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LOCAL LIMITS OF CONDITIONED GALTON-WATSON TREES II: THE
CONDENSATION CASE

ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

ABSTRACT. We provide a complete picture of the local convergence of critical or subcritical
Galton-Watson tree conditioned on having a large number of individuals with out-degree in
a given set. The generic case, where the limit is a random tree with an infinite spine has
been treated in a previous paper. We focus here on the non-generic case, where the limit is
a random tree with a node with infinite out-degree. This case corresponds to the so-called
condensation phenomenon.

1. INTRODUCTION

Conditioning critical or sub-critical Galton-Watson (GW) trees comes from the seminal
work of Kesten, [10]. Let p = (p(n),n € N) be an offspring distribution such that:

(1) p(0) >0, p(0) +p(1) <1.

_ +oo

Let u(p) = >, Zynp(n) be its mean. If u(p) < 1 (resp. u(p) = 1, p(p) > 1), we say that
the offspring distribution and the associated GW tree are sub-critical (resp. critical, super-
critical). In the critical and sub-critical cases, the tree is a.s. finite, but Kesten considered in
[10] the limit of a sub-critical or critical tree conditioned to have height greater than n. When
n goes to infinity, this conditioned tree converges in distribution to the so-called size-biased
GW tree. This random tree has an infinite spine on which are grafted a random number of
independent GW trees with the same offspring distribution p. This limit tree can be seen as
the GW tree conditioned on non-extinction.

Since then, other conditionings have been considered for critical GW trees: large total
progeny see Kennedy [9] and Geiger and Kaufmann [5], large number of leaves see Curien
and Kortchemski [3]. In [1], we generalized those previous results by conditioning the GW
tree to have a large number of individuals whose number of offspring belongs to a set A C N.
Let

) p(A) = 3 plk).
keA
If p(A) > 0, then the limiting tree is again the same size-biased tree as for Kesten [10].
However, the results are different in the subcritical case. We first define for an offspring

distribution p that satisfies (1) and a set A C N such that p(A) > 0 a modified offspring
distribution p4¢ by:

cA(0)0Fp(k) if k€ A,
k> k)=
3) VE>0, pag(k) {ek—lp(k) if ke A°,
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where the normalizing constant c4() is given by:

0—E [0 1xca]
4 9 = ,
( ) C.A( ) oF. [HX]-{XG.A}]

where X is a random variable distributed according to p. Let I 4 be the set of positive 6 for
which p4¢ is a probability distribution. If p is sub-critical, according to Lemma 5.2, either
there exists (a unique) 6 € I4 such that PApe 18 critical or 0% := max /4 € I4 and DAGY
is sub-critical. We shall say, see Definition 5.3, that p is generic for the set A in the former
case and that p is non-generic for the set A in the latter case. See Lemma 5.4 and Remark
5.5 on the non-generic property.

For a tree t, let £4(t) be the set of nodes of t whose number of offspring belongs to A
and L (t) be its cardinal (see definition in Section 6). It is proven in [1] that, for every
0 € 1y, if 7is a GW tree with offspring distribution p and 744 is a GW tree with offspring
distribution p_4 ¢, then the conditional distributions of 7 given {L4(7) = n} and that of 744
given {L A(740) = n} are the same. Therefore, if p is generic for the set A, that is there
exists a 09 € I4 such that Poe, A 18 critical, then the GW tree 7 conditioned on L4(7) being
large converges to the size-biased tree associated with p A0 -

When the sub-critical offspring distribution is non-generic for N, a condensation phenom-
enon has been observed when conditioning with respect to the total population size, see
Jonnsson and Stefansson [7] and Janson [6]: the limiting tree is no more the size-biased tree
but a tree that contains a single node with infinitely many offspring. The goal of this paper
is to give a short proof of this result and to show that such a condensation also appears when
p is non-generic for A4 and conditioning by L 4(7) being large. This and [1] give a complete
description of the limit in distribution of a critical or subcritical GW tree 7 conditioned on
{LA(T) =n} as n goes to infinity.

We summarize this complete description as follows. Let p be an offspring distribution that
satisfies (1) which is critical or sub-critical (that is u(p) < 1). Let 7%(p) denote the random
tree which is defined by:

i) There are two types of nodes: normal and special.
ii) The root is special.
iii) Normal nodes have offspring distribution p.
iv) Special nodes have offspring distribution the biased distribution p on N U {+oc}
defined by:

. kp(k) ifkeN,
1—p ifk=+o0.

v) The offsprings of all the nodes are independent of each others.
vi) All the children of a normal node are normal.
vii) When a special node gets a finite number of children, one of them is selected uniformly
at random and is special while the others are normal.
viii) When a special node gets an infinite number of children, all of them are normal.

Notice that:

e If p is critical, then a.s. 7*(p) has one infinite spine and all its nodes have finite
degrees. This is the size-biased tree considered in [10].

o If 4(p) < 1 then a.s. 7*(p) has exactly one node of infinite degree and no infinite
spine. This tree has been considered in [7, 6].
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Definition 1.1. Let A C N such that p(A) > 0. We define p’y as:
- critical case (u(p) =1):
Pa=p.
- subcritical and generic for A (u(p) < 1 and there exists (a unique) 05 € 14 such
that p(paee) =1):
Pa= DApe -
- subcritical and non-generic for A (u(p) <1 and p(pae) <1):

(5) Pl = Pagy, with 0% = max Ly,

We state our main result (the convergence of random discrete trees is precisely defined in
Section 2 and GW trees are presented in Section 3).

Theorem 1.2. Let 7 be a GW tree with offspring distribution p which satisfies (1) and
wu(p) < 1. Let A C N such that p(A) > 0. We have the following convergence in distribution:

(6) dist (7 ‘ La(t)=n) n_ﬁoo dist (7%(p%y)),

where the limit is understood along the infinite subsequence {n € N*; P(L4(7) =n) > 0}, as
well as:

e . * *
(7) dist (7 | La(r) >n) T dist (77 (p%))-

The theorem has already been proven in the critical case and the subcritical generic case
in [1]. We concentrate here on the case of the subcritical non-generic case. The non-generic
case for A=N,0 € A, 0 ¢ A are respectively proven in Sections 4, 6 and 7. Let us add that
a subcritical offspring distribution p is either generic for all A C N such that p(A) > 0 or
non-generic at least for {0} and eventually for other sets and generic for other sets A such
that p(A) > 0, see Lemma 5.4. It is not possible for a subcritical offspring distribution p
to be non-generic for all A C N such that p(A) > 0, see Remark 5.5. By considering the
last example of Remark 5.5, we exhibit a distribution p which is non-generic for {0} but
generic for N. Thus the associated GW tree conditioned on having n vertices converges in
distribution (as n goes to infinity) to a tree with an infinite spine whereas the same tree
conditioned on having n leaves converges in distribution to a tree with an infinite node.

