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On the functional equation αu+C ⋆ (χu) = f

P. Ryckelynck and L. Smoch

Abstract. We study in this paper the functional equation

αu(t) + C ⋆ (χu)(t) = f(t)

where α ∈ Cd×d, u, f : R → Cd, u being unknown. The term C ⋆ (χu)(t)
denotes the discrete convolution of an almost zero matricial mapping C
with discrete support together with the product of u and the character-
istic function χ of a fixed segment. This equation combines some aspects
of recurrence equations and/or delayed functional equations, so that we
may construct a matricial based framework to solve it. We investigate
existence, unicity and determination of the solution to this equation. In
order to do this, we use some new results about linear independency of
monomial words in matrix algebras.

Mathematics Subject Classification (2010). 39A06, 39A70, 39A12.

Keywords. Functional equations, matricial polynomial functions, matrix
sequences.

1. Introduction

Let [t0, tf ] be some interval of time and χ its characteristic function, and ε > 0
a fixed time delay. Let (ck)k∈Z be an almost zero sequence of matrices in Cd×d

where d denotes the “physical” dimension. We define next C : R → Cd×d by

C(t) =

{
c−t/ε if t ∈ εZ
0 otherwise

. We denote by Id the identity matrix of size d

and we fix throughout a matrix α ∈ Cd×d. We have the discrete convolution
product over εZ:

(u ⋆ v)(t) =
∑
s∈εZ

u(s)v(t− s), t ∈ R

where u and v are two mappings defined in R with matrix values of format
(d× d, d× 1) or (1× d, d× 1).

This paper is devoted to the study of the following functional equation

αu+ C ⋆ (χu) = f (1)
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which may be rewritten equivalently as

αu(t) +
∑
k∈Z

cku(t+ kε)χ(t+ kε) = f(t), (2)

where u, f : R → Cd, u being unknown. The sum in the left hand-side of (2)
will be denoted throughout the paper by �u = C ⋆ (χu), where the opera-
tor � may occur in the context of discrete calculus of variations (see [4, 5]).
Equation (1) may be thought as a discrete version of the differential equa-
tion αu(t) + u′(t) = f(t) where u′ has been replaced by �. An analogous
functional equation appears in the field of time-scale calculus and has led to
many works, see for instance [1, 2] and the literature therein. However, we
do not require here that the operator � behaves as a derivative.

We define N as the largest integer such that cN ̸= 0 or c−N ̸= 0. For example,
when N = 1, equation (2) rewrites as

f(t)−αu(t) =



0 if t < t0 − ε

c1u(t+ ε) if t0 − ε ≤ t < t0

c1u(t+ ε) + c0u(t) if t0 ≤ t < t0 + ε

c1u(t+ ε) + c0u(t) + c−1u(t− ε) if t0 + ε ≤ t ≤ tf − ε

c0u(t) + c−1u(t− ε) if tf − ε < t ≤ tf

c−1u(t− ε) if tf < t ≤ tf + ε

0 if tf + ε < t

.

(3)
In general, the equations (2) may be thought as a mixture between recurrence
equations and delayed functional equations.

We focus in this paper on the following two problems. What are the an-
alytical properties of functions of the shape �u and is the functional equation
(1) well-posed?

The paper is organized as follows. In Section 2 we provide some analyti-
cal properties of the functions �u. Section 3 presents some technical lemmas
for matricial linear recurrences. Section 4 is concerned with the non-vanishing
property for entries and determinants of matricial polynomial functions. It
ensures that the linear compatibility equations extracted when solving (1)
are Cramer for the specific case N = 1. We prove in Sections 5 and 6 that
(1) is well-posed if α is invertible, with proper accuracies, according to the
respective cases N = 1 and arbitrary N . The case α = 0 is also investigated,
and stands for the characterization of the range of the operator �. At last,
Section 7 gives some concluding remarks and perspectives.

2. Analytical properties of the functions �u

In order to comprehend equation (1) and present some robust methods for
solving it, we provide first some features of the operator �.
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Theorem 2.1. Let ν ∈ N ∪ {∞}.
1. The operator � maps the space of the functions u : R → Cd of piecewise-

Cν regularity, to the space of compactly supported functions v : R → Cd

of piecewise-Cν regularity, such that Supp(v) ⊂ [t0 −Nε, tf +Nε].
2. If u : R → Cd has p points of discontinuity on R, then �u has at most

(4N + 2) + (2N + 1)p points of discontinuity on R.
3. If cN or c−N is invertible then the kernel of � consists of the functions

which vanish on [t0, tf ].
4. If cN or c−N is invertible then, for all u : R → Cd, �u is measurable,

(respectively integrable, of piecewise-Cν regularity) on R if and only if
u is measurable (respectively integrable, of piecewise-Cν regularity) on
[t0, tf ].

Proof. The main ingredient of the proof is the explicit formula for �u(t)
provided in [4]:

0 if t < t0 −Nε

cNu(t+Nε) if t0 −Nε ≤ t < t0 −Nε+ ε

cN−1u(t+Nε− ε) + cNu(t+Nε) if t0 −Nε+ ε ≤ t < t0 −Nε+ 2ε

...
...

cN−pu(t+Nε− pε) + . . .+ cNu(t+Nε)
if p ∈ {0, . . . , 2N − 1} and

t0 + (p−N)ε ≤ t < t0 + (p+ 1−N)ε
...

