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Bayesian Adaptive Reconstruction of Profile Optima and Optimizers*
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Abstract. Given a function depending both on decision parameters and nuisance variables, we consider the
issue of estimating and quantifying uncertainty on profile optima and/or optimal points as functions
of the nuisance variables. The proposed methods are based on interpolations of the objective func-
tion constructed from a finite set of evaluations. Here the functions of interest are reconstructed
relying on a kriging model but also using Gaussian random field conditional simulations that allow
a quantification of uncertainties in the Bayesian framework. Besides this, we introduce a variant of
the expected improvement criterion, which proves efficient for adaptively learning the set of profile
optima and optimizers. The results are illustrated with a toy example and through a physics case
study on the optimal packing of polydisperse frictionless spheres.
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active learning, expected improvement
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1. Introduction. A number of scientific and industrial questions boil down to optimization
problems: Physical equilibria are found by minimizing appropriate energy functionals, optimal
engineering designs are sought by minimizing so-called fitness functions, etc. Mathematically,
the deterministic system at hand (that can be defined also in the stochastic case, e.g., as an
expectation) is classically seen as a real-valued objective function f : x € X — f(x) € R
with domain X C E, where typically F = R? for some integer d > 1. Whenever f reaches
a global marimum, f* = maxxex f(x), values of x € X such that f(x) = f* are usually
called points of (global) maximum or (global) maximizers. Here we focus on cases where the
input vector x can be split into a group of decision parameters o € A and so-called nuisance
variables v € V, such that X = A x V. In such a case, one can view the global maximum of
f with respect to the nuisance variables v as a function of a:

(1.1) [fraeAd— ffa)= max fla,v) €R,

which we refer to as a profile optimum or conditional optimum function. Assuming further
that f(a, ) possesses a unique point of global maximum v}(a) for any given o € A (or defining
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one particular global optimizer in case there are several, e.g., the smallest one in dimension
1), we also consider the map of profile or conditional optimizers:

(1.2) vira€A—vi(a) €V

Our main aim in the present work is to reconstruct f* and v} under a drastically limited
evaluation budget of the objective function f. An example of profile optimum and profile
optimizer functions is shown in Figure 1, where the objective function f is the negative
rescaled Branin—-Hoo function (see [21] and (2.8)).
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Figure 1. Left: Profile optimizer vy (black curve) and contour lines of the negative rescaled Branin—Hoo
function f defined in section 2 relying on (2.8). Right: Corresponding profile optimum function f*.

Concrete problems involving the reconstruction of profile optima and/or optimizers occur
in various contexts. Let us give a couple of examples:

e In reliability engineering, the vulnerability of a system may depend both on con-
trollable design variables « like materials and geometry, and also on uncontrollable
variables v like future climatic conditions (wind characteristics, temperature trends,
etc.). In such a case, one may be interested in the evolution of the worst-case scenario
with respect to the climatic conditions, seen as a function of the design variables. The
profile optimum function then maps any design « to the associated maximum level of
danger with respect to the climate variable, while the profile optimizer function repre-
sents the worst climatic condition vy (i.e., the one implying the highest level of danger)
as a function of the design variables a. A neighboring problem referred to as robust
inversion has been tackled in [8], involving nuclear criticality safety applications.

e In statistical modeling, it often arises that some likelihood function may be analyti-
cally maximized as a function of a subgroup of parameters, the other model parameters
being considered fixed. One then speaks of profile likelihood [36]. For example, this
happens in the case of a centered Gaussian vector with stationary covariance depend-
ing on a variance v (or its square root, often named scale) and on some correlation
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parameter a. It is then well known that the maximum likelihood estimator of v can
be derived analytically as a function of «. Plotting the optimal v as a function of «
then amounts to representing what we call here a profile optimizer function.

In the present work the main test case comes from physics, more precisely from an optimal
packing problem. A medium containing bidisperse frictionless spheres is considered, and the
maximum occupation density is numerically investigated as a function of the radii and a
coefficient tuning the volume fractions. A particular focus is put on the estimation of optimal
volume fraction coefficient (v}), seen as a function of the ratio of radii (o).

When addressing such problems in realistic conditions, each pointwise evaluation of the
function f corresponds to a timely expensive experiment (be it physical or numerical), so that
the number of calls to f is drastically limited by practical constraints. It is then mandatory to
appeal to approximations of f for reconstructing the f* and UJ*C functions. Here we concentrate
on the use of kriging and Gaussian random field models for estimating them, quantifying the
uncertainties associated with these estimations and reducing those uncertainties by appealing
to adaptive evaluation strategies in the sequential Bayesian framework.

This paper is organized as follows: in section 2, we present plug-in and Bayesian approaches
for reconstruction by kriging and uncertainty quantification on profile optimum and optimizer
functions. In section 3, we then propose a new infill sampling criterion, obtained as a variant of
the expected improvement, which aims at reinforcing exploration in regions of profile optima.
Detail is given on the computation and the numerical maximization of this new criterion, and
a theorem of consistency is provided for the associated sequential strategy under fixed mean
and covariance hyperparameters. In section 4, applications of the proposed methodology are
presented on an optimal packing problem. Conclusions and perspectives of future research
are given in section 5.

2. Plug-in and Bayesian reconstructions in the static framework. Preliminary to the
main contributions of the paper, about adaptive experimental design, we first set the nota-
tion and present the proposed profile reconstruction and associated uncertainty quantification
methods in the static framework. Let us now briefly discuss a crude “plug-in” approach and
then review the Bayesian approach under a Gaussian random field prior.