In Section 2, we recall the setting of the discrete trees (which is close to [1], but has to
include discrete trees with infinite nodes). We also give in Lemma 2.2, in the same spirit
of Lemma 2.1 in [1], a convergence determining class which is the key result to prove the
convergence in the non-generic case. Section 3 is devoted to some remarks on GW trees. We
study in detail the distribution p 4 ¢ defined by (3) in Section 5. The proof of Theorem 1.2 is
given in the following three sections. More precisely, the case A = N is presented in Section
4. This provides an elementary and self-contained proof of the results from [7, 6]. The case
0 € A can be handled in the same spirit, see Section 6, using that the set £4(7) can be
encoded into a GW tree 74, see [11] or [14]. Notice that if 0 ¢ A, then £4(7), when non
empty, can also be encoded into a GW tree 7%, see [14]. However, we didn’t use this result,
but rather use in Section 7 a more technical version of the previous proofs to treat the case
0 ¢ A. We prove in the appendix, Section 8, consequences of the strong ratio limit property
we used in the previous sections.
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2. THE SET OF DISCRETE TREES

We recall Neveu’s formalism [13] for ordered rooted trees. We set
u=_Jm"
n>0
the set of finite sequences of positive integers with the convention (N*)® = {()}. For n > 0
and u = (uy,...,u,) € U, we set |u| =n the length of u and:
|t]oo = max(ful, (ui, 1 <@ < |ul))

with the convention || = |0]oc = 0. We will call |u|s the norm of u although it is not a norm
since U is not even a vector space. If u and v are two sequences of U, we denote by uv the
concatenation of the two sequences, with the convention that uv = u if v = () and uv = v if
u = (). The set of ancestors of u is the set:

(8) A, = {v € U; there exists w € U, w # B, such that u = vw}.

The most recent common ancestor of a subset s of U, denoted by MRCAC(s), is the unique
element v of [,cs Ay With maximal length [v|. For u,v € U, we denote by u < v the
lexicographic order on U i.e. u < v if u € A, or, if we set w = MRCA ({u,v}), then u = wiu’
and v = wjv’ for some 4, j € N* with i < j.
A tree t is a subset of U that satisfies:

e Det,

e Ifu €t, then A, C t.

e For every u € t, there exists k,(t) € NU {400} such that, for every positive integer

iy ui € tiff 1 < i < kylt).

The integer k,(t) represents the number of offsprings of the vertex u € t. (Notice that
k. (t) has to be finite in [1], whereas k,(t) might take the value +00 here.) The vertex u € t
is called a leaf if k,(t) = 0 and it is said infinite if k,(t) = +00. By convention, we shall set
ky(t) = —1 if u ¢ t. The vertex () is called the root of t. We set:

|t| = Card (t).

Let t be a tree. The set of its leaves is Lo(t) = {u € t;k,(t) = 0}. Its height and its
“norm” are resp. defined by

H(t) =sup{|u|, u €t} and Hq(t) =sup{|u|o, u € t} = max(H (t),sup{k,(t), u € t});
they can be infinite. For u € t, we define the sub-tree S, (t) of t “above” u as:
Su(t) ={vel, uw e t}.
For u € t\ Ly(t), we also define the forest F,(t) “above” u as the following sequence of trees:
Fult) = (Suilt); i € N i < hy(1)).
For u € t \ {0}, we also define the sub-tree S*(t) of t “below” u as:
SUt)={vetiug Ay}

Notice that u € S"(t).

For v = (vg, k € N*) € (N*)N, we set #, = (vq,...,v,) for n € N, with the convention
that 99 = 0 and v = {v,,n € N} defines a tree consisting of an infinite spine or branch. We
denote by T, the set of trees. We denote by Ty the subset of finite trees,

To={t € Too; [t] < 400},
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by ']I‘g]é) the subset of trees with norm less than h,
TW = {t € Too; Hoolt) < h},
by Tf the subset of trees with no infinite branch,
T = {t € Too; Vv € (NN £ t},
and by Ty the subset of trees with no infinite branch and with exactly one infinite vertex,
Ty = {t € Too; Card {u € t;ky(t) = oo} = 1} N'Ty.
Notice that Ty is countable and Ts is uncountable.
For h € N, the restriction function rj, o, from T, to T is defined by:
Thoo(t) ={u € t, |u|oo < h}.
We endow the set T, with the ultra-metric distance
Ao (6, 17) = 27 ax{hEN, o (®)=rn o0 (8)}
A sequence (ty,n € N) of trees converges to a tree t with respect to the distance do, if and
only if, for every h € N,
Thoo(tn) = Th,oo(t) for n large enough,

that is for all w € U, limy,—s 100 ku(tn) = ky(t) € NU{—1,+00}. The Borel o-field associated
with the distance d is the smallest o-field containing the singletons for which the restrictions
functions (74,00, h € N) are measurable. With this distance, the restriction functions are
contractant. Since Ty is dense in Ty, and (Tso,doo) is complete and compact, we get that
(T, dso) is a compact Polish metric space.

Remark 2.1. In [1], we considered
T ={t € Too; ky(t) < +ooVu € t}
the subset of trees with no infinite vertex. On T, we defined the distance:

d(t,t/) _ 2—max{hEN, rh(t):rh(t’)},

with 7,(t) = {u € t, |u| < h}. Notice that (T,d) is Polish but not compact and that T is
not closed in (Too,d). If a sequence (t,,n € N*) converges in (T,d) then it converges in
(Too,doo). And if a sequence (t,,n € N*) of elements of T converges in (T, ds) to a limit
in T then it converges to the same limit in (T, d).

Consider the closed ball By (t,27") = {t’ € Too;duoo(t,t') < 27"} for some t € T, and

h € N and notice that:
Boo(t,27") = 1, L ({rh,eo()})-
Since the distance is ultra-metric, the closed balls are open and the open balls are closed,
and the intersection of two balls is either empty or one of them. We deduce that the family
((r; L ({t}),t € ’]1‘&’2,)), h € N) is a m-system, and Theorem 2.3 in [2] implies that this family
is C(;nvergence determining for the convergence in distribution. Let (7},,n € N*) and T be
To-valued random variables. We denote by dist (7') the distribution of the random variable
T (which is uniquely determined by the sequence of distributions of 7}, . (71") for every h > 0),
and we denote:
dist (T,,) — dist (T)

n—-+o0o
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for the convergence in distribution of the sequence (7,,n € N*) to T. Notice that this
convergence in distribution is equivalent to the finite dimensional convergence in distribution
of (ky(Ty),u € U) to (ky(T),u € U) as n goes to infinity.

We deduce from the portmanteau theorem that the sequence (T,,,n € N*) converges in
distribution to 7T if and only if for all h € N, t € T{:

lim IP>(71h,oo(Tn) = t) = IP>(71h,oo(T) = t)'
n—-+oo
As we shall only consider Tp-valued random variables that converge in distribution to a
Ts-valued random variable, we give an other characterization of convergence in distribution
that holds for this restriction. To present this result, we introduce some notations. If v =
(v1y...,0,) € U, with n > 0, and k € N, we define the shift of v by k as 0(v, k) = (v; +
kyvg,...,vn). If t € Ty, s € Too and x € t we denote by:

t® (s,x) =t U{xb(v, k. (t)), ves\ {0}}

the tree obtained by grafting the tree s at x on “the right” of the tree t, with the convention
that t ® (s,xz) =t if s = {0} is the tree reduced to its root. Notice that if x is a leaf of t and
s € T, then this definition coincides with the one given in [1].

For every t € Ty and every = € t, we consider the set of trees obtained by grafting a tree
at x on “the right” of t:

T(t,z) ={t®(s,x), s € T}
as well as for k € N:
T(t,xz, k) = {s € T(t,z); ky(s) =k} and T, (t,z,k) = {s € T(t,x); ku(s) > k}

the subsets of T(t, z) such that the number of offspring of x are resp. k and k or more. It is
easy to see that T (t,z, k) is closed. It is also open, as for all s € T, (t,x, k) we have that
Boo(s, 27 max(b Hoo(0))=1) « T, (¢, z, k).