...

c−Nu(t−Nε) + . . .+ cNu(t+Nε) if t0 +Nε ≤ t ≤ tf −Nε

...
...

c−Nu(t−Nε) + . . .+ cp−Nu(t−Nε+ pε)
if p ∈ {2N − 1, . . . , 0} and

tf + (N − p− 1)ε < t ≤ tf + (N − p)ε
...

...

c−Nu(t−Nε) + c1−Nu(t−Nε+ ε) if tf +Nε− 2ε < t ≤ tf +Nε− ε

c−Nu(t−Nε) if tf +Nε− ε < t ≤ tf +Nε

0 if tf +Nε < t
(4)

Assertion 1. is an obvious consequence of formula (4). Next, let u : R →
Cd, then formula (4) shows that the (4N + 2) points t0 + kε and tf + kε,
|k| ≤ N may be points of discontinuity of �u. Moreover, if tδ is any point of
discontinuity of u, the values tδ + kε, |k| ≤ N , give rise in general to points
of discontinuity of �u. Lastly, since there does not exist any other point of
discontinuity of �u, assertion 2. is proved. Let us prove assertion 3., i.e. the
conditional injectivity of �. We first notice help to (4) that if u vanishes in
[t0, tf ], then all the terms occuring in (4) are equal to 0 so that �u is zero
everywhere. Conversely, suppose that det(cN ) ̸= 0. If u ∈ ker(�), second row
of formula (4) shows that u = 0 in [t0, t0 + ε[. Next, by using this result, the
third row of (4) shows that u = 0 in [t0 + ε, t0 +2ε[ and so on. Then we may
prove easily that u = 0 in [t0, t0 + ε[∪[t0 + ε, t0 + 2ε[∪ . . .∪]tf − ε, tf ]. We



4 P. Ryckelynck and L. Smoch

may proceed similarly when det(c−N ) ̸= 0 by starting from the last but one
row of (4). As a consequence, if u,v : R → Cd, we get

�u = �v ⇔ u = v in [t0, tf ]

which proves the third assertion. We proceed in the very same way to prove
that measurability or integrability of u on [t0, tf ] is equivalent to the same
property for �u on R.

3. Preliminary lemmas for matricial linear recurrences

As we shall see in Sections 5 and 6, solving (1) queries to deal with matricial
nonstationary recurrences of the shape

wn+1 = Mnwn + gn, n ∈ N, (5)

where Mn is a s× s matrix and wn,gn are vector sequences in Cs, s being a
fixed integer. Since non-commutative products occur in the explicit formula,
let us denote by

m⨿
k=0

Mk = MmMm−1 . . .M0

this left-side product.

Lemma 3.1. The solution to the recurrence (5) is given by

wn =

(
n−1⨿
k=0

Mk

)
w0 +

n−1∑
k=0

(
n−1⨿

ℓ=k+1

Mℓ

)
gk. (6)

Proof. The cases n = 0 and n = 1 are true and use the conventions of the
empty sum and empty (left-)product. The proof for n > 1 is straightforward
by using induction.
The particular case when M is independent on n is of some importance and
gives rise to the solution to stationary matricial recurrence of the shape (5)
as follows:

wn = Mnw0 +

n−1∑
k=0

Mn−k−1gk. (7)

In the following two lemmas, we deal with sequences of non-commutative
matricial polynomials.

Lemma 3.2. Let d ≥ 2, β, γ ∈ Md,d(C) and (δ′n) and (δ′′n) be the sequences
of matrices defined by the recurrences

δ′n+1 = βδ′n + γδ′n−1, δ
′′
n+1 = δ′′nβ + δ′′n−1γ, n ≥ 1 (8)

with δ′0 = δ′′0 = 0 and δ′1 = δ′′1 = Id. Then, for all n ≥ 2, we have

δ′n = δ′′n =
∑

βm1γm2βm3γm4 . . . (9)
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where the sum is extended over all the multiplets (m1,m2, . . . ,mn) ∈ Nn with

mj ≥ 1 if 2 ≤ j ≤ n− 1 and

[n2 ]∑
i=1

(m2i−1 + 2m2i) = n− 1. (10)

The number of monomials in the formula (9) is the Fibonacci number Fn.

Proof. First, let us mention that formula (9) is true for n = 0 and n = 1 by
using the empty sum convention and the initial conditions. Let us prove now
the formula (9) for the sequence (δ′n). Suppose that the result (9) holds for
n and n − 1 and that δ′n−1 and δ′n are of lengths Fn−1 and Fn respectively.
Then, help to (9) and (8) we see that δ′n+1 is the sum of the words excerpted
from the sum δ′n multiplied on the left by β and those from the sum δ′n−1

multiplied on the left by γ. So we have proved by induction that δ′n has the
shape

δ′n =
∑

e(n,m1,m2,...)β
m1γm2βm3γm4 . . .

where the coefficients e(n,m1,m2,...) are convenient positive integers indepen-
dent of β and γ. Let us note that if β = γ = Id then, obviously, δ′n = Fn× Id
so, the number of monomial words in the sum (9) is Fn. Let us prove now
that all the coefficients e(n,m1,m2,...) are in fact equal to 1. Indeed, we see
that all the Fn−1 words coming from δ′n−1 are distinct from the Fn words
arising from δ′n since the first ones begin with β while the second ones start
with γ. All the words δ′n+1 occuring in (9) being distinct, their cardinality
is Fn−1 + Fn = Fn+1. So far, we have proved the result (9) for δ′n and the
proof for δ′′n is the same.
In the following, we set δn = δ′n = δ′′n, ∀n ∈ N.

