Local limits of conditioned Galton-Watson trees: the condensation case - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2014

Local limits of conditioned Galton-Watson trees: the condensation case

Résumé

We provide a complete picture of the local convergence of critical or subcritical Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set. The generic case, where the limit is a random tree with an infinite spine has been treated in a previous paper. We focus here on the non-generic case, where the limit is a random tree with a node with infinite out-degree. This case corresponds to the so-called condensation phenomenon.
Fichier principal
Vignette du fichier
condensation-2013-11.pdf (255.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00909604 , version 1 (26-11-2013)

Identifiants

Citer

Romain Abraham, Jean-François Delmas. Local limits of conditioned Galton-Watson trees: the condensation case. Electronic Journal of Probability, 2014, 56, Article 56, pp 1-29. ⟨hal-00909604⟩
240 Consultations
143 Téléchargements

Altmetric

Partager

More