Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes - Archive ouverte HAL
Article Dans Une Revue IMA Journal of Numerical Analysis Année : 2017

Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes

Résumé

We devise mixed methods for heterogeneous anisotropic diffusion problems supporting general polyhedral meshes. For a polynomial degree $k\ge 0$, we use as potential degrees of freedom the polynomials of degree at most $k$ inside each mesh cell, whereas for the flux we use both polynomials of degree at most $k$ for the normal component on each face and fluxes of polynomials of degree at most $k$ inside each cell. The method relies on three ideas: a flux reconstruction obtained by solving independent local problems inside each mesh cell, a discrete divergence operator with a suitable commuting property, and a stabilization enjoying the same approximation properties as the flux reconstruction. Two static condensation strategies are proposed to reduce the size of the global problem, and links to existing methods are discussed. We carry out a full convergence analysis yielding flux-error estimates of order $(k+1)$ and $L^2$-potential estimates of order $(k+2)$ if elliptic regularity holds. Numerical examples confirm the theoretical results.
Fichier principal
Vignette du fichier
mho.pdf (438.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00918482 , version 1 (13-12-2013)
hal-00918482 , version 2 (15-01-2015)
hal-00918482 , version 3 (01-08-2015)

Identifiants

Citer

Daniele Antonio Di Pietro, Alexandre Ern. Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA Journal of Numerical Analysis, 2017, 37 (1), pp.40-63. ⟨10.1093/imanum/drw003⟩. ⟨hal-00918482v3⟩
782 Consultations
671 Téléchargements

Altmetric

Partager

More