Lemma 3.3. Let d ≥ 2, β, γ ∈ Md,d(C), (gn)n ∈ (Cd)N, and let (wn)n ∈
(Cd) ∈ N the vector sequence satisfying for all n ≥ 1 the following two-order
matricial recurrence equation:

wn+1 = βwn + γwn−1 + gn. (11)

Then for all n ∈ N⋆ we have

wn = δnw1 + δn−1γw0 +

n−1∑
k=1

δn−kgk. (12)

Proof. Let us define M =

(
β γ

Id 0

)
. We may easily prove by induction that

Mn =

(
δn+1 δnγ

δn δn−1γ

)
, for all n ∈ N⋆, by using the recurrence (8) for the

sequence (δn). Next, (11) may be rewritten as(
wn+1

wn

)
= M

(
wn

wn−1

)
+

(
gn

0

)
.
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By setting w′
n =

(
wn

wn−1

)
, g′

n =

(
gn

0

)
and by using a slightly adapted

version of formula (7), we get wn = Mn−1w1 +
∑n−1

k=1 M
n−1−kgk. Now, the

formula (12) is obtained by reading the first row of the previous formula.

4. Linear independency of words in matrix algebras

We shall obtain a result which ensures that the foregoing linear compatiblity
equations which arise when solving the functional equation (1) are Cramer
for almost all choice of matrices α, c−1, c0, c1 ∈ Cd×d if N = 1.

Let us call a matricial polynomial function of two matricial indetermi-
nates (ζ, ξ) an expression of the following shape

ψ(ζ, ξ) =
∑

κm1,m2,...ζ
m1ξm2ζm3ξm4 . . . (13)

with coefficients in C. As an example, we may cite the sequence of matrices
occuring in Lemma 3.2. Given such a function, for all (p, q) ∈ N2, we denote
by Kpq the sum of all the coefficients κm1,m2,... such that m1 +m3 + . . . = p
and m2 + m4 + . . . = q. Similarly, for all (p, q, r, s) ∈ N4, we introduce

the sum K̃p,q,r,s of all the coefficients m1 ×m2 × . . . × κm1,m2,... such that
m1+m3+ . . . = p, m2+m4+ . . . = q, and where r and s count the occurences
of ζ and ξ respectively in the monomial of (13) associated to the multiplets
(m1,m2, . . .). We must have necessarily |r − s| ≤ 1. We shall say that the

function (13) is generic when at least one sum Kpq and one sum K̃p,q,r,s are
nonzero. For instance, the matrices δn occuring in (9) are the specializations
at (β, γ) of generic polynomials, since the coefficients are either 1 or 0.

Let us give now the main result of this section.

Theorem 4.1. Suppose we are given l generic matricial polynomial functions

ψ(k)(ζ, ξ), and let us set ψ
(k)
i,j (ζ, ξ) = (ψ(k)(ζ, ξ))ij. Then, the set of couples

(ζ, ξ) such that

∀i, j, k, ψ(k)
i,j (ζ, ξ) ̸= 0, with 1 ≤ i, j ≤ d, 1 ≤ k ≤ l, and

∀k, det(ψ(k)(ζ, ξ)) ̸= 0, with 1 ≤ k ≤ l

consists in an open dense subset of (Cd×d)2.

Proof. In order to prove this result, we first show that if ψ(ζ, ξ) is the generic
matricial polynomial function defined by (13), then all its entries ψi,j(ζ, ξ)
are nonzero polynomials w.r.t. their 2d2 indeterminates. The proof goes as
follows. Let us specialize ψ at matrices of the shape

ζ =

 x z 01,d−2

0 x 01,d−2

0d−2,1 0d−2,1 Id−2

 and ξ =

 y t 01,d−2

0 y 01,d−2

0d−2,1 0d−2,1 Id−2
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for convenient x, y, z, t ∈ C. We easily get

ψ(ζ, ξ) =

ψ(x, y) ψ̃(x, y, z, t) 01,d−2

0 ψ(x, y) 01,d−2

0d−2,1 0d−2,1 ψ(1, 1)Id−2

 (14)

where ψ is the function (13) evaluated at complex numbers and is equal

to
∑
Kp,qx

pyq while ψ̃ is the polynomial
∑
K̃p,q,r,sx

p−ryq−szrts. Due to
the hypotheses, the sets of couples (x, y) or quadruplets (x, y, z, t) such that

ψ(x, y) ̸= 0 or ψ̃(x, y, z, t) ̸= 0 respectively, are open everywhere dense subsets
in C2 and in C4 respectively. Now, in order to deal with the zero-like entries
of (14), we use the following property of ψ. We have

ψ(g−1ζg, g−1ξg) = g−1ψ(ζ, ξ)g,

where g is any invertible matrix in Cd×d. Especially, if we choose g as a
permutation matrix µσ, we obtain

ψij(µ
−1
σ ζµσ, µ

−1
σ ξµσ) = ψσ(i),σ(j)(ζ, ξ).