2.1. Plug-in approach: Estimating f* and 'v} based on an approximation of f. We
now assume that the function f was already evaluated at a set of points, or experimental
design,

(2.1) X={x1,..., %3} = {(a1,v1), ..., (an,vp)} € (A X V)"

Reconstructing f* and UJ*C directly from such data is not straightforward. A natural idea,
provided some prior knowledge about the function f is available, is to use an interpolator or
an approximation model for f and to reconstruct the profile maps based on this model. A
vast set of interpolation and approximation approaches may be envisaged [18], encompassing
polynomials, methods based on Fourier and wavelet analysis, splines, neural nets, and kernel
methods. Here we mainly focus on kriging [25, 10, 37, 9], a method originally used for
interpolating field data in geosciences. Assuming that noise-free evaluations of f at X are
available, and introducing the vector of observations

(2.2) z=(f(x1),--., f(xn)) €R",
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where u’ denotes the transpose of the vector u, the so-called ordinary kriging (OK) predictor
is written as

(2.3) m(x) = i+ k(x)' K~ (z — i),

where 1 = ('K ~'11)"'11'K 'z, k(x) = (k(x1,%),...,k(x,,x)), K = (k(%is%5)) (i, j)eq1,...n)25
1=(1,...,1), and k is a positive definite kernel chosen a priori and/or tuned based on data.
In this noise-free context, a notable fact is that the OK predictor interpolates the data:

(2.4) m(x;) = f(xi) (1 <i<n).

Note that in the case where the observations are corrupted by Gaussian noise with mean 0
and variance 72, the kriging equations are slightly modified through a substitution of K by
K + 721, and the interpolation property is lost. This variant (which slightly departs from
kriging with a nugget effect) is referred to as kriging with homogeneous noise variance in the
present work. Coming back to the profile functions and substituting f by m, we simply obtain
plug-in estimates for f* and v},

(2.5) m*(a) = rglea‘zcm(a,v),

and v}, (a) such that
(2.6) m(a; v, (@) > m(a,v) (€ AveV).

Note that even if unicity of the profile maximizers is assumed for f, there is no reason why
this unicity should propagate to m. Here, for the sake of simplicity, we assume that the profile
maximizer of m is unique for any given o € A, a realistic assumption in practice. Concerning
the quality of the approximation of f* by m*, it is straightforward that

(2.7) 17 = m oo <If = mllco,

where the norms refer to function spaces on A and A x V, respectively. In other words, if
one controls the error of the kriging predictor uniformly, the same control is guaranteed on
the map of profile maxima. The same does not hold, however, for the profile maximizers:
whatever || f —m||s may be, it is always possible to have the maximizers v} (a) and vy, (a) at
any given distance within the domain V.

In Figure 2, we give some first illustrations based on the negative rescaled Branin—Hoo
function f, defined over [0,1]? by f(x1,z2) = —feu(15z1 — 5, 1523), where

(2.8)  fpu: (@1, 22) € [=5,10] x [0,15] — a(zy — bx? + cxy — 1) + s(1 — t) cos(x1) + s,

with a = 1,b = 5/(47?),c = 5/m,r = 6,5 = 10, and t = 1/(87).

Here two different experimental designs are considered. In the first case, f is known at
n = 10 points only, forming a so-called Latin hypercube design (LHD). In the second case,
the LHD is made of n = 20 points. Here the LHDs are generated using the R package lhs [7]
with “optimum” option and default settings. In both cases, an anisotropic Matérn kernel with
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smoothness parameter fixed to v = 3/2 is chosen for k (See Table 1 in [34], freely available
online) and the corresponding scale and range hyperparameters are estimated by maximum
likelihood using the DiceKriging R package [34]. One can see in Figure 2 that f* and v]*c are
better reconstructed with the 20-point design, as expected. More specifically, Table 1 gives
the bias obtained on the profile optimum and profile optimizer functions measured as follows:

(2.9) b =g, — vl
(2.10) b =l — £l

where the considered norms are either L? or L™ on appropriate spaces.

In applications the use of the bias as a performance indicator is unrealistic, as the true v}i
and f* are unknown. The next subsection discusses uncertainty quantification approaches in
the case where a Gaussian random field prior is put on the objective function f.

2.2. Bayesian approach under a Gaussian random field prior. An alternative approach
proposed here, which complements the prediction by kriging presented in the last section,
consists in assuming a Gaussian random field prior for the function f and then relying on the
obtained posterior predictive distribution to draw conclusions about the profile optima and
optimizer functions. In such a framework, f is seen as one possible realization (i.e., Z.(w) for
some w € Q,  being the underlying sample space) of a Gaussian random field (Zx)xex with
mean p and covariance kernel k. Then not only may f be approximated by the conditional
expectation Ex = E[Zx|Zx], but the approximation error happens to itself be a centered
random field with an analytically tractable covariance. Under well-known technical conditions
[30], e.g., a uniform improper prior on y, it turns out that the conditional expectation coincides
with the OK predictor of (2.3):

(2.11) E[Z«|Zx = z] = m(x),
while for any pair of points (x,u) € X2 the covariance of the prediction error is

(1 —-k(x)K~'1)(1 —k(u)K~11)

% > -1
(2.12) Cov[Zx—Zx, Zu—Zu) = k(x,u) —k(x) K~ 'k(u) + K11

Using this result, one may simulate Gaussian random field realizations that honor the data
while giving a quantification of uncertainty for various quantities regarding f. Here we use that
workflow to enhance the estimation of the f* and v} functions and also to provide associated
measures of accuracy that do not depend on validation data. Instead of basing our estimates
on a single predictor as in the plug-in approach, we rely on a set of conditional simulations

ZZ() = Z,(wi) (1 S 7 § 8).

