 ℓ 6 k/2, 1 6 m 6 ℓ, k = m+ r
}

(note that one always has k > (2m) ∨ 1 so that k −m > 1 when k, l,m vary in the admissible index
set). We finally get

EY Yh = EY Y0 +

2R−1∑

r=1

( ∑

(k,ℓ,m)∈JR,r

f (k)
(
EY (X)

)

k!
ak,ℓbℓ,m

) 1

Kr
+O

(
K−R

)
.

= EY Y0 +

R−1∑

r=1

cr
Kr

+O
(
K−R

)
.

Taking the expectation in the above equality yields the announced result. ✷

Remark 4.7. Although it is note the only term included in the final O(K−R), it is worth noticing that
(
(BMZ

2R )2R

(2R)!

) 1
R ∼ (36R)2

(
2R
e

)−2
∼ 18 e2 as R → +∞ owing to Stirling’s formula. This suggests that,

e.g. if all the derivatives of f are uniformly bounded, lim sup
R→+∞

c
1
R
R < +∞. For results in that direction,

we refer to [LP14].

5 Numerical experiments

5.1 Practitioner’s corner

We summarize here the study of the section 3. We have proved in Theorems 3.6, 3.8 and 3.11 that
the asymptotic optimal parameters (as ε goes to 0) R, h, q and N depends on structural parameters
α, β, V1, c1, var(Y0) and h (recall that θ =

√
V1/ var(Y0)). Note we do not have optimized the design

of the multilevel estimators, namely the allocation matrix T and the refiners ni, i = 2, . . . , R. We
propose in this section a numerical procedure to choose a good value of M in the case ni = M i−1.

About structural parameters

Implementing Multilevel methods (MC or RR) needs to know both the weak and strong (mean
quadratic) rates of convergence of the biased estimator Yh toward Y0. The exponents α and β are
generally known by a mathematical study of the approximation (see Section 4.1 for Brownian diffusion
discretization and Section 4.2 for nested Monte Carlo). The parameter V1 comes from the strong
approximation rate assumption (SEβ) and a natural approximation for V1 is

V1 ∼ lim sup
h→0

h−β
∥∥Yh − Y0

∥∥
2

Since Y0 cannot be simulated easily, one can consider the following estimator

V̂1(h) = (1 + 2−β)h−β
∥∥Yh − Yh

2

∥∥
2
, (36)

which satisfy V̂1(h) ∼ V1 when h is small enough. The approximation of θ =
√

V1/ var(Y0) is simply

given by

√
V̂1(h)/ var(Yh). In practice this estimator is relatively efficient and stable.

The estimation of the ci (c1 for a crude MC and a MLMC estimator and c̃ = limR→∞ c
1
R
R for our

MLRR estimator) is much more challenging. So these methods are usually implemented in a blind
way by considering the coefficient cR of interest equal to 1.

Note that even in a crude Monte Carlo method these structural parameters are useful (and some-
times necessary) to deal with the bias error (see Proposition 2.2).
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Design of the Multilevel

The allocation matrix is fixed by the template (MLRR) for the multilevel Richardson-Romberg esti-
mator and by the template (MLMC) for the multilevel Monte Carlo estimator. Alternative choices
could be considered for the multilevel Richardson-Romberg estimator like T satisfying (14) with
Tj = −wj e1 +wj ej for j ∈

{
2, . . . , R

}
i.e.

T =




1 −w2 −w3 · · · −wR

0 w2 0 · · · 0

0 0 w3
. . . 0

...
...

. . .
. . .

...
0 0 · · · 0 wR




. (MLRR2)

We can also consider a lower triangular allocation matrix (which does not satisfies the conventional
assumption T 1 = e1)

T =




W̃1 0 · · · · · · · · · 0

−W̃1 W̃2 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · −W̃R−2 W̃R−1 0

0 · · · · · · · · · −W̃R−1 1




where W̃j =

j∑

k=1

wk . (37)

The refiners, can be specified by the users but it turns out that the parametrized family ni =
M i−1, i = 1, . . . , R (M ∈ N, M > 2) seems the best compromise between variance control and
implementability. All the related quantities like (Wi(R,M))16i6M can be tabulated for various values
of M and R and can be stored offline.