Moreover, notice that the set Ty is a Borel subset of the set T. The next lemma gives
another criterion for the convergence in distribution in Ty U Ts. Its proof is very similar to
the proof of Lemma 2.1 in [1].

Lemma 2.2. Let (T,,n € N*) and T be To-valued random variables which belong a.s. to
ToUTs. The sequence (Ty,,n € N*) converges in distribution to T if and only if for every
teTy, x €t and k € N, we have:

(9)  lim P(T, € Ty(t,x,k)) =P(T € T (t,z,k)) and lim P(T,=t)=P(T =t).

n—+o0 n—+00
Remark 2.3. Let
Ty ={teT;3lve (N)®st. vCt},

be the subset of trees with only one infinite spine (or branch). We give in [1] a characterization
of the convergence in ToUT; as follows. Let (7},,n € N*) and T be T-valued random variables
which belong a.s. to Top UT;. The sequence (T},,n € N*) converges in distribution to 7" if
and only if (9) holds for every t € Ty, z € Ly(t) and k = 0. In a sense, the convergence in
Ty U T is thus easier to check.
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Proof. The subclass F = {To(t,z,k)((ToUT2), t € T, z € t,k € NfU{{t}, t € To} of
Borel sets on Ty |J Ty forms a m-system since we have

T+(t1,.%’1,/€1) if t, € T(tg,xz) and zy € Am,
T, (t ki1 VEk if t; € T(t dx =
T (b, 21, k1) (O T (b, 2, k) = (b1, w1,k V ko) 1 1 (to, z2) and x1 = 2o,
{t1} if t1 € T(te, z2) and zo & A, U{z1},
0 in the other (non-symmetric) cases.

For every h € N and every t € ']I‘(()g), we have that t’ belongs to r,;io({t}) () T if and only
if t' belongs to some T, (s,z,k)( Ty with € t such that |z|oo = h and s belongs to
ri b ({t}) N To with 2 € s. Since Ty is countable, we deduce that JF generates the Borel
o-field on ToUTs. In particular F is a separating class in ToU Ts. Since A € F is closed and
open as well, according to Theorem 2.3 of [2], to prove that the family F is a convergence
determining class, it is enough to check that, for all t € Tog U Ty and h € N, there exists
A € F such that:

(10) t € AC Byo(t,27M).

If t € Ty, this is clear as {t} = By (t,27") for all h > H(t). If t € Ty, for all s € Ty and
z € s such that t € T, (s,z,k), with k = k,(s), we have t € T, (s,z, k) C Boo(t,271l>).
Since we can find such a s and z such that |z| is arbitrary large, we deduce that (10) is
satisfied. This proves that the family F is a convergence determining class in To UTs. Since,
fort € Ty, z € t and k € N, the sets T (t,z, k) and {t} are open and closed, we deduce from
the portmanteau theorem that if (7),,n € N*) converges in distribution to 7', then (9) holds
for every t € Tg, z € t and k € N. O

3. GW TREES

3.1. Definition. Let p = (p(n),n € N) be a probability distribution on the set of the non-
negative integers. We assume that p satisfies (1). Let g(2) = Y,y p(k) 2* be the generating
function of p. We denote by p(p) its convergence radius and we will write p for p(p) when it
is clear from the context. We say that p is aperiodic if {k;p(k) > 0} C dN implies d = 1.

A T-valued random variable 7 is a Galton-Watson (GW) tree with offspring distribution
p if the distribution of ky(7) is p and for n € N*, conditionally on {ky(7) = n}, the sub-trees
(S1(7),S2(T), ..., Sn(7)) are independent and distributed as the original tree 7. Equivalently,

for every h € N* and t € Tgﬁ), we have:
IP)(Th,oo(T) =t)= H p(ku(t)).
UETH—1,00(t)
In particular, the restriction of the distribution of 7 on the set Ty is given by:
(11) vt e Ty, P(r=t) =[] pku(t)).
uct

The GW tree is called critical (resp. sub-critical, super-critical) if u(p) =1 (resp. u(p) < 1,
w(p) > 1). In the critical and sub-critical case, we have that a.s. 7 belongs to Ty.

Let P, be the distribution of the forest 7(¥) = (t1,...,7,) of i.i.d. GW trees with offspring
distribution p. We set:

k
LB LT!
j=1
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When there is no confusion, we shall write 7 for 7).

3.2. Condensation tree. We say that the offspring distribution p is non-generic if g has
convergence radius 1 and u(p) = ¢’(1) < 1. The corresponding GW tree is also called
non-generic.
Assume that p satisfies (1) with u(p) < 1. Recall the definition of the tree 7*(p) in the
introduction. Remark that, as pu(p) < 1, the tree 7*(p) belongs a.s. to Ty if p is non-generic.
For t € Ty, x € t, we set:

For z € R, we set z; = max(z,0). Let X be a random variable with distribution p. The
following lemma is elementary.

Lemma 3.1. Assume that p satisfies (1) and p(p) < 1. The distribution of 7*(p) is also
characterized by: a.s. 7"(p) € To and for t € Ty, x € t, k € N,

(12) ]P’(T*(p) € T+(t,1‘, k)) = D(tw%') (1 - M(p) +E [(X - ka&(t))-l—l{sz}]) .

In particular, we have that if x € Ly(t):

P(r*(p) € T(t, x), ko (77(p)) = 4+00) = (1 — p(p)) ——=—

and
Pir=t)
p(0)

Remark 3.2. Let 7°(p) denote the limit (in distribution) of a critical or sub-critical GW tree
7 conditionally on {H(7) = n} or {H(7) > n} as n goes to infinity. The distribution of
79(p) is characterized by the properties i) to vii) with $ in iv) replaced by the size-biased
distribution p°:

(13) P(m*(p) € T(t,2)) =

kp(k
o) = FPE) e
,u
Remark that, when p is critical, the definitions of 7*(p) and 7°(p) coincide. We have that a.s.
75(p) belongs to T;. Following [1], we notice that the distribution of 75(p) is characterized
by: a.s. 75(p) € Ty and for all t € Ty, 2 € Lo(t),
P(r=t
(1 P(rS(p) € Tlt,2)) = — T
p(p)*Ip(0)

4. CONDITIONING ON THE TOTAL POPULATION SIZE (A = N)

We prove Theorem 1.2 for A = N and p non-generic for N. The results of this section
appear already in [6] see also [7]. It is a special case of Theorem 1.2 with A4 = N. We provide
here an elementary proof relying on the strong ratio limit property of random walks on the
integers.
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4.1. The case p(p) = 1. We first consider the case p(p) = 1 and u(p) < 1.

Theorem 4.1. Assume that p satisfies (1) and is non-generic for N. We have that:
(15) dist (7 ‘ |7] =n) n:)w dist (7%(p)),

where the limit is understood along the infinite subsequence {n € N*; P(|7| =n) > 0}, and:

(16) dist (7 | |7 > n) N dist (7%(p)).