The symmetric group Sd acts transitively on the set of couples (i, i) with
1 ≤ i ≤ d and transitively on the set of couples (i, j) with 1 ≤ i, j ≤ d and
i ̸= j. Thus, since ψ1,1 and ψ1,2 are nonzero polynomials, we may claim by
using suitable specializations of (ζ, ξ) that every other entry ψi,j of ψ(ζ, ξ)
gives rise to a nonzero polynomial.

Let us prove now that if ψ is generic, then det(ψ(ζ11, . . . , ξdd)) is a
nonzero polynomial. Indeed, if we particularize ζ and ξ to be two multiples
of the identity matrix, i.e. (ζ, ξ) = (ρId, σId) with ρ and σ in C, we get the
polynomial

det(ψ(ρId, σId)) =

(∑
p,q

Kp,qρ
pσq

)d

= ψ(ρ, σ)d

which is nonzero in C[ρ, σ] since there exists at leat one coefficient Kpq ̸= 0.

Collecting all these informations, we may work with open dense sets in

C2d2

instead of dealing with nonzero polynomials. Let us consider for all k ∈
{1, . . . , l} and i, j ∈ {1, . . . , d} the closed algebraic varieties of codimension 1

F (k)
ij = {(ζ, ξ) ∈ (Cd×d)2/ψ

(k)
ij (ζ11, . . . , ξdd) = 0}

and

F (k)
det = {(ζ, ξ) ∈ (Cd×d)2/det(ψ(k)(ζ11, . . . , ξdd)) = 0}.

Since each hypersurface is meager, the union (∪ijkF (k)
ij )

∪
(∪kF (k)

det) is a closed

meager subset of (Cd×d)2. Thus, its complementary is an everywhere open
dense subset of (Cd×d)2. This ends the proof of the result.



8 P. Ryckelynck and L. Smoch

Remark 4.1. As an example, for all integer m, the set of couples (β, γ) ∈
(Cd×d)2 such that

det(β) ̸= 0, det(γ) ̸= 0, βγ ̸= γβ and det(δn) ̸= 0, ∀n ∈ {0, . . . ,m}, (15)

is an open dense subset of (Cd×d)2. In the very special case when the matrices

β, γ are multiples of Id, i.e. β = β̃Id and γ = γ̃Id with β̃ and γ̃ in C, we easily
find help to (8) that

δn = 1√
β̃2+4γ̃

((
β̃+

√
β̃2+4γ̃
2

)n

−
(

β̃−
√

β̃2+4γ̃
2

)n)
Id.

The set of couples (β̃, γ̃) such that
β̃+

√
β̃2+4γ̃

β̃−
√

β̃2+4γ̃
is not of the shape exp

(
2ikπ
n

)
is open dense in C2 and, for those couples, we have det(δn) ̸= 0.

Remark 4.2. The set of generic polynomials is an open dense subset in the
vector space of matricial polynomial functions of given degree.

Remark 4.3. Let us mention how to proceed if we deal with non-generic
polynomials. We may use in this case the so-called defect Theorem of P.M.
Cohn, see [3, Theorem 9.6.1, p. 283]. If K is a commutative field and Ω is an
alphabet of non commuting variables, we may denote by K⟨⟨Ω⟩⟩ the algebra
of non commutative formal series in these variables. Then the defect theorem
states that if φ1, φ2 are elements of K⟨⟨Ω⟩⟩ without constant term, satisfying
a non-trivial relation Φ(φ1, φ2) = 0 for some non commutative series Φ in
two variables then φ1, φ2 commute. This theorem allows to exhibit at least
one nonzero polynomial entry to ψ(ζ, ξ), but the conclusion is not as so
accurate than in Theorem 4.1.

5. Solving explicitly the functional equation when N = 1

Let us show now how to solve the functional equation (1) when N = 1 by
using the preceding results. We restrict ourselves to the quite opposite cases
α invertible or α = 0. Let us define M ≥ 1 as the integer part of

tf−t0
ε .

Theorem 5.1. If N = 1, for all quadruplets (c−1, c0, c1, α) in an open dense
subset of (Cd×d)4, the equation

αu+ C ⋆ (χu) = f

admits one and only one solution.

Proof. We may assume by density that c1 is invertible. If M = 1, the result
follows easily from the inspection of (3).
The main part of the proof consists in solving (3) and is valid for all α.
Outside [t0 − ε, tf + ε], one has f(t) = αu(t) which allows to determine u if
α is invertible. Next, we focus on the interval [t0 + ε, tf − ε]. By using (2),
we get the recurrence equation:

u(τ+(n+1)ε) = c−1
1 (−(α+c0)u(τ+nε)−c−1u(τ+(n−1)ε)+f(τ+nε)), (16)
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∀τ ∈ [t0, t0 + ε[ and n ≥ 1. So we see that (16) is a recurrence of the shape
(11). Using Lemma 3.3 with

β = −c−1
1 (α+ c0), γ = −c−1

1 c−1, (17)

and wn = u(τ + nε), gn = c−1
1 f(τ + nε) for τ fixed, we get

u(τ + nε) = δnu(τ + ε) + δn−1γu(τ) +

n−1∑
k=1

δn−kc
−1
1 f(τ + kε), (18)

for all instant τ+nε ≤ tf . Since τ ∈ [t0, t0+ε[, we have in any case n ≤M−1.
More explicitly, we shall use (18) in the following ranges of indices:

τ ∈ [t0, tf −Mε[⇒ max{n/τ + nε ≤ tf} =M, (19)

τ ∈ [tf −Mε, t0 + ε[⇒ max{n/τ + nε ≤ tf} =M − 1. (20)

We find it convenient to denote by ℓ = ℓ(τ) the maximal value of n for which
we may use (18), given by (19) or (20). Although the formula (18) is true for
n = 1, this result is tautological in this case. For n ≥ 2, (18) expresses the
solution to the functional equation (1) in the interval [t0 +2ε, tf ], as a linear
combination of the restrictions u(τ) and u(τ + ε) of u to the two intervals
[t0, t0 + ε[ and [t0 + ε, t0 + 2ε[. The coefficients of this linear relationship
are independent on time and constitute the sequence of matrices (δn) which
depend only on β and γ.

Now, let us determine the two additional unknown functions u(τ) and
u(τ + ε) by solving (2) near the boundaries t0 and tf . In order to do this, let
us write explicitly the four remaining equations:

if t ∈ [t0 − ε, t0[, f(t) = αu(t) + c1u(t+ ε), (21)

if t ∈ [t0, t0 + ε[, f(t) = (α+ c0)u(t) + c1u(t+ ε), (22)

if t ∈]tf − ε, tf ], f(t) = (α+ c0)u(t) + c−1u(t− ε), (23)

if t ∈]tf , tf + ε], f(t) = αu(t) + c−1u(t− ε). (24)

We note that the restriction of u to [t0 − ε, t0[ is undetermined. Let us call
this function φ. Next we solve (21) and (22) as follows, by adapting slightly
the range of the time variable. If t ∈ [t0, t0 + ε[, (21) provides

u(t) = c−1
1 f(t− ε)− c−1

1 αφ(t− ε). (25)

If t ∈ [t0 + ε, t0 + 2ε[, (22) and (25) give

u(t) = c−1
1 f(t−ε)−c−1

1 (α+c0)c
−1
1 f(t−2ε)+c−1

1 (α+c0)c
−1
1 αφ(t−2ε). (26)

The formulas (25) and (26) give the two additional restrictions of u needed
in the expansion (18). We note that these restrictions, at the time being,
depend on the auxiliary restriction φ of u.

Now it remains to solve (23) and (24). First, the two functions occuring
in the r.h.s. of the equation (23) are already known and may be expressed
through (18). The equation (23) may be thought as a constraint either on φ
or on the l.h.s. f of (1). We may observe that φ(τ − ε) occurs two times in
u(t) and two times in u(t− ε). So, the coefficient we are looking for is equal
to
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θ = ((α+ c0)δℓ + c−1δℓ−1)coeff of φ in u(τ + ε)]
+((α+ c0)δℓ−1 + c−1δℓ−2)γ[coeff of φ in u(τ)],

where ℓ = M or ℓ = M − 1, depending on the location of τ w.r.t. tf −Mε.
Direct inspection of these coefficients from (25) and (26) yields the explicit
expression of the coefficient of φ in (23):

θ = ((α+ c0)δℓ + c−1δℓ−1)(c
−1
1 (α+ c0)c

−1
1 α)

+((α+ c0)δℓ−1 + c−1δℓ−2)γ(−c−1
1 α) (27)

= [((α+ c0)δℓ + c−1δℓ−1)c
−1
1 (α+ c0)− ((α+ c0)δℓ−1 + c−1δℓ−2)γ]c

−1
1 α.

Now, in order to simplify the matrix θ, we use the formulas (17) to eliminate
α+ c0 and c−1 and we get

θ = c1((βδℓ + γδℓ−1)β + (βδℓ−1 + γδℓ−2)γ)c
−1
1 α.

By using three times the recurrence (8), we obtain

θ = c1δℓ+2c
−1
1 α.

At the time being, no assumption has been made about α. From now on,
we consider the case when α is invertible and chosen in such a way that
det(δℓ+2) ̸= 0 (see (17) and Remark 4.1). Therefore, det(θ) ̸= 0. Hence, (23)
may be solved w.r.t. φ(τ−ε). As a by-product of the previous results, φ(τ−ε)
is a linear combination of the values of f on the set {τ + kε |k| ≤ N}. It re-
mains to solve equation (24) on ]tf , tf + ε]. We get simply u(t) = α−1(f(t)−
c−1u(t−ε)) for all t ∈]tf , tf+ε], where the r.h.s. has already been determined.
Then we have proved that, for a generic quadruplet (c−1, c0, c1, α) and for all
f : R → Cd, there exists one and only one solution to the functional equation
(1).
Next, let us consider the case when α is zero, which stands for the character-
ization of Im(�).

Theorem 5.2. For all triplets (c−1, c0, c1) in an open dense subset of (Cd×d)3

and for all g : [t0, tf ] → Cd, there exists one and only one extension f of g
to R such that Supp(f) ⊂ [t0 − ε, tf + ε] and the functional equation f = �u
admits one and only one solution in [t0, tf ].