Taking advantage of c1 = 0

When c1 = 0, only R − 1 weights are needed to erase the (remaining) coefficients up to order R i.e.

cr, r = 2, . . . , R − 1 (instead of R). One easily shows that, if (w
(R−1)
r )r=1,...,R−1 denotes the weight

vector at order R− 1 associated to refiners n1 = 1 < n2, . . . , nR1
(for a given scale parameter α of the

weak error expansion), then the weight vector w̃(R) at order R (with size R− 1) reads

w̃(R)
r =

nα
rw

(R−1)
r

∑
16s6R−1 n

α
sw

(R−1)
s

, r = 1, . . . , R− 1.

Asymptotic optimal parameters

In the case ni = M i−1 (with the convention n0 = n−1
0 = 0), we can summarize the asymptotic optimal

value of the parameters q, R, h and N in the table 5.1 for the (MLRR) estimator and in the table 5.2
for the (MLMC) estimator.

Note that these optimal parameters depend on the structural parameters and on the user’s choice
of the “root” M > 2 for the refiners. If we emphasize the dependance in M i.e. R(M), h(M), q(M)
and N(M) we have for a fixed ε > 0

Cost(Y
N(M),q(M)
h(M),n ) = N(M) κ(h(M), R(M), q(M)),

where κ(h,R, q) = 1
h

∑R
j=1 qj

∑R
i=1 ni1{

T
j
i 6=0
} (in the framework of Section 4.1) and κ(h,R, q) =

1
h

∑R
j=1 qj max16i6R ni1{

T
j
i 6=0
} (in the framework of Section 4.2). This function can be optimized for

likely values of M , say M ∈
{
2, . . . , 30

}
.
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Table 5.1: Optimal parameters for the Multilevel Richardson-Romberg estimator (MLRR).
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(
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)√
nj−1 + nj



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qj(nj−1 + nj)

Table 5.2: Optimal parameters for the Multilevel Monte Carlo estimator (MLMC).

Simulating consistent Brownian increments In many situations (like e.g. the numerical exper-
iments carried out below), discretization schemes of Brownian diffusions need to be simulated with
various steps (say T

nni
and T

nni+1
in our case). This requires to simulate consistent Brownian incre-

ments over [0, Tn ], then [ (k−1)T
n , kTn ], k = 2, . . . , n. This can be performed by simulating recursively the

Brownian increments over all successive sub-intervals of interest, having in mind that the “quantum”
size for the simulation is given by T

nm where m = gcd(n1, . . . , nR). One can also produce once and for
all an abacus of coefficients to compute by induction the needed increments from small subintervals
up to the root interval of length T

n . This is done e.g. in [Pag07] up to R = 5 for α = 1 and up to
R = 3 for α = 1

2 .
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5.2 Euler scheme of a geometric Brownian motion

We consider a geometric Brownian motion (St)t∈[0,T ], representative, in a Black-Scholes (BS) model,
of the dynamics of a risky asset price between time t = 0 and time t = T :

St = x0e
(r−σ2

2
)t+σWt , t∈ [0, T ], S0 = s0 > 0,

where r denotes the (constant) “riskless” interest rate, σ denotes the volatility and W = (Wt)t∈[0,T ]

is a standard Brownian motion defined on a probability space (Ω,A,P). The price or premium
of a so-called vanilla option with payoff ϕ is given by e−rTEϕ(ST ). For many payoff functions
ϕ : (0,+∞) → (0,+∞), like ϕ(x) = (x−K)+ or (K−x)+ and their linear combinations, the premium
admits a closed form starting from the formula

e−rTEϕ(ST ) = e−rT

∫

R

ϕ
(
s0e

(r−σ2

2
)T+σ

√
Tz
)
e−

z2

2
dz√
2π

.

On the other hand, (Xt)t∈[0,T ] is solution to the diffusion SDE

dSt = St(rdt+ σdWt)

and one can also compute e−rTEϕ(ST ) by a Monte Carlo simulation in which the true process
(St)t∈[0,T ] is replaced by its Euler scheme (S̄tnk

)06k6n (even if we are aware that ST is simulatable).
Although nobody would adopt this model any kind of MC simulation in practice since a simple differ-
ence method on the BS parabolic PDE is much more efficient for numerical purpose, it turns out that
the Black-Scholes model and its Euler scheme is a very demanding benchmark to test and evaluate
the performances of MC method(s). As a consequence, it is quite appropriate to carry out numerical
tests on a new variant like MLRR.