Proof. For simplicity, we shall assume that p is aperiodic, that is P(|7| = n) > 0 for all n
large enough. The adaptation to the periodic case is left to the reader.
Recall p(p) =1. Let k € N, t € Ty, x € t, { = k,(t) and m = [t|. We have:

P(r € Ty (6.2 k) e =n) = D(t.2) S p()Bjellr] =n—m)
j>max(¢+1,k)

Let (X,,,n € N*) be a sequence of independent random variables taking values in N with
distribution p and set S, = > _;_; Xj. Let us recall Dwass formula (see [4]): for every k € N*
and every n > k, we have

(17) Pi(|r| = n) = gp(sn ———

Let 7, be distributed as 7 conditionally on {|7| = n}. Using Dwass formula (17), we have
P(T € T+(t,1’,k), ’T‘ = n)

P(r € To(t,2,k)) = P(|r| = n)

Dt x S Pie(lr] =n —m)

j>max(0+1,k)

N J—lP(Sh—m=n—m—j+1Y)
=D(t,z E p(j)n .
( )j>max(£+1 k) v n=m P(S,=n—-1)

We then set

1
18 60k l)=———=> p(j)P(Sp=n—+l—j
(15) (1) = 55, =y 2700 ¢ )
and

1
19 0Lk ) = ———— jp(j) P(S, =n+ L — 7).
(19) (1) = 5, =y L PO )
We get:

n  P(Sp—m=n—m)
n—m P(S,=n-1)
(65— (max(C + 1,k),£) — €55 _, (max({ + 1,k),0)) .

P(r, € Ty (t,z,k)) = D(t,x)

Then use the strong ratio limit property (44) as well as its consequences (45) and (46), to
get that:

(20)  lim B € Toltr k) = Dt.a) (1—pm) + Y (G- Opld)
j>max(¢+1,k)
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Thanks to (12), we get:
lim P(r, € Ty(t,2,k)) = P(r*(p) € Ty (t,z,k)).

n——+oo
Then use Lemma 2.2 to get (15). Since dist (7 | |7| > n) is a mixture of dist (7 | |7| = k)
for k > n, we deduce that (16) holds. O

Remark 4.2. The proof of (20) also holds if 1 = 1. In this case we get in particular that for
all t € Ty and x € Lo(t):

. P(r =t)
Then the application T(t, z) — P(7 = t)/p(0) can be extended into a probability distribution
on T; which is given by the distribution of 7*(p) (also equal to the distribution of 75 defined
in Remark 3.2). Then use Remark 2.3 to get that dist (7| |7| = n) converges to dist (7*(p)).

4.2. The case p(p) > 1. We consider the case p(p) > 1. The offspring distribution py g of
(3) has generating function:

_g(0z)
go(z) = 0

Recall Iy is the set of positive 6 for which pyg is a well defined probability distribution.
Furthermore, according to [9] (see also Proposition 5.5 in [1] for a more general setting), if 7y g
denotes a GW tree with offspring distribution py g, then the distribution of 7y ¢ conditionally
on |7yg| does not depend on 0 € Iy. It is easy to check that p(pyyg) is increasing in 6.
Following [6], we shall say that p is non-generic for N if limgy () p(pnp) < 1. In that case,
we have Iy = (0, p(p)] and py defined by (5) is pfy = P p(p)-

Corollary 4.3. Assume that p satisfies (1) and is non-generic for N. We have that:

dist (7 ‘ |T| =n) _>—+> dist (7*(py)),

where the limit is understood along the infinite subsequence {n € N*; P(|7| =n) > 0}, and:

dist (7 | |7 > n) = dist (7%(pn))-

Proof. The first convergence is a direct consequence of (15) and the fact that 7 conditionally
on {|7| = n} is distributed as 7y () conditionally on {|7y ,)| = n}. The proof of the second
convergence is similar to the proof of (16). O

This result with Proposition 4.6 and Corollary 5.9 in [1] ends the proof of Theorem 1.2 for
the case A = N and gives a complete description of the asymptotic distribution of critical
and sub-critical GW trees conditioned to have a large total population size.

5. GENERIC AND NON-GENERIC DISTRIBUTIONS

Let p be a distribution on N satisfying (1) and let X be a random variable with distribution
p. Recall p(p) denotes the convergence radius of the generating function g of p. Let A C N
such that p(A) > 0. We consider the modified distribution p4¢ on N given by (3) and let 14
be the set of positive 6 for which p4 ¢ is a probability distribution. We have 6 € I4 if and
only if § > 0 and:

(21) E [HXI{XEA}] <+o0 and E [HX]-{Xe.AC}] <4.
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In particular, I4 is an interval of (0,+o00) which contains 1. We have inf I, =01if 0 € A
and 1 > inf T4 > p(0) if 0 ¢ A. Let:

(22) 0% =sup L4 € [1, p(p)].
We deduce from the definition of p 4 ¢ the following rule of composition, for § € A and 0q € A:

(23) PAbg = (PA0) 44
The generating function, g4, of p4¢ is given by:

2a0(2) =B (0" (1400 + ca@)La00)) |

And we have:

(24) 1(pae) =E [X0X " xcaey] + ca(®)F [X0F 1ixeca] -
Let:
(25) 0% =1inf{0 € I4;p(pap) = 1},

with the convention that inf() = +o00. Notice that the function 6 — p(pae) is continuous
over I 4.

Lemma 5.1. Let p be a distribution on N satisfying (1) and A C N such that p(A) > 0. The
function 0 — p(pap) is increasing over (0,0% +¢) (L4 for some strictly positive € depending
on p. If 0 € A, then the function 6 — pu(pag) is increasing over I4.

Proof. Notice it is enough to consider § < #%. Since p satisfies (1), it is easy to check that
P, satisfies (1) for all @ € I4 such that 6 < 6%. Thanks to the composition rule, it is enough
to prove that § — 44 is increasing at 6 = 1 if u(p) < 1+ ¢ for some € > 0, with p satisfying

(1) and p(p) > 1.
Let 68 € I4. We have:

rap — E[X] = %,
with
ha(0) =E[X0514(X)] E [6X14(X)] + 0E [X6X14(X)]
—E[0%14(X)] E [X0714(X)] — OE[X]E [0X1.4(X)] .
Of course we have h4(1) = 0. The function h .4 is of class C* on [0, p(p)). We obtain:
Wa(1) = E[(X = 1)(Xp(A) - E[X14(X)]] = p(AE [X (X - 1)] + (1 - E[XE[X14(X)].

In particular, we deduce from this last expression that h'y(1) > 0 if E[X] < 1. However, since
p(A)E [X(X —1)] > 0 as p satisfies (1), we deduce that h’y(1) > 0 as soon as E[X] < 1+¢
for some small positive . This ends the proof of the first part of the lemma.

Let us assume that 0 € A. Thanks to the first part, if E[X] = u(p) > 1, elementary
computations yield that h'y(1)/P(A) is minimal, that is E[X14(X)] /P(A) is maximal, (for
all subsets A of N containing 0) for A of the form A, = {0} U {k;k > n}. It is then easy to
check that the function n ~— h’y (1) is first non decreasing and then non increasing. Since
Wy, (1) and by (1) are positive, we get that h'y (1) is positive for all n € N and thus 2/, (1)
is positive. This ends the proof of the second part of the lemma. O

Let us consider the equation:
(26) (pap) = 1.
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Lemma 5.2. Let p be a distribution on N satisfying (1) and A C N such that p(A) > 0.
Equation (26) has at most one solution. If there is no solution to Equation (26), then we
have p(p) < 1, 0% belongs to I and p(paer) < 1.

The (unique) solution of (26), it it exists, is denoted 6. Notice that p.4, is critical.

Proof. Lemma 5.1 directly implies that Equation (26) has at most one solution.