Proof. We may assume by density that c1 and c−1 are invertible. Let be given
a function g : [t0, tf ] → Cd and let us construct an appropriate extension
f : R → Cd of g as follows. We set

f(t) =



0 if t < t0 − ε

p(t) if t0 − ε ≤ t < t0

g(t) if t0 ≤ t ≤ tf

q(t) if tf < t ≤ tf + ε

0 if t > tf + ε
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for some auxiliary functions p and q with values in Cd. The proof consists
in showing that f lies in the range of � if and only if p and q are uniquely
determined by g. We keep the notations of the previous proof. When α = 0,
the formulas (16) to (26) still hold, we have θ = 0 and the auxiliary function
φ does not occur anymore. Let us solve the two equations (23) and (24) w.r.t.
the two restrictions p and q of f . To write these equations, we introduce the
operators

∆ℓf(τ) =

ℓ−1∑
k=1

δℓ−kc
−1
1 f(τ + kε).

Let us notice that these operators may be thought as discrete integral oper-
ators. Plugging formula (18), with the maximal value ℓ allowed for n, in the
equation (23), we get for all t ∈]tf − ε, tf ]

f(t) = c0(δℓu(τ + ε) + δℓ−1γu(τ) + ∆ℓf(τ))+

c−1(δℓ−1u(τ + ε) + δℓ−2γu(τ) + ∆ℓ−1f(τ)),

t and τ being connected as previously by the requirements that τ ∈ [t0, t0+ε[
and t−τ

ε ∈ N. Remembering the values of β, γ given by (17) and the recurrence
(8), we get:

f(t) = −c1(δℓ+1u(τ + ε) + δℓγu(τ)) + c0∆ℓf(τ) + c−1∆ℓ−1f(τ). (28)

Since we may respectively rewrite (25) and (26) as

u(τ) = c−1
1 p(τ) and u(τ + ε) = c−1

1 f(τ)− c−1
1 c0c

−1
1 p(τ),

we see that the coefficient of p = f(τ − ε) in (28) is given by:

(δℓ+1c
−1
1 c0 − δℓγ)c

−1
1 = −δℓ+2c

−1
1 .

We assume the triplet (c−1, c0, c1) lies in the open dense subset where det(δℓ+2) ̸=
0 and thus, we have shown that the restriction p exists and is unique. This
being done, the equation (23) yields

f(t+ ε) = q(t) = c−1(δℓu(τ + ε) + δℓ−1γu(τ) + ∆ℓf(τ)),

t and τ being connected as before, which is well-determined. As a conse-
quence, the formula (18) gives rise to one unique function u on [t0, tf ] such
that �u = f and this ends the proof.
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6. A matricial-based framework when N is arbitrary

Let us use a matricial-based framework for solving the functional equation
for arbitrary N . In this section we assume throughout that cN and α are
invertible, mainly for the ease of exposition. We shall say that the (2N + 2)-
tuple (c−N , . . . , c0, . . . , cN , α) is generic in (Cd×d)2N+2 provided the foregoing
system (39) is Cramer. This system (39) consists in N equations w.r.t. N
unknowns, generalizing the auxiliary function φ occuring in Section 5. Its
coefficients are matricial polynomial functions w.r.t. c−1

N (c0 + α) and the

2N − 1 matricial indeterminates c−1
N ck, k ∈ {−N, . . . , N − 1} and k ̸= 0,

which in a sense generalize (13).

Theorem 6.1. If the (2N + 2)-tuple (c−N , . . . , c0, . . . , cN , α) is generic, the
functional equation (1) admits one and only one solution.

Similarly, we shall say that the (2N + 1)-tuple (c−N , . . . , c0, . . . , cN ) is
generic in (Cd×d)2N+1 provided the foregoing matrix Θ defined by (40) is
invertible. This matrix is associated to a linear system of N equations w.r.t.
N unknowns p1, . . .pN , which are the restrictions of f to parts of [t0−Nε, t0[
in order that f lies in the range of the operator �.

Theorem 6.2. If the (2N + 1)-tuple (c−N , . . . , c0, . . . , cN ) is generic, for all
g : [t0, tf ] → Cd there exists one and only one extension f : R → Cd such
that Supp(f) ⊂ [t0−Nε, tf +Nε] and the functional equation f = �u admits
one and only one solution in [t0, tf ].

Proof. (Of both theorems.)
Let u : R → Cd be a solution to equation (1), related to A,B and U defined
over R as follows:

B(t) =


c−1
N f(t)

0
...

0

 ∈ C2dN , U(t) =



u(t+ (N − 1)ε)
...

u(t)
...

u(t−Nε)


∈ C2dN , (29)

A(t) =



−c−1
N cN−1χ(t+ (N − 1)ε) . . . −c−1

N (α+ c0χ(t)) . . . −c−1
N c−Nχ(t−Nε)

Id 0 . . . . . . 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 . . . 0 Id 0


.

(30)

The matrix A(t) ∈ C2dN×2dN is locally constant w.r.t t. Especially, when
t ∈ [t0 +Nε, tf −Nε], all the characteristic functions of the entries of A(t)
are equal to 1 and we shall agree to denote by A the constant value of A(t) in
this segment. Let us mention that the matrix A depends only on the 2N +2
matrices ci and α and is nothing but the block companion matrix of the
functional equation (1).
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When t < t0−Nε or t > tf +Nε, we have already seen that the solution
to the equation (1) is given by u(t) = α−1f(t). Now, if t ∈ [t0−Nε, tf −Nε],
(2) may be written as

u(t+Nε) = c−1
N [f(t)− (cN−1χ(t+ (N − 1)ε)u(t+ (N − 1)ε) + . . .