In that regular diffusion setting (both drift and diffusion coefficients are C∞
b ), one has α = β = 1.

The Black-Scholes parameters considered in the following numerical experiments are s0 = 100,
r = 0.04 and σ = 0.2. The payoff is a European Call with maturity T = 1 year and strike K = 100.
The parameters θ =

√
V1/ var(Y0) and var(Y0) have been estimated following the procedure (36)

described in Section 5.1 leading to the values θ = 0.068 and var(Y0) = 208 for all the estimators. The
L2-error is estimated using 400 runs the algorithm and the bias is computed using the true value of
the price 9.92504.

The target accuracy ε for the L2-error has been set at ε = 2−ℓ, ℓ = 1, . . . , 9.

The results (1) are summarized in Table 5.3 for the (MLRR) and in Tables 5.4 and 5.5 for
the (MLMC).

ε L2-error time (s) bias var R M h−1 N κ(π)

5.00·10−01 3.52·10−01 2.74·10−03 -5.56·10−02 1.21·10−01 2 5 1 1.76·10+03 1.22
2.50·10−01 1.77·10−01 3.13·10−03 -3.11·10−02 3.02·10−02 2 9 1 7.00·10+03 1.26
1.25·10−01 8.16·10−02 3.11·10−03 1.27·10−03 6.66·10−03 3 3 1 3.16·10+04 1.42
6.25·10−02 4.13·10−02 4.10·10−03 -2.58·10−04 1.71·10−03 3 4 1 1.23·10+05 1.43
3.12·10−02 2.07·10−02 8.44·10−03 -1.63·10−04 4.30·10−04 3 5 1 4.89·10+05 1.45
1.56·10−02 1.04·10−02 2.10·10−02 9.20·10−05 1.07·10−04 3 6 1 1.96·10+06 1.47
7.81·10−03 5.17·10−03 6.56·10−02 -7.52·10−05 2.68·10−05 3 7 1 7.86·10+06 1.49
3.91·10−03 2.57·10−03 2.03·10−01 -1.07·10−04 6.61·10−06 3 9 1 3.18·10+07 1.53
1.95·10−03 1.24·10−03 8.03·10−01 -2.13·10−05 1.53·10−06 4 4 1 1.37·10+08 1.64

Table 5.3: Multilevel Richardson-Romberg estimator (MLRR) (Call in a Black-Scholes model dis-
cretized by a Euler scheme).

1The computations were performed on a computer with 4 muliithreaded(16) octo-core processors (Intel(R) Xeon(R)
CPU E5-4620 0 @ 2.20GHz).

27



ε L2-error time (s) bias var R M h−1 N κ(π)

5.00·10−01 6.88·10−01 2.79·10−03 6.07·10−01 1.05·10−01 2 4 1 1.99·10+03 1.16
2.50·10−01 3.79·10−01 3.09·10−03 3.43·10−01 2.60·10−02 2 7 1 8.05·10+03 1.21
1.25·10−01 1.66·10−01 3.32·10−03 1.48·10−01 5.63·10−03 3 4 1 3.72·10+04 1.35
6.25·10−02 8.12·10−02 4.79·10−03 7.22·10−02 1.39·10−03 3 6 1 1.51·10+05 1.42
3.12·10−02 4.32·10−02 9.39·10−03 3.90·10−02 3.41·10−04 3 8 1 6.17·10+05 1.47
1.56·10−02 2.14·10−02 2.61·10−02 1.96·10−02 7.65·10−05 4 5 1 2.74·10+06 1.60
7.81·10−03 1.00·10−02 8.87·10−02 8.45·10−03 2.88·10−05 4 5 2 7.22·10+06 2.88
3.91·10−03 4.91·10−03 3.52·10−01 4.42·10−03 4.61·10−06 4 8 1 4.57·10+07 1.72
1.95·10−03 2.57·10−03 1.34·10+00 2.34·10−03 1.12·10−06 4 10 1 1.87·10+08 1.78

Table 5.4: Multilevel Monte Carlo estimator (MLMC) (Call in a Black-Scholes model discretized by
a Euler scheme).