In other words, the f* and v}i functions are represented by the random process Z* and the
random field! vy, themselves being approximated by the sets of functions {z7,...,2}} and
{vz,,..., v, }. An example of such sets of functions, obtained from conditional simulations,

!See [22] for a discussion on the almost sure unicity of the optimizer for suitable Gaussian random field
models.
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Figure 2. Plug-in estimates v}, (top) and m* (bottom) obtained from 10-point (left) and 20-point (right)
experimental designs. The estimates are thick black curves. The blue dashed curves represent the actual v} and
f* functions. The triangles stand for the design points.

Table 1
Model bias if 10 or 20 locations are evaluated.

Norm Indicator 10 obs. 20 obs.

L? b 12.97 3.94
L? bF 0.13 0.04
L b 25.46  10.17
L> bF 0.32 0.09

is shown in Figure 3. Here s = 25 conditional simulations are computed on a 50 x 50 grid,
leading to 25 functions 2 and v;,, 1 < ¢ < s. Clearly, the functions 2} and v;, have a
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higher dispersion when they are obtained from simulations conditioned on 10 observations
(left plots). This suggests using this dispersion as an indicator to quantify the uncertainty,
given the observations, on the true unknown functions f* and v]*c.

How to quantify the variability associated with a set of curves remains an open question, to
which various answers have been detailed throughout the literature of probability theory [28].
In the present work, we quantify this variability using the expectation of the distance between
two (independently) simulated profile optimizers vy, , vy, or profile optimum functions Z7,
Z5:

(2.13) H'T =R [|lv}, — v, ||| 2x = 2],
(2.14) HI" =B |2} — Z3||| Zx = =],

where the considered norms are either the L2 or L norm. Note that Hsf and Hﬂf* can be
computed without knowing the true functions f* or v;. In section 4 we will also compute the
so-called risks

*

(2.15) r'r =K [|lvg, —villlZx = 2],
(2.16) rI =R (121 - [l Zx = 2],

which require us to know f* and v}, respectively. Coming back to the Branin—Hoo toy
example, estimates of these indicators relying on 1000 conditional simulations are displayed
in Table 2. It appears that the variability and the risk are lower for 20-point design than
for the 10-point design, as could be anticipated. In general, one may expect the uncertainty
to be reduced if more locations are evaluated. Under a limited evaluation budget, the next
evaluation location must be chosen carefully. The next section tackles this issue and introduces
a new sampling criterion: the profile expected improvement.

3. Adaptive design of experiments for Bayesian profile curve reconstruction.

3.1. Problem setup: How to choose the next point. We previously observed in a toy
example that the quality of the profile function reconstructions increased with the size of
the experimental design, a feature corroborated by the variability of the simulated profiles
obtained by conditional simulations. Of course no general conclusion may be drawn from a
single comparison with arbitrary settings, but this reflects what may reasonably be expected:
adding experiments generally tends to improve the profile estimates and reduce the associated
uncertainty. Note that in the example above, the two experimental designs are generated
independently of each other. In practice, however, one rather needs to augment an existing
design with new well-chosen points, be it in a sequential (one point after the other, as in [21])
or in a batch-sequential manner [17].

Several approaches have been explored for efficient sequential strategies dedicated to vari-
ous goals in the Gaussian process framework. A standard problem is to design new experiments
for reducing the integrated mean-squared error (IMSE), i.e., improving the predictivity of a
Gaussian process model by treating all areas of the domain equally [35]. Variants of IMSE
criteria have been proposed, notably for learning the contour lines of a function corresponding
to a prescribed target level [32, 6]. Another question that has inspired a number of sequential
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Figure 3. Profile optimizers v, and profile optima functions z; of s = 25 realizations z;,1 <i < s, of a
Gaussian random field conditioned on 10 (left) and 20 (right) observations of the test function f (see (2.8)).
Table 2

Risk and uncertainty indicators for the profile optima and optimizer functions in terms of L? and L*
norms if the test function f is evaluated at 10 or 20 design points. The setup is the same as for Figure 3.

Norm Indicator 10 obs. 20 obs.

L? HI 20.49  11.60
L2 r’” 22.32 10.17
L2 HYI 0.18 0.11
L? Ui 0.17 0.09
L>® HI” 44.27  31.03
L>® r” 45.84  26.79
L>® H} 0.49 0.27

*

L™ rof 0.40 0.21
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and batch-sequential strategies is the global optimization of f, i.e., both estimating the global
maximum and locating the corresponding global maximizer(s). Various infill sampling crite-
ria for sequential optimization strategies using Gaussian process models have been proposed
[20], including the probability of improvement (PI), the expected improvement (EI), and the
expected conditional entropy of the maximizer [40]. Due to its conceptual simplicity and its
good empirical performances, EI has become very popular in the past 15 years for solving
medium-dimensional derivative-free nonconvex global optimization problems under a severely
limited budget. Even though it is known that the optimality properties of EI are only in the
one step look-ahead framework [27, 16], there exist some theoretical guarantees on the con-
vergence of EI algorithms given a few restrictions on the family of kernels used [38]. Several
variants of EI for constrained or batch-sequential problems exist, and both the criterion and
its maximization are coded in open source programs [34, 31].

