On the functional equation $\displaystyle \alpha \mathbf{u}+\mathcal{C}\star(\chi \mathbf{u})=\mathbf{f}$ - Archive ouverte HAL Access content directly
Journal Articles North-Western European Journal of Mathematics Year : 2018

On the functional equation $\displaystyle \alpha \mathbf{u}+\mathcal{C}\star(\chi \mathbf{u})=\mathbf{f}$


We study in this paper the functional equation \begin{center} $\displaystyle \alpha \mathbf{u}(t)+\mathcal{C}\star(\chi \mathbf{u})(t)=\mathbf{f}(t)$ \end{center} where $\alpha\in\mathbb{C}^{d\times d}$, $\mathbf{u},\mathbf{f}:\mathbb{R}\rightarrow\mathbb{C}^d$, $\mathbf{u}$ being unknown. The term $\mathcal{C}\star(\chi \mathbf{u})(t)$ denotes the discrete convolution of an almost zero matricial mapping $\mathcal{C}$ with discrete support together with the product of $\mathbf{u}$ and the characteristic function $\chi$ of a fixed segment. This equation combines some aspects of recurrence equations and/or delayed functional equations, so that we may construct a matricial based framework to solve it. We investigate existence, unicity and determination of the solution to this equation. In order to do this, we use some new results about linear independency of monomial words in matrix algebras.
Fichier principal
Vignette du fichier
prls-AEM-28112013.pdf (155.27 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-00911185 , version 1 (02-12-2013)


  • HAL Id : hal-00911185 , version 1


Philippe Ryckelynck, Laurent Smoch. On the functional equation $\displaystyle \alpha \mathbf{u}+\mathcal{C}\star(\chi \mathbf{u})=\mathbf{f}$. North-Western European Journal of Mathematics, 2018, 4, pp.1-19. ⟨hal-00911185⟩
191 View
44 Download


Gmail Mastodon Facebook X LinkedIn More