ε L2-error time (s) bias var R M h−1 N κ(π)

5.00·10−01 4.02·10−01 2.84·10−03 2.42·10−01 1.03·10−01 2 10 1 2.05·10+03 1.25
2.50·10−01 1.74·10−01 3.82·10−03 8.91·10−02 2.24·10−02 3 5 1 9.37·10+03 1.39
1.25·10−01 8.67·10−02 4.06·10−03 4.49·10−02 5.50·10−03 3 7 1 3.82·10+04 1.45
6.25·10−02 4.71·10−02 6.01·10−03 2.95·10−02 1.35·10−03 3 9 1 1.56·10+05 1.49
3.12·10−02 2.08·10−02 3.00·10−02 1.14·10−02 3.02·10−04 4 6 1 6.95·10+05 1.65
1.56·10−02 1.05·10−02 6.32·10−02 6.03·10−03 7.46·10−05 4 7 1 2.82·10+06 1.68
7.81·10−03 5.40·10−03 2.10·10−01 3.32·10−03 1.82·10−05 4 9 1 1.16·10+07 1.75
3.91·10−03 2.85·10−03 5.21·10−01 1.05·10−03 7.04·10−06 4 9 2 2.95·10+07 3.09
1.95·10−03 1.48·10−03 3.09·10+00 1.08·10−03 1.03·10−06 5 7 1 2.04·10+08 1.92

Table 5.5: “Optimal” Multilevel Monte Carlo estimator (MLMC) with c1 = 2.6 (Call in a Black-Scholes
model discretized by a Euler scheme).
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Figure 1: Time in seconds vs numerical L2-error of the three estimators in the log-log scale

5.3 Nested Monte Carlo for compound option pricing

A compound option is simply an option on an option. The exercise payoff of a compound option
involves the value of another option. A compound option then has two expiration dates T1 < T2 and
two strike prices K1 and K2. We consider here the example of a European style Put on a Call where
the underlying risky asset S is still given by a Black-Scholes process with parameters (r, σ). On the
first expiration date T1, the holder has the right to sell a new Call option using the strike price K1.
The new Call has expiration date T2 and strike price K2. The payoff of such a Put-on-Call option
writes

(K1 −E [(ST2 −K2)+ |ST1 ])+
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To comply with the multilevel framework, we set H = {1/K, K > 1}

Y0 = f
(
E [ST2 |ST1 ]

)
, Y 1

K
= f

(
1

K

K∑

k=1

F (Zk, ST1)

)

where (Zk)k>1 is an i.i.d. sequence of standard Gaussian N (0; 1), f(x) = (K1 − x)+ and F such that

ST2 = F (G,ST1) = ST1e
(r−σ2

2
)(T2−T1)+σ

√
T2−T1Z

Note that the underlying process (St)t∈[0,T2] is not discretized in time.

The parameters used for the underlying process (St)t∈[0,T2] are s0 = 100, r = 0.03 and σ = 0.3.
The parameters of the Put-on-Call payoff are T1 = 1, T2 = 2 and K1 = 20.6, K2 = 100.

ε L2-error time (s) bias var R M h−1 N κ(π)

5.00·10−01 1.38·10+00 4.74·10−03 1.36·10+00 6.22·10−02 2 2 2 1.80·10+03 2.57
2.50·10−01 7.25·10−01 5.28·10−03 7.13·10−01 1.82·10−02 2 4 2 6.79·10+03 3.19
1.25·10−01 3.71·10−01 5.87·10−03 3.64·10−01 4.74·10−03 2 8 2 2.71·10+04 3.91
6.25·10−02 1.91·10−01 7.37·10−03 1.88·10−01 1.15·10−03 2 16 2 1.13·10+05 4.81
3.12·10−02 8.27·10−02 2.26·10−02 8.12·10−02 2.37·10−04 3 6 2 5.78·10+05 5.37
1.56·10−02 4.68·10−02 7.88·10−02 4.61·10−02 5.83·10−05 3 8 2 2.35·10+06 6.00
7.81·10−03 2.05·10−02 3.37·10−01 2.02·10−02 1.39·10−05 3 12 2 9.79·10+06 6.98
3.91·10−03 1.19·10−02 1.52·10+00 1.17·10−02 3.31·10−06 3 16 2 4.09·10+07 7.77
1.95·10−03 5.90·10−03 6.76·10+00 5.83·10−03 7.30·10−07 4 8 2 1.89·10+08 8.14

Table 5.6: Nested MC: Multilevel Monte Carlo estimator (MLMC).