If 0 € A, then we have infr, u(pap) = p(1)1ae(1) < 1. If 0 € A, then set ¢ =
minI4 € (0,1). Notice that c4(q) = 0 and E [¢¥1{xecay] = ¢ Use that the func-
tion § — E [HX lixe Ac}] is convex and less than the identity map on (g, 1] to deduce that
E [Xqull{XeAc}] is strictly less than 1. Then use (24) to deduce that:

191&1#(19.4,9) =E [X¢* Mxeay) < 1.

In conclusion, we deduce that infy, u(pae) < 1. Hence, if u(p) > 1 then Equation (26) has
at least one solution.

From what precedes, if there is no solution to Equation (26), this implies that u(p) < 1
and thus:

(27) pu(pap) <1 forall § e ly.

We only need to consider the case 6% > 1. Since 6% < p(p), we have p(p) > 1. Since u(p) < 1,
the interval J = {0;g(0) < 6} is non-empty and inf J = 1. On J N I4, we deduce from (4)
that 0c4(0) > 1 and then from (24) that p(pag) > ¢'(0) and thus ¢’(f) < 1. Notice this
implies that I4()(1,+400) is a subset of J the closure of .J. The properties on g imply that
J = {0;g(#) < 6}. This clearly implies that (21) holds for 6% that is 8% € I4. Then conclude
using (27). O
Definition 5.3. Let p be a distribution on N satisfying (1) and A C N such that p(A) > 0.

If Equation (26) has a (unique) solution, then p is called generic for A. If Equation (26) has
no solution, then p is called non-generic for A.

In the next lemma, we write p for p(p).

Lemma 5.4. Let p be a distribution on N satisfying (1) such that u(p) < 1.
- If p = 400 or p < +00 and ¢'(p) > 1, then p is generic for any A C N such that
p(A) > 0.
- Ifp=1and ¢'(1) < 1, then p is non-generic for all A C N such that p(A) > 0.
- If1<p<+o0oand ¢'(p) <1 (and thus g(p) < p), then p is non-generic for {0} and
p is generic for {k} for all k large enough and such that p(k) > 0. Furthermore p is
non-generic for A C N (with p(A) > 0) if and only if:
/
E[Y|Y € A) < L=L9(0),
p—9(p)
with Y distributed as pnp, that is E[f(Y)] = E[f(X)pX]/g(p) for every non-negative
measurable function f. We also have 0% = p.

Remark 5.5. We give some consequences and remarks related to the previous Lemma.
(1) If p is generic for {0} then it is generic for all A C N with p(A) > 0.
(2) If A and B are disjoint subsets of N such that p(A) > 0 and p(B) > 0, then if p is
non-generic for A and for B then it is non-generic for AJB.
(3) If A and B are disjoint subsets of N such that p(A) > 0 and p(B) > 0, then if p is
generic for A and for B then it is generic for A JB.
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(4) Assume p(p) > 1 and A C B with p(B) > p(A) > 0.
e Then p non-generic for A does not imply in general that p is non-generic for B.
(See case (6) below with A = {0} and B =N.)
e Then p non-generic for B does not imply in general that p is non-generic for A.
(Let p satisfying (1) be such that p(p) > 1 and p non-generic for B = N. Then,
according to Lemma 5.4, there exists k large enough such that p(k) > 0 and p is
generic for A = {k}.)
(5) According to the second part of the proof of Lemma 5.1, we get that there exists
ng € N* such that:

supE[Y|Y € A] = E[Y|Y € A,,],
A30
with A, = {0} U {k;k > n}. In particular, if p is non-generic for A, then it is
non-generic for all A containing 0.
(6) Let G be a generating function with radius of convergence pg = 1. Let ¢ € (0,1). Let
p be the distribution with generating function:

9(z) = Cé((cj))

The radius of convergence of g is thus p = 1/c and we have:

gnp(2) =G(2) and gy ,(2) = %(CZ)) 1o %

Therefore, we have:

() = (1) and g, (1) = G5

If G'(1) = 1, then we have G(c) > ¢. This implies gf{o}ﬁ(l) < gy,(1) =1 Thuspis

generic for N but non generic for {0}.

Proof. For A C N such that p(A) > 0 and 0 € I 4, notice that:

0 —g(0)
0

E [X6X14(X)]
E[0¥1a(X)]

(28) 1(pap) —1=Ga(0) —(1—4g'(9) with Ga(9) =
If p =400 or p < +oo and ¢'(p) > 1, then there exists ¢ > 1 finite such that ¢'(¢q) = 1
which implies that g satisfies (21). We also have g(q) < ¢. This implies, thanks to (28), that
p(pa,g) > 1. Therefore, p is generic for A.
If p < 400 and ¢'(p) < 1, then we have g(p) < p and p satisfies (21). This implies that
0% = p € 14. According to Lemma 5.2, p is non-generic for A if and only if u(pa4,,) < 1 that
is, using (28):

p—pg'(p)
Gale) < p—9(p)

We have Ggy(p) = 0 and thus p is non-generic for {0}. For k such that p(k) > 0, we have
Gry(p) = k/p and thus p is generic for k large enough such that p(k) > 0. To conclude,

notice that pG.4(p) = E[Y|Y € A]. O
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6. VERTICES WITH A GIVEN NUMBER OF CHILDREN I: CASE 0 € A

Assume 0 € A C N and A # N. Assume that p satisfies (1), u(p) < 1. We prove Theorem
1.2 for p non-generic for A.

In what follows, we denote by X a random variable distributed according to p. We consider
only P(X € A) < 1, as the case P(X € A) = 1 corresponds to A = N of Section 4. For
t € Ty, we set L4(t) = {u € t,k,(t) € A} the set of nodes whose number of children belongs
to A and define L 4(t) = Card (L4(t)).

For a tree t € Ty, following [11, 14], we can map the set £4(t) onto a tree t4. We first
define a map ¢ from L 4(t) on U and a sequence (t)i<k<p of trees (where n = L4(t)) as
follows. Recall that we denote by < the lexicographic order on U. Let u' < --- < u” be the
ordered elements of £4(t).

o p(u') =0, t = {0}.

e For 1 < k < n, set w® = MRCA({u*~',u*}) the most recent common ancestor of
uF~! and u* and recall that S, (t) denotes the tree above w*. We set s = {w"u,u €
S, the subtree above w* and v = min(£4(s)). Then, we set

¢(u") = ¢(v) (k) (th—1) + 1)
the concatenation of the node ¢(v) with the integer kg, (tr—1) + 1, and

te = te—1 U {o(u")}.
In other words, ¢(u¥) is a child of ¢(v) in tj and we add it “on the right” of the other
children (if any) of ¢(v) in the previous tree tx_; to get ty.

It is clear by construction that t; is a tree for every k < n. We set t* = t,,. Then ¢ is
a one-to-one map from L4(t) onto t*. The construction of the tree t is illustrated on
Figure 1. Notice that L 4(t) is just the total progeny of t4.