+(α+ c0χ(t))u(t) + . . .+ c−Nχ(t−Nε)u(t−Nε))]. (31)

When t ∈ [t0 − Nε, t0[, this equation expresses u(t + Nε) explicitly as a
combination of the N auxiliary functions φk(τ) = u(τ − kε), 1 ≤ k ≤ N ,
which are at this level unknown. Obviously, the functions φk(τ), 1 ≤ k ≤ N ,
stand for the last N components of U(τ). By using definitions (29) and (30),
recurrence (31) may be rewritten as

U(t+ ε) = A(t)U(t) +B(t), ∀t ∈ [t0 −Nε, tf −Nε].

The preceding recurrence and Lemma 3.1 yield the following formula

U(t+ nε) = Cn(t)U(t) + Fn(t) (32)

for t0 −Nε ≤ t ≤ t+ (n− 1)ε ≤ tf −Nε, where

Cn(t) =



n−1⨿
k=0

A(t+ kε) if t+ (n− 1)ε < t0 +Nε,

An−N

(
N−1⨿
k=0

A(t+ kε)

)
otherwise

(33)

and

Fn(t) =
n−1∑
k=0

(
n−1⨿

ℓ=k+1

A(t+ ℓε)

)
B(t+ kε). (34)

Focusing on the first row of (32), i.e. the first component u(t+(n+N − 1)ε)
of U(t+ nε), we emphasize on the fact that the unknown function u(t) may
be expressed as a linear combination of the delayed functions f(t+kε), k ∈ Z
through Fn(t), as well as the auxiliary functions φk(τ), 1 ≤ k ≤ N , through
U(t). So, as a first conclusion of these calculations, u(t) is well-determined
in the whole interval ] −∞, tf ], as a combination of the auxiliary functions
φk.
When t ∈ [tf −Nε, tf +Nε], we may deduce from (1) and (4) the two systems
of N functional equations which are analogous to (23) and (24), i.e.

f(t) = αu(t) + c−Nu(t−Nε) + . . .+ cN−1u(t+ (N − 1)ε) in ]tf −Nε, tf − (N − 1)ε]

f(t) = αu(t) + c−Nu(t−Nε) + . . .+ cN−2u(t+ (N − 2)ε) in ]tf − (N − 1)ε, tf − (N − 2)ε]

...

f(t) = αu(t) + c−Nu(t−Nε) + . . .+ c0u(t) in ]tf − ε, tf ]

(35)
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and

f(t) = αu(t) + c−Nu(t−Nε) + . . .+ c−1u(t− ε) in ]tf , tf + ε]

f(t) = αu(t) + c−Nu(t−Nε) + . . .+ c−2u(t− 2ε) in ]tf + ε, tf + 2ε]

...

f(t) = αu(t) + c−Nu(t−Nε) in ]tf + (N − 1)ε, tf +Nε]

.

(36)

Let us consider the case when α is invertible. We convert (35) into a
linear system for the N auxiliary unknown functions φk. To do this, we note
first that (32), with n =M and t = τ −Nε, writes as

U(τ + (M −N)ε) = CM (τ −Nε)U(τ −Nε) + FM (τ −Nε). (37)

The first N components of U(τ −Nε) which occur in the right-hand side of
the previous equality are the auxiliary functions while the last N components
are values of the function α−1f at instants τ − (N + k)ε, 1 ≤ k ≤ N . Next,
by shifting adequately t in the system of equations (35), we get for all t ∈
]tf −Nε, tf − (N − 1)ε] the following equality

f(t)

f(t+ ε)
...

f(t+ (N − 1)ε)

 = D

u(t+ (N − 1)ε)
...

u(t−Nε)

 (38)

where

D =



cN−1 . . . . . . c1 (α+ c0) c−1 . . . c−N

cN−2 . . . c1 (α+ c0) c−1 . . . c−N 0

... . .
.

. .
.

. .
.

. .
.

. .
. ...

c1 . .
.

. .
.

. .
.

. .
. ...

(α+ c0) c−1 . . . c−N 0 . . . . . . 0


∈ CNd×(2Nd)

is a rectangular block Hankel matrix. By setting t = τ + (M − N)ε in (38)
and using (37), we easily get

DCM (τ −Nε)U(τ −Nε) =

 f(τ + (M −N)ε)
...

f(τ + (M − 1)ε)

−DFM (τ −Nε). (39)

By partitioning the (Nd)× (2Nd) matrix DCM (τ −Nε) as (Θ1 Θ2), where
Θ1,Θ2 ∈ CNd×Nd, we see that the previous linear system consists in N
vectorial equations in Cd depending on the N auxiliary functions φk and is
Cramer provided that Θ1 is invertible. Under the assumption of genericity,
the previous condition is satisfied and thus, there exists one and only one
solution to (39). The auxiliary functions being determined, as a rule, the
function u is well defined and unique on ]−∞, tf ]. Since α is also invertible
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by assumption, we may compute the various extensions of u on [tf , tf +Nε]
using the system (36). This ends the proof of Theorem 6.1.