ε L2-error time (s) bias var R M h−1 N κ(π)

5.00·10−01 3.92·10−01 5.54·10−03 2.80·10−01 7.55·10−02 2 11 2 1.72·10+03 4.30
2.50·10−01 1.81·10−01 5.58·10−03 1.32·10−01 1.52·10−02 3 5 2 9.01·10+03 5.00
1.25·10−01 8.17·10−02 7.00·10−03 5.39·10−02 3.77·10−03 3 7 2 3.63·10+04 5.70
6.25·10−02 4.38·10−02 1.00·10−02 3.18·10−02 9.11·10−04 3 10 2 1.50·10+05 6.52
3.12·10−02 2.01·10−02 2.98·10−02 1.37·10−02 2.17·10−04 3 14 2 6.25·10+05 7.39
1.56·10−02 1.09·10−02 1.11·10−01 8.25·10−03 5.12·10−05 3 19 2 2.63·10+06 8.28
7.81·10−03 4.84·10−03 4.61·10−01 3.46·10−03 1.15·10−05 4 9 2 1.20·10+07 8.54
3.91·10−03 2.10·10−03 2.01·10+00 1.30·10−03 2.73·10−06 4 12 2 5.00·10+07 9.58
1.95·10−03 1.20·10−03 8.85·10+00 8.90·10−04 6.51·10−07 4 15 2 2.08·10+08 10.5

Table 5.7: Nested MC: “Optimal” Multilevel Monte Carlo estimator (MLMC) (c1 = 5.5).

A Appendix

Lemma A.1. (a) The solution of the system Vw = e1 where V is a Vandermonde matrix

V = V (1, n−α
2 , . . . , n−α

R
) =




1 1 · · · 1
1 n−α

2 · · · n−α
R

...
... · · · ...

1 n
−α(R−1)
2 · · · n−α(R−1)

R


 ,

is given by wi =
(−1)R−in

α(R−1)
i∏

16j<i

(nα
i − nα

j )
∏

i<j6R

(nα
j − nα

i )
.
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ε L2-error time (s) bias var R M h−1 N κ(π)

5.00·10−01 3.21·10−01 5.36·10−03 1.01·10−01 9.30·10−02 2 4 2 1.65·10+03 3.49
2.50·10−01 1.90·10−01 5.07·10−03 1.13·10−01 2.33·10−02 2 4 2 6.60·10+03 3.49
1.25·10−01 9.81·10−02 6.08·10−03 6.14·10−02 5.86·10−03 2 8 2 2.42·10+04 4.15
6.25·10−02 4.80·10−02 6.91·10−03 3.01·10−02 1.40·10−03 2 16 2 9.81·10+04 4.98
3.12·10−02 1.74·10−02 1.97·10−02 2.58·10−03 2.97·10−04 3 4 2 5.02·10+05 5.08
1.56·10−02 9.51·10−03 6.32·10−02 4.03·10−03 7.42·10−05 3 4 2 2.01·10+06 5.08
7.81·10−03 4.51·10−03 2.42·10−01 1.35·10−03 1.85·10−05 3 6 2 7.66·10+06 5.77
3.91·10−03 2.15·10−03 9.98·10−01 8.30·10−05 4.60·10−06 3 7 2 3.05·10+07 6.06
1.95·10−03 1.07·10−03 4.00·10+00 8.30·10−05 1.14·10−06 3 8 2 1.22·10+08 6.33

Table 5.8: Nested MC: Multilevel Richardson-Romberg estimator (MLRR).
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Figure 2: Nested MC: Rate of the L2-error of the estimator (log-log scale).

(b) Furthermore

w̃R+1 =
R∑

i=1

wi

nαR
i

=
(−1)R−1

∏
16i6R nα

i

.