3.2. Profile El: A variant of the EIl criterion. In the present work, we aim at adapting
EI in order to create an efficient infill sampling criterion for sequentially learning the profile
maxima and/or profile maximizer functions. Before looking more precisely into the matter
and presenting the so-called profile EI (PEI) criterion, let us briefly recall the basics of EI. In
standard EI settings the variable x does not have to be split into two subgroups (v and «);
everything happens as if there were no parameter o so the domain of x reduces to V. The
EI criterion at an arbitrary point x is defined as average departure of f(x) above the current
mazimum maxi<;<p f(x;) under the Gaussian field model:

+
Zy — max Ly,
(x 1<i<n

(3.1) EI(x)=E

Zx = z] =E [max (0, Zyx — max in>
1<i<n

ZX:Z].

A very practical aspect about the EI criterion defined in (3.1) is that an analytical formula
exists that expresses EI in terms of a simple function of the kriging predictor and the associated
prediction variance at the point of interest only:

(3.2) BI(x) = { o(x) (u(x)®(u(x)) + ¢(u(x))) if o?(x) #0

0 else,

where u(x) = (m(x) — maxi<;<, f(x;))/0(x) and 0%(x) is the OK prediction variance (given
by (2.12) for u = x). ® and ¢ denote, respectively, the cumulative distribution function and
probability density function of the standard Gaussian distribution.

Returning to our motivating problem of profile estimation, there is now a need to distin-
guish between a and v. Indeed, we do not wish our sequential strategy to target only regions
with the highest response level over the whole domain A x V. Rather, a strategy is needed
that visits points having a potential for being points of profile maximum for all values of
the parameter «. Hence, between two points corresponding to two different values of o, we
would favor the point that has the most potential of improvement with respect to the current
mazimum corresponding to its « value. However, as no response value may have already been
obtained with exactly the same «, our approach consists in calculating a PEI that compares
Z(a,v) With a target value T'(a) depending on maxyey m(a, w):

(3.3) PEI(a,v) = E [(Z(aﬂ,) —T(a)" (ZX - z] ,
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Figure 4. EI(a,v) and PEI(a,v) functions obtained from a 20-point initial design of experiments (black
triangles). The blue dashed curves represent the actual v} function. EI and PEI are represented through
grayscale contour lines (with colors ranging from dark to light gray with increasing criterion value). The red
stars (see the top left corner for the right graph) stand for the points of global mazimum of the criteria.

where the target is defined by

weV 1<i<n

(3.4) T(a) := min (maxm(a,w), max Z(ai,vi)) .

Let us remark that the “cap” at the current maximum max<;<n Z(q, ;) Was added for prevent-
ing the criterion from vanishing in regions where max,,cy m(a, w) would artificially overshoot
the data and prohibit global exploration of the input space. This cap is needed for the consis-
tency proof given later in this section. In turn, PEI straightforwardly inherits the tractability
of EI, leading to the formula

(35)  PEI(a,v) - { g(a,v) (9(a, v)®(g(a,v)) + d(g(a,v))) eilfsg,(a,v) #0,

where g(a,v) = (m(a,v) — T())/o(a,v).

Figure 4 highlights the differences between the PEI and the classical EI using our toy
example and a 20-point experimental design. The key difference here is that the expectation of
the improvement in the classical EI is usually computed with respect to the current maximum
observation maxj<j<, f(x;), while with the PEI criterion the threshold depends on «. This
feature allows a trade-off between global exploration and an intensified search of locations
that are expected to be close to the profile optimizer curve U}. In terms of computational
complexity, it is reasonable to anticipate that the most penalizing dimension will be that of
the space V. Indeed, when the dimension of V increases, the computation of PEI at a given
(cv,v) becomes more difficult because of the optimization over V required to compute T'(«).
Moreover, the optimization of PEI over A x V is also more difficult. In the next section, we
will show that it is possible to partially address this issue.
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3.3. Computation and maximization of PEl. We are now interested in algorithms to
compute and maximize the PEI criterion over A x V. As explained previously, a deeper look
at (3.3) shows that each computation of PEI at a location (a,v) € A x V involves a global
optimization over V to find the threshold 7'(«). Thus, a brute-force maximization of PEI over
A x V appears to be computationally expensive and highly sensitive to the dimension of V.
If, on the other hand, for a given a € A, the threshold T'(«) is computed, then computing PEI
at (o, v) for any v € V simply requires computing kriging means and variances and applying
the (fast to evaluate) formula (3.5). To take advantage of this instead of maximizing the PEI
over A x V, we suggest to equivalently maximize the profile PEI:

(3.6) a€A— PEI"(a) := max PEI(a,w),
whose evaluation at any o € A requires two global optimizations:

e one global optimization to find the threshold T'(«),

e one global optimization to maximize PEI(c«,-) over V.
Once a global maximizer a* of PEI* is identified, we obtain a global maximizer of PEI by
taking (a*,v*), where v* maximizes PEI(a*,-). The advantage of the proposed method is
that we now need to maximize a criterion over A and not over A x V. In addition, this criterion
is not much more expensive than the PEI: it involves only two optimizations over V instead
of one. The maximization of PET* thus becomes much more convenient if the dimension of
V increases. In fact, the maximization of PEI* now has a cost which is “symmetric” in the
sense that it depends similarly on the dimension of A and V.