FIGURE 1. left: a tree t, right: the tree t* for A = {0, 2}

If 7 is a GW tree with offspring distribution p, the tree 7 associated with L 4(7) is then,

according to [14] Theorem 6 (for the particular case 0 € A), a GW tree whose offspring
distribution pA is defined as follows. Let N, Y” and (Y{,k € N) be independent random
variables such that N is geometric with parameter p(A), Y is distributed as X condition-
ally on {X € A} and (Y/,k € N) are independent random variables distributed as X — 1
conditionally on {X ¢ A}. We set:

N-1
(29) Xa=) Yi+Y"
k=1
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with the convention that ) 3 = 0. Then p? is the distribution of X 4. Let g denote its
generating function:
zE [ZX]-{XE.A}]

(30) gA(Z) = - _E [ZXI{X¢.A}]

An elementary computation gives:
1
ca(f)

We recover that if 7 is critical (u(p) = 1) then 74 is critical as u(p?) = 1, see also [14]
Lemma 6. Notice in particular that for all k£ € A:

(31) upy=1- 200 A =

(32) PAGR) = B(X4 = k) 2 P(N = 1,Y" = k) = p(k),
and for k € A%
(33) Pk —1)=P(Xa=k—1)>P(N =2,Y{ =k —1) = p(A)p(k).

Lemma 6.1. Assume that p satisfies (1), u(p) < 1. Then p™ satisfies (1), p(p?) < 1 and
p(™) = p(p) if p(p) = 1 or if p(p) > 1 and g'(p(p)) < 1.

Proof. Since (32) implies pA(0) > p(0) and that u(p) < 1 with (31) implies pu(p?) < 1, we
deduce that p# satisfies (1).

Let p4 be the convergence radius of the serie given by E [zX 1ixe A}] and pg4c be the
convergence radius of the series given by E [zX 1ixe Ac}]. We get that min(pa, pac) = p(p).

We deduce that the convergence radius of g is p(p) if p(p) = 1 or if p(p) > 1 and ¢ (p(p)) <
1. O

6.1. The case p(p) = 1. We state now the main result of this section.

Theorem 6.2. Assume that p satisfies (1), u(p) < 1 and p(p) = 1. We have that:

(34) dist (7 ‘ La(r)=n) njoo dist (7 (p)),

where the limit is understood along the infinite subsequence {n € N*; P(L4(7) =n) > 0}, as
well as

(35) dist (7 | La(r) >n) — dist (7%(p)).

n—-+o00

Proof. For simplicity, we shall assume that p? is aperiodic. The adaptation to the periodic
case is left to the reader. We define for j € N and n > 2:

(36) ny =n —14()).
Let k€N, t € Ty, x € t, £ = k(t) and m = [t4]| — Lizer (t)y- We have:
P(r € Ty(t,z,k),La(r) =n) =D(t,z) > p(i)Pj_e(|r| =n; —m).
j>max(0+1,k)

Let (X,,,n € N*) be independent random variables taking values in N with distribution pA
and set S, = >_;_; Xi. According to Dwass formula (17), we have:

j—1

nj—m

P (|74 = nj —m) = P(Sp,—m =nj —m—j+L).



16 ROMAIN ABRAHAM AND JEAN-FRANGOIS DELMAS
Let 7, be distributed as 7 conditionally on {L 4(7) = n}. Then we have, using (47) and (48):

B B 4
P(r, € T+(t,z,k)) = D(t,x) Z p(j)n nm
j>max(¢+1,k)

P(Sp;—m =nj —m —j+¥)
P(S,=n—-1)
n  P(Sp—m =n—m)
n—m P(S,=n-1)

(51;*‘ (max(f + 1, k), €) — £6%7 (max(¢ + 1, k),£)> .

n—m

= D(t,z)

Then use the generalizations of the strong ratio limit properties (44), (50) and (51) to get
that:

i P(r, € Tt k) = Dtx) [1- )+ Y (- Opl)
j>max(4,k)
Thanks to (12), we get:
liIJIrl P(r, € T (t, 2, k) =P(r*(p) € Ty(t,x,k)).
n—-+0oo
Then use Lemma 2.2 to get (34). Since dist (7 ‘ L A(7) > n) is a mixture of dist (7 ‘ La(r) =
k) for k > n, we deduce that (35) holds.

6.2. The case p(p) > 1. We consider the case p non-generic for A with p(p) > 1. In
particular, we have ¢’(p) < 1 and g(p) < p thanks to Lemma 5.4. Recall the offspring
distribution p_4 ¢ defined by (3). Notice that the normalizing constant c4(#) is given by:
(37) a0y = B xean] 1

Notice that p4,1 = p. Since p(p) is also the convergence radius of g™, see Lemma 6.1, we
deduce that p ¢ is well defined for 6 € [0, p(p)] and 6% = p(p). Let ga s be the generating
function of p46.

According to [9] if A = {0} and Proposition 5.5 in [1] for the general setting, if 7.4 9 denotes
a GW tree with offspring distribution p4g, then the distribution of 744 conditionally on
L A(T4p) does not depend on 6 € [0, p(p)].

Remark 6.3. It is easy to check that:

A
(39) (a0 (2) = T _ (1), 40

g7(0) ’
The distribution of 744 is the distribution of 7 “shifted” by 6 such that the conditional
distribution given the number of vertices having a number of children in A is the same. Then,
according to (38), the tree (7;4,9)“4 of vertices having a number of children in A associated
with 749 is distributed as the distribution of 74 “shifted” by 6 such that the conditional
distribution given the total number of vertices is the same.

The proof of the following corollary is similar to the one of Corollary 4.3.

Corollary 6.4. Assume that p satisfies (1) and is non-generic for A. Let py = pa o). We
have that:
dist (7 | La(r) =n) —»_dist (" (52);

n—-+o00
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where the limit is understood along the infinite subsequence {n € N*; P(La(7) =n) > 0}, as
well as
dist (7 ‘ La(r) >n) j dist (77 (p%))-

This result with Proposition 4.6 and Corollary 5.7 in [1] ends the proof of Theorem 1.2 for
the case 0 € A, and gives a complete description of the asymptotic distribution of critical
and sub-critical GW trees conditioned to have a large number vertices with given number of
children.

7. VERTICES WITH A GIVEN NUMBER OF CHILDREN II: CASE 0 ¢ A

Let A C N. We assume in this section that 0 ¢ A and p(A) > 0. We prove Theorem 1.2
for p non-generic for A. Notice we follow the spirit of the case 0 € A.

7.1. Setting and notations. Although the construction of the previous section also holds
in that case with a different offspring distribution, we failed to get analogues to formulas (32)
and (33). Therefore, we prefer to map £4(7) onto a forest F4(7) of independent GW trees.
Let us describe this map.

Let t € Tg. We define a map ¢ from £4(t) into the set U,,>1 T of forests of finite trees
as follows. B

First, for u € t we define S7A(t) the subtree rooted at u with no progeny in A by

S (t) = {w € uSy(t), AwNAS N La(t) =0}
For u € t, we define C;A(t) as the leaves of S:'(t) that belong to A.

FIGURE 2. The subtree S7*(t) in bold for A = {3}, and the elements of C{}(t).

We set

{0} if O € La(t)
and we set é’é“(t) the set of leaves of 56)4(1:) that belong to £.4(t).

Let Ny(t) = Card (C’é‘l(t)) Then the range of ¢ belongs to ']I‘évm(t). Moreover if u; <
ug < cos < UR ¢y are the elements of C’é“(t) ranked in lexicographic order, we set for every
1 <i < Ny(t)

5 (6) = {Sé‘l(t) if 0 ¢ La(t)

o(u;) = 0
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where (") denotes the root of the i-th tree in ']I‘évm(t).