Proof. (a) Following the proof let ai = n−α
i . Note that by Cramer’s rule the solution of this linear

system is given by wi = det(Vi)
det(V ) where Vi is the matrix formed by replacing the ith column of V

by the column vector e1. The first point is that Vi is again Vandermonde matrix of type Vi =
V (1, . . . , ai−1, 0, ai+1, . . . , aR). On the other hand, the determinant of a square Vandermonde matrix
can be expressed as det(V ) =

∏
16j<k6n (ak − aj). So we have for every i ∈

{
1, . . . , R

}

wi =

∏

16j<k6R;j,k 6=i

(ak − aj)
∏

16j<i

(−aj)
∏

i<k6R

ak

∏

16j<k6R

(ak − aj)
=

∏

16j<i

(−aj)
∏

i<k6R

ak

∏

16j<i

(ai − aj)
∏

i<k6R

(ak − ai)

Using that ai = n−α
i , i = 1, . . . , R, we have

∏
16j<i(−aj)∏

16j<i(ai − aj)
=

n
α(i−1)
i∏

16j<i(n
α
i − nα

j )
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and ∏
i<k6R ak∏

i<k6R(ak − ai)
=

(−1)R−in
α(R−i)
i∏

i<k6R(n
α
k − nα

i )

which concludes the proof.

(b) follows by setting x = 0 in the decomposition

1∏
16i6R(x− nα

i )
=

R∑

i=1

1

(x− nα
i )
∏

j 6=i(n
α
i − nα

j )
.

Proposition A.2. When ni = M i−1, i = 1, . . . , R, the following holds true for the coefficients
wi = wi(R,M).

1. Closed form for wi, i = 1, . . . , R:

wi = wi(R,M) = (−1)R−i M−α
2
(R−i)(R−i+1)

∏
16j6i−1(1−M−jα)

∏
16j6R−i(1−M−jα)

, i = 1, . . . , R.

2. Closed form for w̃R+1:

w̃R+1 = (−1)RM−R(R−1)
2

α.

3. On checks that

sup
R∈N∗

R−1∑

i=1

|wi(R,M)| 6 M−α

π2
α,M

∑

k>0

M−α
k(k+3)

2 and 1 6 wR(R,M) 6
1

πα,M

where πα,M =
∏

k>1(1−M−αk).

4. Asymptotics of the coefficients wi when M → +∞:

lim
M→+∞

sup
R∈N∗

max
16i6R−1

|wi(R,M)| = 0 and lim
M→+∞

sup
R∈N∗

|wR(R,M)− 1| = 0.

5. Asymptotics of the coefficients Wi = Wi(R,M) when M → +∞: the coefficients Wi are defined
in (MLRR). It follows from what precedes that they satisfy W1 = 1,

max
16i6R

|Wi(R,M)| 6 Wα(M) :=
M−α

π2
α,M

∑

k>0

M−α
k(k+3)

2 +
1

πα,M
(38)

and
max
16i6R

|Wi(R,M)− 1| 6 Wα(M)− 1 ∼ M−α → 0 as M → +∞.

In particular, the matrix T = T(R,M) in (MLRR) converges toward the matrix of the standard
Multilevel Monte Carlo (MLMC) at level M when M → +∞.

6. One more useful inequality

∀R∈ N,
1

|w̃R+1 |
R∑

r=1

|wr(R,M)|
nαR
r

6 Bα(M)
1

π2
α,M

∑

k>0

M−α
2
k(k+1).
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Proof. Claim 6: For every r∈ {1, . . . , R},

|wr(R,M)|
nαR
r

6
M−α

2
((R−r)(R−r+1)+2(r−1)R)

π2
α,M

Noting that ((R− r)(R− r + 1) + 2(r − 1)R) = R(R− 1) + r(r − 1), we derive that

R∑

r=1

|wr(R,M)|
nαR
r

6
1

π2
α,M

M−α
R(R−1)

2

R∑

r=1

M−α
r(r−1)

2

which yields the announced inequality since M−α
R(R−1)

2 = |w̃R+1 |.

B Appendix: proof of Proposition 2.4

The multistep RR is characterized by the template matrix



w1 0 · · · · · · 0
... 0 · · · · · · 0
wi 0 · · · · · · 0
... 0 · · · · · · 0

wR 0 · · · · · · 0




.

Note that the column is not e1 but this has no influence on what follows. The expansion of E
(
Ȳ M
h,n

)

follows from Proposition 2.4. No stratification is needed here since only one Brownian motion is
involved. Hence

φ(Ȳ M
h,n) = var(〈w, Y 1

h,n〉)
|n|
h

∼ var(Y0)×
|n|
h

as h → 0

since Y 1
h,n → Y01 in L2 and

∑R
i=1wi = 1. ✷
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