The optimizations involved in the computation of PET* only require computing kriging
means and variances. The latter can be evaluated at a large number of locations x,+1, ...,
Xn+p € A x V by precomputing the quantities that do not depend on them, including in
particular the inverse of the covariance matrix at the observation locations, K~!, and the
matrix-vector product between K1 and the column vectors that do not involve x (see (2.3)
and (2.12)). For large p and with the proper precomputations, the cost for computing kriging
means and variances at p locations are, respectively, in O(np) and O(n?p), where n is the
number of available observations. In the present paper, given the relative simplicity of the
examples, the two optimizations (over V') involved in (3.6) and the optimization of PET* (over
A) are handled through a regular grid of size p for both « and v, so that the optimal location
(a*,v*) can be found by simultaneously computing p? kriging means and variances. However,
given the clear limitation of this approach when the dimension of the problem increases,
our code also permits the use of other optimization methods, such as the genetic algorithm
implemented in the genoud R package [26]. A budget too low for the optimizations over V or
over A can have different effects. Regarding A first, a low optimization budget might cause
the algorithm to pick a point which does not have the largest PET*. For V it is the PET*
itself which might not be correctly computed, as the threshold T'(«) might be underestimated.

Figure 5 exhibits the sequence of points evaluated by sequentially maximizing PEI. The
20-point initial design of sections 2.2 and 3.2 is used. Then 40 points are added sequentially.
One can see that after 40 iterations (bottom left and right plots), both the true profile optima
and optimizer functions are well estimated (small bias). In addition, conditional simulations
exhibit a low variability, which means that the uncertainties H/™ and H Y} have been reduced.



ADAPTIVE LEARNING OF PROFILE OPTIMA AND OPTIMIZERS 501

Vyo, () (40 obs.) m,,(c) (40 obs.)

-10

-15

00 02 04 06 08 10

méo(a) (60 obs.)

-10

-15

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Plug-in estimate (solid dark curves) vy, (left) and m* (right) together with the true functions v}
and f* (blue dashed curves) after having evaluated an initial 20-point design of experiments (black triangles) and
20 (top) or 40 (bottom) additional points (red triangles) chosen by sequentially maximizing PEI. In addition, 25
profile optima z; and profile optimizers vy, are printed (thin lines in various colors), obtained from Gaussian
process realizations conditioned on the available observations.

This uncertainty reduction is quantified (relying on 1000 conditional simulations) in Table 3
and represented in Figure 6.

3.4. Convergence property with fixed mean and covariance. Here we follow the route
of [38], where convergence properties are proven for the expected improvement algorithm
under fixed mean and covariance functions. Throughout the section, the input space X C R?
is assumed compact, and the covariance kernel k used for kriging is assumed to enjoy the
so-called no-empty-ball (NEB) property.
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Table 3
Uncertainty, risk, and bias indicators on the profile optimizer and optima functions after having evaluated
the Branin—Hoo function at a 20-point initial design of experiments and after having added 20 and 40 additional
points by PEI mazximization.

Norm Indicator 20 obs. 204 20 obs. 20 + 40 obs.

L2 " 11.47 1.62 0.63
L2 r 9.54 1.34 0.51
L? b 3.92 0.42 0.09
L2 HYI 0.13 0.07 0.04
L2 P 0.10 0.05 0.03
L? bF 0.04 0.02 0.01
L> ol 32.27 4.46 1.80
Le° " 25.32 3.69 1.48
L™ b 10.17 1.35 0.36
L>® HYI 0.28 0.16 0.10
L™ P 0.21 0.12 0.08
L>® bF 0.09 0.07 0.02
optimum uncertainty, risk, bias profile optimum uncertainty, risk, bias
VT ]
Al |
Al |
C"I> _
O —
< A R
| JR— H‘V’ (Lz) .
o A (%))
| L? = ... bv’. (L2)
PR Hj/' (L”)
< | © Jf-- "W
| - oY (LM)
T T T I T T T T I
0 10 20 30 40 0 10 20 30 40
iteration iteration

Figure 6. Fvolution of the uncertainty, risk, and bias indicators for the estimated profile optima (left) and
optimizer functions (right) in the course of the PEI algorithm (log. scale).

Definition 3.1. The covariance kernel has the NEB property if, for all sequences (Xp)n>1
m X and all y € X, the following assertions are equivalent:

(i) y is an adherent point of the set {x,,n > 1}.

(ii) o%(y;X,) — 0 when n — +oo,
where o(y;X,,) refers to the kriging variance (a.k.a. mean-square prediction error) at the
point y knowing the objective function at X, = (X1,...,X,) € X".

Note that a sufficient condition for the NEB property is obtained in [38], where it is proved
that stationary kernels with a spectral density converging to zero sufficiently slowly have the
NEB property. In particular, the exponential covariances (with exponent smaller than two)
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and the class of Matérn covariances have the NEB property [38], but the Gaussian covariance
does not have it. This may cause inconsistency in EI algorithms, as illustrated in [41].

Another important assumption made in what follows is that the objective function f
belongs to H, the reproducing kernel Hilbert space (RKHS) associated with the kernel k [2, 5].

Here and in the following, pj (v, v) := PEIL,(a,v) := E[(Z(a,) — Tn(a))+|ZXn = z,| with
T, («) := min (maxwev My (o, w), maxi<j<y, Z(%vi)), where z,, refers to the objective function
values at X,, and m,, refers to the kriging mean based on X,,,z,. Note that subscripts are
used in the same way for further quantities, such as in the following theorem. Note finally
that here and in what follows, the dependence of various quantities on the objective function
f may be stressed or not depending on the context. Before going further into technical detail,
let us now state the main theorem of the section.

