Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2014

Bayesian Adaptive Reconstruction of Profile Optima and Optimizers

Résumé

Given a function depending both on decision parameters and nuisance variables, we consider the issue of estimating and quantifying uncertainty on profile optima and/or optimal points as functions of the nuisance variables. The proposed methods are based on interpolations of the objective function constructed from a finite set of evaluations. Here the functions of interest are reconstructed relying on a kriging model but also using Gaussian random field conditional simulations that allow a quantification of uncertainties in the Bayesian framework. Besides this, we introduce a variant of the expected improvement criterion, which proves efficient for adaptively learning the set of profile optima and optimizers. The results are illustrated with a toy example and through a physics case study on the optimal packing of polydisperse frictionless spheres.
Fichier principal
Vignette du fichier
Art_Monerie_al_J.Uncert.-Quant._2014.pdf (574.79 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02031714 , version 1 (20-02-2019)

Identifiants

Citer

David Ginsbourger, Jean Baccou, Clément Chevalier, Frédéric Perales, Nicolas Garland, et al.. Bayesian Adaptive Reconstruction of Profile Optima and Optimizers. SIAM/ASA Journal on Uncertainty Quantification, 2014, 2 (1), pp.490-510. ⟨10.1137/130949555⟩. ⟨hal-02031714⟩
597 Consultations
1166 Téléchargements

Altmetric

Partager

More