The proof of the second theorem proceeds in the same way. Let pk be
the unknown restriction of f to [t0 − kε, t0 − (k− 1)ε[, for all k ∈ {1, . . . , N}.
Similarly let us define qk as the unknown restriction of f to ]tf +(k−1)ε, tf +
kε], for all k ∈ {1, . . . , N}. When α is zero and det(cN ) ̸= 0, the system
(4) shows that u(t) may be arbitrarily chosen outside [t0, tf ]. Indeed, the
auxiliary functions φk do not occur in the calculation of u. However, u is well-
determined in the whole interval [t0, tf ] provided g is given in this interval
and the pk, 1 ≤ k ≤ N , are already determined. In order that u satisfies
the systems (35) and (36), the restrictions pk and qk, 1 ≤ k ≤ N , must
be chosen adequately. Let us focus on (35) or, equivalently, on (39). Indeed,
both systems still hold when α = 0. However, our approach is different from
previously since the unknowns which are the pk’s are located exclusively in
the term −DFM (τ−Nε). Indeed, the above discussion shows that U(τ−Nε)
does not depend on the restrictions pk nor the matrix (f(τ+(M−k)ε))1≤k≤n.
Let us determine the coefficient [Θ]ij ∈ Cd×d of pj(τ) in the i-th equation
in the system (39). To do this, we use the convention that for some matrix
Θ ∈ C(Nd)×(Nd), the symbol [Θ]ij denotes the (d × d)-block located at the
(i, j)-entry of Θ. Then, help to formulas (29) and (34), we see that

[Θ]ij = −

D M−1⨿
k=N−j+1

A(τ + (k −N)ε)


i1

c−1
N . (40)

We assume that the multiplet (c−N , . . . , cN ) is generic, which amounts to say
that Θ is invertible. Therefore, (39) is Cramer and admits one and only one
solution (p1, . . . ,pN ). Next, by using the same transformation which led to
(38), the system (36) may be rewritten as

 f(t)

...

f(t+ (N − 1)ε)

 =

 q1(t)

...

qN (t)

 =


c−1 c−2 . . . c−N

c−2 . . . c−N 0

... . .
.

. .
. ...

c−N 0 . . . 0


 u(t− ε)

...

u(t−Nε)

,

for all t ∈]tf , tf + ε]. Since the matrix (u(t− kε))1≤k≤N is known, we obtain
as a conclusion that the restrictions (pk,qk), 1 ≤ k ≤ N , are uniquely deter-
mined by g, which ends the proof of Theorem 6.2.

7. Final comments

Before concluding this paper, it is natural to ask if there exist other ways to
handle the functional equation αu+ C ⋆ (χu) = f . Since (1) is a convolution
equation, one might want to use the discrete Laplace (or Z-) transform to
solve it. Indeed, if the Z-transform is defined by Lu(p) =

∑
t∈εZ exp(−pt)u(t)

then one has the formula L(u⋆v)(p) = (Lu)(Lv) for all functions u and v on
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the real line, with compact support and values in suitable algebras. So, when
α = 0, the image of (1) is L(C)L(χu) = L(f) and, thus, if L(C) is invertible,
we get

L(χu)(p) =
(∑

k∈Z ck exp(pkε)
)−1 (∑

k∈Z exp(−pkε)f(kε)
)
.

Unfortunately, the determination of the original u has been transferred to a
difficult problem of moments. Moreover, this approach does not apply to the
general case α ̸= 0.
Another way to proceed would be to apply the Picard’s method. Indeed, one
sees that (1) is equivalent to

u = α−1f − α−1�u = α−1f − α−1�(α−1f − α−1�u) = . . .
= α−1f +

∑∞
k=1(−1)kα−k−1�kf .

Thus if ∥α−1∥ is small enough, one may hope that � is a contraction of
a suitable Banach or Fréchet function space F . The main difficulty in this
approach is the requirement that the vector space F is complete, and it
is related to the increasing number of points of discontinuity of �kf , as k
increases.
By comparison, the approach developed in this paper is less complicated and
more robust in the sense that the solution is given explicitly. Indeed, the
central parts of the proofs of the four previous theorems highlight not only
the well-posedness of (1) but also an effective computational way to construct
interval by interval the solution u.

In scope of future work, we suggest the three following problems. First,
the formulas (32) and (33) imply that, in the very special case when f is
constant, u(t) may be expressed through exponential-monomial functions
inside [t0 + Nε, tf − Nε]. So, in this case, the search for pseudo-periodic
solutions of (1) is linked to the difficult elimination problem of requiring that
the spectrum Sp(A) of A is included in the unit circle of C. Second, we
conjecture the following variant of Theorem 4.1. If the coefficients κm1,m2,...

occuring in formula (13) are rational or even algebraic over Q and, in contrast,
the entries ζi,j and ξi,j generate a subfield of C of transcendance degree equal

to 2d2, then all the quantities ψ
(k)
i,j (ζ, ξ) and det(ψ(k))(ζ, ξ) do not vanish.

Lastly, we conjecture also that for all N ≥ 2, the genericity assumption
on the multiplets in Theorems 6.1 and 6.2 hold on open dense subsets of
appropriate products of matricial algebras. This conjecture seems natural in
light of the two theorems presented in Section 5.
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