Theorem 3.2. Assume that the covariance kernel k has the NEB property and that X =
A x V is compact. Then, for all Xinit = (Qinit, Vinit) € A XV and all f € H, the sequence
(%n),>1 = (0, V), generated by the algorithm

(37) { X1 = Xinity
Xpt1 = (i1, Uny1) = ArgMax g yyeaxy P, v)

1s dense in X.

In other words, a sequence of points (x,),~; generated by sequentially maximizing PET
will eventually fill the space. Note, furthermore, that as noticed in [38, Remark 5] in the
case of the EI criterion, even if there is no guarantee that the maximizer of p} is unique,
considering algorithms that measurably choose x,+; among the maximizers of p} would lead
to the same result. A crucial point for proving Theorem 3.2 is that the PEI criterion actually
writes as

(3-8) P (x) = 1(ma(x) = Tu(x), 07 (x)),
where T,,(x) := T, («) for x = (o, v) and

Vsp(z/V/'s) + 28(z/+/5) if s >0,

(3.9) v:(z,8) € Rx[0,400) — 7(2,5) = { 2+ = max(z,0) if s =0.

In particular, v is known to be a continuous function satisfying the following: for all z <
0, 7(2,0) = 0 and for all z € R, for all s >0, v(z,s) > 0.

Before proving Theorem 3.2, let us state and prove a very useful lemma, an analogue
for the PEI criterion of Lemma 12 of [38]. Always following [38], let us denote M, :=
max (f(x1),..., f(xp)) and v} := supyey py(x) (n > 1). In particular, let us remark that
for all n > 1, v, = pj(%n+1) = Y(Mn(Xn+1) — Tn(Xnt1), U%(Xn+1))-

Lemma 3.3. For all f € H, liminf,,, ~ vi(f) =0.

Proof. For any arbitrary f € H, set s, = 02(Xn11, f) and 255 = my, (Xna1, f) — Tn(Xnt1, ),
so that vy (f) = v(25,5n). Let y* € X be an accumulation point of (x,), and let (x4,) be
a subsequence of (x,) converging to y*. We are not exactly going to prove that 1/;”_1 —
0, as done in [38] for an analogue quantity, but rather that V;wn—l — 0 for some further

extraction (i.e., increasing) function ¢ : N — N. We know from [38, Proof of Lemma 12]
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that mg,_1(x4,, f) — f(y*) and that (Mg, _1(f)) is a bounded increasing sequence (and
so converges) with a limit lower-bounded by f(y*). We will now prove that the sequence
(T, -1(x4,)) = (min (M, —1(f), maxpey me,—1((ag,,v), f))) is bounded.

As (T, —1(x4,)) is clearly upper-bounded by any upper bound of (M, —1(f)), it suffices to
prove that (max,ey mg,—1((ag,,v), f)) is lower-bounded. This last point follows from the fact
that max,ev mg,—1(0g,,v) > mg,—1(Xe,) — fF(¥y*). (Ty,—1(x4,)) being bounded, we can
extract from it a converging subsequence (T b, —1 (X wn)) Since, by continuity, f(x4 wnfl) —

f(y*), we get that T%n_l(x%n) > min (f(x¢wn71),m¢wn71(x¢wn)) — f(y*), and so

e L
oI g, -1 = W Moy, 10k, f) = lim To,, -1(%6,,) < 0.

Finally, noting that s, —1 — 0 we conclude similarly as in [38] that

* _ * : * —
V(bwn_l =7 (Z(bwn_l’ S¢wn_1) - v <nll>1:il:loo Z¢wn—1’ 0) - 0’

which completes the proof of the lemma. |

Proof of Theorem 3.2. Again, we closely follow the proof scheme of [38, Theorem 6], with
a slight adaptation due to specifics of the PEI criterion. Let us fix f € H and assume that
(xn(f)) is not dense in X'. Then there exists a point y* € X which is not adherent to (x,(f)),
and so by the NEB property, inf,>1 o2(y*, f) > 0. Besides, by the same argument as in [38],
the sequence (m,(y*, f)) is bounded. We now use the fact that the specific v of (3.9) is a
decreasing function of the first variable for any fixed positive value of the second one to get
that, for any & > 1, y(mx(y*, f) = Tu(y", ). 02 (s, f)) = v(mi(y*, ) = Mi(f), o} (y*, f)) as
Ty (-, f) < My(f) and o2(y*, f) > 0. We then obtain that

pZ(y*7 f) > ]ir>lf17 (mk(y*7 f) - Tk(y*7 f))o-l%(y*v f))

> Ig;fi’y (mk(y*7 f) - Mk(f)7 O-l%(y*a f)) > 07

which contradicts Lemma 3.3 and hence concludes the proof. |
4. Applications, industrial test case in physics.
4.1. Random close packing of granular matter.

4.1.1. General context. Granular materials are large conglomerations of discrete macro-
scopic particles. A few examples include sand, powder, rocks, cereals, or pharmaceutical
pills. They play an important role in varied industries such as civil engineering, agriculture,
pharmaceutical engineering, and energy production. In the framework of nuclear safety, after
many years the fuel pellets in a nuclear reactor develop cracks because of thermal stresses.
In addition, during a hypothetical nuclear accident, additional fragmentation is postulated to
occur because of the thermal-mechanical response to the transient loading conditions. The
fuel pellets stacked into tubes can thus be considered as close-packed granular clusters.