We then construct ¢ recursively: if u € £4(t) and ¢(u) = v (which is an element of the
i-th tree), then we denote by u; < --- < uy the elements of C;A(t) ranked in lexicographic
order and we set for 1 < j <k

Huj) = v
Finally, we set F4(t) = &(t).

FIGURE 3. A tree t and the forest F4(t) for A = {3}.

Let 7 be a Galton-Watson tree with offspring distribution p. Let us describe the distribu-
tion of FA(T).
We define the offspring distribution p by

p(k) =p(k)ligay  for k>1,
p(0) = p(0) + p(A).

Then 564(7') is distributed as a (subcritical) GW tree with offspring distribution p. In par-
ticular, if we denote by L the number of leaves of 5'(7)4(7'), then we have

p(0) +p(A)

Mle—MXHWM]

where X is a random variable distributed according to p. Moreover, conditionally given L,
the random variable N := Ny(7) has a binomial distribution with parameter (L, p(A)/(p(0)+

p(A))).
Let X4 be the random variable

Z/
XA=> "N
k=1

where Z’ is distributed as X conditionally given {X € A} and (Ng,k € N) is a sequence
of independent random variables, independent of Z’, and distributed as N. We denote by
pA the law of X#. Then the forest F A(7) is distributed as N independent GW trees with
offspring distribution p*.
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7.2. Main result. We recall that L4(7) is aperiodic since 0 ¢ A, see [1].
Theorem 7.1. Assume that p satisfies (1) and p(p) < 1 and p(p) = 1. We have that:

(39) dist (7 ‘ La(r)=n) njoo dist (77 (p)),
as well as
(40) dist (7 | La(r) >n) e dist (77 (p)).

Proof. 1t is enough to prove that for all t € Ty, x € t and k € N:
(41) lim P(r € T.(t,2,k), La(r) = n) = D6, 2)F (r*(p) € T4 (6,1, ).
n—-+00

Set Mo =0 and M,, = > ;_; Ny for n € N*. Let m = La(t) — 14(ky(t)) and £ = k,(t).
Recall (36). We have

P(r € Ty(t,z,k), La(T) =n)

=D(t,x) > p()Pj—e(La(r) =n; —m)
j>max(0+1,k)

~D(ta) Y p()

. n;
j>max(0+1,k)

-4

E Nl{S”] _m+Mj717l+N=njfm}i| 5

where we used Dwass formula (17) for the last equality where S, = > ;_; X} with (X, k €
N*) independent random variables distributed as X, see also (58). Recall (59). In particular,
we have:

k-1

(42) P(T < T+(t,1’, k)’ L.A(T) = n) - D(t,l’) anm,g - Z p(j)(j - e) an—m,j ’
j=t+1
with:
n E [Nl{saner,l,ﬁN:nj}}

o=
Yong B[N, v-n)]

Notice that Lemma 8.6 implies that lim,, o an ; = 1. Then use Lemma 8.9 to get:
NETwP(T € Ty(t,x,k)|La(T) =n) = D(t,x) (1 —(+E [(X — €)+1{X2k}])
— P(r*(p) € T4t 2, h)).
This ends the proof. O

Corollary 7.2. Assume that p satisfies (1), is non-generic for A. Let p’y = ppp)- We
have that:

dist (7 | La(r) =n) — dist (7*(p%)),

n—-+00
as well as
. N . (")),
dist (7 ‘ La(T)>n) n_}—+>oo dist (77(p%))
This result with Proposition 4.6 and Corollary 5.7 in [1] for the generic case ends the proof
of Theorem 1.2 for 0 ¢ A and gives a complete description of the asymptotic distribution of
critical and sub-critical GW trees conditioned to have a large population.
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8. APPENDIX

8.1. Strong ratio limit property. Let (X,,n € N) be independent random variables taking
values in N with distribution p = (p(k), k € N). We assume that:

(43) p(p) <1 and either u(p) =1 or, for all § >0, E [eeXl} = +o00.

Let S, = > p_; Xi. We assume that p is aperiodic (that is P(S,, = n) > 0 for all n large
enough). According to [8] or [12], we have the following strong ratio limit property for all
m, k € Z:

. P(Sp—m =n—k)
44 1
(44) n=r oo P(S, =n)
We deduce the following corollary. Recall the definition of 62 and 6} of (18) and (19).

=1

Corollary 8.1. Assume that p satisfies (43) and is aperiodic. For all k € Z and ¢ € N, we
have:

(45) Jim a3k, 0) =) p(h)
Jjzk
and
(46) ngffoj (k,0) =1—p(p) +>_ ip(j)
Jjzk

Proof. Since P(Sy11 =n+0) =3 . yp(j) P(Sp =1+ — j), we have:

P(Spy1 =n+1) PSSy =n+Ll—j)
Gk, €) = - p() :
P(S, =n) = P(S, =n)
Then use (44) to get (45).
Notice that, by exchangeability:

ij P(Sp=n+{—j)=E X115,  —niny] =
jEN

n-+/¢
n+1

P(Sn+1 =n-+ 6)

Thus we have:

oy (k,0) =

n+LP(Sy11=n+/) Z P(Sp=n+l—j)
in(j

n+1 P(S,=n) = P(S, =n)

Then use (44) to get:
lim 51 k,0) —1—ij

n—-+o00
i<k

Since 1 =37, ,jp(j) =1 — p(p) + 32 ;5,7p(j), this gives (46). O

8.2. Generalization of the strong ratio limit property I. Assume that p satisfies (43)
and is aperiodic. Let X be a random variable taking values in N with distribution p. Recall
g denote the generating function of p.

Let A C N such that 0 € A. Let p* be the distribution on N with generating function
g? given by (30) and X4 distributed according to p*. Recall u(p?) is given by (31). In
particular p(p) = 1 (resp. p(p) < 1) implies p(p?) = 1 (resp. u(p™?) < 1). And from the
proof of Lemma 6.1, we get that E [eex] = +4o0 for all § > 0 implies that E [eGXA] = 400
for all 8 > 0.
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Let (X,,n € N) be independent random variables, independent of X, taking values in
N with distribution p*. Let S, = > p—q Xk. We assume that p™ is aperiodic (that is
P(S, = n) > 0 for all n large enough). In particular the strong ratio limit property (44)
holds as well as (45) and (46) hold with p replaced by p.

Recall (36), that is n; =n — 1.4(j ) and let:

(47) oA (k. 0) = BS. =) 2o PU) 7Sy =y +£= )
n_ ji>k

and

4 1A _

(48) 6LAk, ) = s - ]Z;Jp Sp, =mn;+L—j).

We stress that in (18) and (19), (S,,n € N) is a random walk with increments distributed
according to p; whereas in (47) and (48), (Sp,n € N) is a random walk with increments
distributed according to p™.