The complex static and flow properties of granular materials have been extensively studied
during the last decades [13]. In particular, the arrangement of the grains has a significant
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influence on these properties. The density, which is the volume fraction filled by the particles,
is a key quantity to characterize the state of granular materials.

In the test case considered here, the granular material is represented by a configuration of
hard spheres subjected to unilateral contacts. Note that in the monodisperse case, the close
packing density in two dimensions is known and is about 0.907 (crystalline arrangements).
However, few studies focus on polydispersity and its impact on mechanical behavior. For
polydisperse granular media, the close packing density depends on the geometry of grains.
The close packing density can hence be viewed as a maximum of a geometric problem, which
is often tackled using stochastic methods [12, 33]. For any initial grain configuration, the
corresponding optimal state can be approximated numerically by assuming grains without
friction and hydrostatic stress on the sample [24, 1]. In practice, the close packing density
is typically estimated by taking the maximum among numerically estimated close packing
densities obtained from a number of random initial grain configurations.

In this paper, the previous Gaussian random field framework is applied to the study of
the close packing density of a bidisperse sample in two dimensions. The contact interactions
between the grains are treated using the nonsmooth contact dynamics approach [29, 19]. The
numerical developments have been performed in the framework of the LMGC90 platform [23].
The main assets of LMGC90 are the large range of contact laws already implemented and
its ability to consider more complex surface interactions (cohesion, wear, etc.) with neither
regularization nor penalization schemes.

4.1.2. Description of the test case. The initial domain is a square box randomly filled
(uniformly, with rejection in case of overlap) with 3000 hard disks of radius Ry = 0.1m and
Rs. Tﬁle two input parameters are the radius ratio R;/Ry and the density of large disks

N1 R
These input parameters are denoted by X and W, and their ranges of variation are [4, 10] and
[0.1,0.9], respectively. Moreover, a pressure stress P = 105 Pa is exerted on the top and the
right sides, and the left and bottom sides are blocked (see Figure 7).

For any given ratio X, the goal is to determine the corresponding density W leading to
the maximum of the code response. Returning to expression (1.2), it can be reformulated as
a problem of reconstruction of profile optimizers, where f is the maximal packing fraction,
a = X, and v := W. The computational time of one simulation is about 4 hours using
in-house computing facilities. Therefore, an adaptive experimental design appears to be an
appropriate alternative to classical experimental designs because it is compulsory to keep an
affordable number of simulations, while ensuring an accurate reconstruction of the curve of
interest. Before considering the design construction, a first step in our analysis consists in
estimating the map of profile optimizers from a large set of simulations. The obtained estimate
will then be used to evaluate the capability of the adaptive experimental designs obtained by
our procedure. All the numerical tests have been performed using R statistical software and
an application programming interface between LMGC90 and R developed in Python thanks
to the rPython R package [15].

where Ny (resp., Na) is the number of spheres of radius R; (resp., Ry < Rj).

4.2. Estimation of the function of profile optimizers. The range of variation associated
with the input parameters is discretized using a full factorial experimental design with 25
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Figure 7. Random close packing of 3000 hard disks.

(resp., 41) levels in the « (resp., v) directions. It turns out that the simulated maximum
packing fraction exhibits a strong spatial variability due to the random initial configuration of
the hard spheres [12, 33]. As nondeterministic results lead to a perturbated curve of interest,
kriging with homogeneous noise variance (recalled in section 2) is applied on a 200 x 200
regular grid in order to integrate the variability within the data modeling. The noise variance
72 is assumed constant on the whole domain and has been estimated to 10~° using the nugget
estimation procedure of the DiceKriging package [34].

The corresponding postprocessed maximum packing fraction is depicted in Figure 8. As
expected, the spatial variability in the reconstructed surface has been reduced, leading to a
simple curve of profile optimizers (v} (o) = 0.7) with a very small dependence on the dispersity
ratio «, which is consistent with the literature [14].

Since the reference map of profile optimizers and the profile optimum function are esti-
mated after kriging, they are subject to uncertainty. As an example, Figure 8 shows these
two quantities obtained from s = 25 realizations, z;,1 < i < s, of a Gaussian random field
conditioned on 1025 observations. Moreover, the third column of Table 4 lists the values of
the associated uncertainty, risk, and bias measures computed from 1000 simulations.

4.3. Construction and performance evaluation of adaptive experimental designs based
on PEIl. We now want to compare the performances of our criterion based on sequential PEI
maximization with other evaluation strategies, such as sequential IMSE minimization (see,
e.g., [32]), sequential EI maximization, or pure uniform random sampling. A total of 100
random initial experimental designs of 20 points each are used. They are generated with the
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Figure 8. Mazimum packing fraction obtained from a 1025-point full factorial experimental design. The
surfaces are reconstructed by kriging with homogeneous noise on the original data. 25 functions of profile
optimizers vy, and profile optima z; of s = 25 conditional realizations z;,1 < i < s, of a Gaussian random field
conditioned on 1025 observations of the test function are also represented.

optimumLHS function of the LHS R package. Each strategy is tested using all 100 initial
designs. For each strategy and initial design, we sequentially evaluate a total of 40 additional
points and compare the results in terms of uncertainty, risk, and bias. The results are then
averaged. At each iteration, the objective function is evaluated at one point only. Concerning
the Gaussian random field model, ordinary kriging with a separable Matérn covariance kernel
(with smoothness parameter v = 3/2) is used. The parameters of this covariance kernel are
estimated, plugged in, and renewed at each iteration using maximum likelihood estimation.
To calculate the bias and the risk, we assume that the reference profile optimizer and profile
optimum functions are those obtained after having evaluated the function on the full 1025-
point experimental design.

A number of conclusions can be drawn from the results given in Table 4. It appears
that the evaluation strategy based on the PEI maximization provides good performance for
estimating both the profile optimizer and the profile optimum functions. In particular, PEI
clearly outperforms the other strategies for the estimation of f*. However, although the
performances of PEI remain good in terms of estimation of v}, its domination over the other
criteria is less marked than for f*. Similarly to the EI, which is more suited to find the
maximum of a function than the maximizer (see, e.g., [39]), the PEI is more adapted to find
the profile optimum function f* than the profile optimizer. Another important remark is that
the covariance parameters obtained after the 40 sequential evaluations are not the same for all
strategies, as they are always re-estimated from the new observations. This might introduce
a bias of our measures of uncertainty if, e.g., one strategy tends to evaluate locations leading
to a higher range estimate. For completeness, we also conducted an analogue experiment
where the covariance parameters were estimated from the initial design of experiment of 20
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Table 4
Comparison of the decrease of the model uncertainty, risk, and bias obtained from different sequential
evaluation strategies. The results are averaged over a total of 100 runs. Values in brackets are the associated
standard deviations (Monte Carlo estimator of the mean).

Norm Ind. Full 20-pt. initial Uniform IMSE EI PEI
design design design design design design
L? HI" 0.18 0.80 (0.012)  0.56 (0.007) 0.52 (0.005) 0.79 (0.016) 0.39 (0.004)
L? i’ 0.13 0.93 (0.022)  0.56 (0.011) 0.54 (0.011) 0.90 (0.024) 0.43 (0.010)
L? b 0 0.78 (0.033)  0.40 (0.015) 0.41 (0.018) 0.61 (0.021) 0.32 (0.015)
L? Hi 4.4 34.9 (1.19) 20.4 (0.78) 20.9 (0.75) 32.2 (1.24) 18.2 (0.37)
L? Vi 3.1 28.3 (1.01) 16.0 (0.65) 16.7 (0.63) 26.4 (1.04) 15.4 (0.40)

L v 0 15.6 (1.18) 7.3 (0.74) 6.8 (0.63)  17.4 (1.36) 7.6 (0.44)
L~ H/" 016 070 (0.013) 0.50 (0.007) 0.46 (0.005) 0.69 (0.016) 0.33 (0.004)
(
(

L=~ ¢ 011 086 (0.020) 0.54 (0.012) 0.49 (0.007) 0.91 (0.027) 0.36 (0.009)
L=y 0 0.67 (0.026)  0.38 (0.013) 0.36 (0.012) 0.57 (0.021) 0.27 (0.012)
L™ H' 33 34.6 (1.27) 247 (1.18)  26.4 (1.18) 345 (1.25)  22.9 (0.60)
L™ % 24 24.9 (0.99)  17.5 (0.90)  19.1 (0.91)  24.4 (1.02)  16.5 (0.43)
L® b 0 135 (1.57)  7.5(1.42) 6.7 (1.29) 172 (2.21) 4.5 (0.24)

points and not re-estimated afterwards. It appeared that the performance of all the tested
strategies (except the random sampling) was slightly worse than previously. However, this did
not change the ranking of the performances, so our latter conclusions remained unchanged.

5. Conclusions. We proposed a novel approach for estimating and quantifying uncertainty
on profile optima and optimizers relying on Gaussian random field models. The proposed
approach gave very convincing results in the considered two-dimensional test cases, as it
allowed us to efficiently reconstruct the curves of interest within a reasonable evaluation
budget and could additionally quantify the reconstruction error in a sensible way through
conditional simulations. Of course, the relevance of the error quantification relies on the
choice and the estimation of an adequate Gaussian field model. Bootstrapping the covariance
parameters [11] or appealing to a full Bayesian approach [4] are possible enhancements, easily
adaptable to the presented methods, for mitigating the risk of model misspecification. Note,
however, that for the final test case re-estimating the covariance parameters or not did not
lead to significant differences, so that basing parameter estimation solely on initial evaluations
appeared to be sufficient for a successful model building.

An infill sampling criterion for sequentially learning the profile optima function was intro-
duced, namely the profile expected improvement (PEI) criterion, that generalizes the popular
expected improvement (EI) [27, 21] criterion to our specific setup. PEI partially inherits the
analytical tractability from EI (up to the calculation of the kriging mean’s profile optimum)
and also its consistency properties, as proved in section 3. In addition, experimental results
obtained with both a toy function from the literature and in a realistic physics case study
illustrate that PEI clearly outperforms standard criteria such as IMSE or EI for the specific
task of learning the curve of profile optima. A welcome surprise is that PEI also performs
well for learning the curve of profile optimizers, even though it was not directly conceived
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for it. Significant improvements for learning profile optimizer functions might be obtained,
e.g., by applying the principles of sequential uncertainty reduction (SUR) strategies [3] to an
uncertainty measure directly defined on the notion of profile optimizer. From a practical per-
spective, PEI algorithms may also be developed further by proposing parallelization schemes,
e.g., by simultaneously evaluating the objective function for different values of the nuisance
variable at each iteration. Finally, tackling further case studies in higher dimensions (such
as the polydisperse sphere problem with a higher number of different radii) will probably
lead to new computational challenges, be it in terms of conditional simulations or of internal
optimizations needed to calculate curves of profile optima associated with kriging means.
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