Lemma 8.2. Assume that p satisfies (43) and is aperiodic. For all k € Z and { € N, we

have:
B e LX 45, =nx+0
(49) lim [X{ XX}]—,
0,.A
(50) nll)rfooé (k,0) Zp
7>k
and
1,4 1 ..
(51) Jim 5 Ak, 0) =1 p(p) + Y ip(9)

Jjzk
Proof. We define:

Sn- ="n; L—3j n
i) =) g

as well as

) PSS =n+f—5—1 AG—1DP(S,=n+0—3j

bn(j):pA(]) ( 1P(Sn:n) J ) +p ;zA) ) ( P(Sn:n) j)’
with the convention that p4(—1) = 0.
Thanks to the strong ratio limit property (that is (44) with p# instead of p), we have
limy, s o0 an(7) = p(j) and limn_,+OO ba(5) = p(4) + pA(j — 1)/p(A). We have:
S 00 (So=n+0-1) 1 P(Spmi=n+l+1)
P(Sp =n) p(A) P(Sn =n)

jEN

We deduce from the strong ratio limit property (that is (44) with p” instead of p) that:

. . 1
Jm > ba(@) =1+ =2 b0

JEN
Then use (32) and (33) to get that a,(j) < 2b,(j) for n > 2 and the dominated convergence

theorem to get that:
li .
D anli) =2 lim an(7) =1
JjEN JjEN



22 ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

Notice that . c.yan(j) = E[ {X+SnX7nX+£}} /P(S, = n) to deduce that (49) holds.
Since 52’A(k,€) = >_j>k an(j), the proof of (50) is then similar to the proof of (45).

Set ¢, (0) = 571;“4(0,6) that is:

E {%X L{X 48 :nx+e}]

en(l) =

P(S, =n)
According to Lemma 8.3 below, (44) and (49), we have that lim,,_, ¢, (¢) = 1 for all ¢ € Z.
Then arguing as in the proof of (46), we easily get (51). O

Lemma 8.3. For all{ € Z, n > 2, we have:

n n
(52) E o XS =nx+é}] = (E [El{anx =nx+5}:| —(l=1DP(Sp = n+L—1).

Proof. We first prove (52) for £ < 0. Let k > 1. By decomposing according to the number of
children of the root of the first tree in the forest, we have:

Py(Ir) = n) =Y p()Bjen—1(|74] = ny),
JeN

with the convention that Po(-) = 0. Then using Dwass formula (17) in each side of this
equality, we get:

kP(Sn =N — k‘) = E |: (X —|— ]C — 1)1{X+Snxfnx k+1}:|

nx

Take ¢ =1 — k to get that (52) holds for ¢ < 0.

Unfortunately, we didn’t get a similar proof for £ > 1 and we prove (52) for £ > 1 by
induction. Let £ > 0. Assume that (52) holds for all ¢ < ¢ and all n > 2, and let us prove it
holds for ¢ + 1 and all n > 2. We have:

n+1
53) E |21
53 B
with

nxy —n

— X1 _
nX(nX + 1) {X+Snx+1—nx+1+f}:| )

Xl{X+SnX+1=nX+1+Z}] = Al +E [

n
A =E [a Xl{X+SnX+1nx+1+€}} :

Using (52), we have:

Zp |: Xl{XJrSnX—nXJrlJrf J}:|
jEN

n
= p*(O)E [E X1ix4is,, =nx+1+é}]

n . .
+ > p? ( t+1-j)E |:E1{X+Snxnx+€+1—j}:| — (= )P(Sh=n+{- J)> :

JEN*

So we have:

(54) Ay =p(0)As + A3 —E [( — X1)1(s, 1 =nt0}] -
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with

n n
(55) As =E e X1ixys,, =nx+1+é}] —((+1)E [@ Lix+8,, =nx+é+1}:| +LP(Sp =n+Y)
and

n
A3 =E [(5 +1- Xl)EI{X+SnX+InX+£+1}:| :

We compute the last term of (54). We have:

Sn+1 n
k [(E - X1)1{5n+1=n+5}] =E |:<£ o +1 1{5n+1=n+€} = n—+1(£ —DP(Spt1 =n+1).
We compute As:
Sn +1 n
A3 =E [(5 +1- ﬁ El{x+snx+1:nx+e+1}
nx+1+4—-—X\ n
- [(f S| ) El{mxwxw}]
n
=(E [nX +1 1{X+Snx+1=nx+é+1}:| +E [m Xl{X+SnX+1=nx+2+1} )
Plugging the result in (53), we get:
n+1
E [nx 1 Xl{X+SnX+1nx+1+é}}
— A n
=p”(0)A2 + (E [nx 1 1{X+Snx+1nx+€+1}:|
n
+E |:nX +1 Xl{X+SnX+1=nx+1+€}:| T n +1 (f - 1)P(Sn+1 =n+ f)
We obtain, using that (n+ 1)x = nx + 1 and (52) with n + 1 instead of n:
A _n n+1 In n+1
p (O)AQ = T 1E |:’I’LX 1 Xl{X+SnX+1=nx+1+Z}:| - n+1 nx + 1 {X+Sny+1=nx+{+1}
n
+ n+1(€— DP(Sp41=n+4)
=0.
Recall (55). The fact that Ay = 0 gives exactly that (52) holds with ¢ replaced by £+ 1. This
proves the induction and ends the proof of the lemma. O

8.3. Generalization of the strong ratio limit property II. We use notations from
Section 7.2. We have the following generalization of the strong ratio limit property.

Lemma 8.4. Assume that p™ is aperiodic, p(p?) < 1, p(pA) = 1 and E [eGXA] = +oo for
all 0 > 0. Then for all m, k € Z, we have:

E [Nl{sn—m+N=n7k}:|

im = 1.
ot B [N1gg, i n=n)]

(56)

Note that if p# is periodic, then (56) still holds along the subsequence for which the
denominator is positive.
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Proof. We shall mimic the proof of the strong ratio limit property provided in [12]. Since p*
is aperiodic, the denominator of (56) is positive for n large enough and it is enough to prove
the result for m = 1 and k such that p*(k) > 0. Denote p;*(k) = 1, 1(x,—k}/n. We have:

E [Np ()15, 4 nv=n}] = B [N1{x, =i} (5,4 8=n}] = P (B [N1gs, 4 n=n—s] -
The proof will be complete as soon as we prove that:
E [Nl{\ﬁﬁ‘(k)—p““(k)\>e}1{sn+N:n}}

Jp =

converges to 0 for all € > 0. Notice that:

J <1E{N1{mﬁw>pAum>eﬂ _ P(IpAk) — pA(k)| > ) E[N]P(S, = n)
"7 B[N v=n] P(Su=n)  E[Nlgs,in=n)]
According to [12], since p# is non-generic with p(p™) = 1, we have lim,_, ;. P(|p:A(k) —
pA(k)| > €)/P(S,, = n) = 0. By Fatou and using the strong ratio limit property, we have:

lim sup E[N]P(Sy =n) <1
notoo B [Nlgs, 4 non)]

Since € > 0 is arbitrary, we deduce that lim,_, o J, = 0. U

Remark 8.5. Notice that, from the proof of the lemma, we see that N could be replaced by
any non-negative integrable random variable independent of (Xj, k € N*).

Recall that My = 0 and for n € N*:
n
M,, = Z Np.
k=1

We assume that (Ng,k € N*) and (Xj,k € N*) are independent. We have the following
result.

Lemma 8.6. Assume p™ is aperiodic, with p(p?) < 1 and p(p*) = 1. Let m € N and k € Z,
we have:
E|N1 —n—

=1.
nrtoo B [Nlgg, 4 N=n}]

Proof. Let

E [N1{g, 4 Nen—t—k})

E [N1is, n=n)]
Denote by g = (¢(¢),¢ € N) the distribution of M}, and by r = (r(¢),¢ € N) the distribution
of S,,. We have, thanks to Lemma 8.4, that lim,, ¢, ¢ = 1 and:

Cnyt =

E|N1 _
i S r(0)ene = tim ”“WW”%“]:1:§:MQ
n——+o0 = n—+oco [E [N]-{Sn—f—N:n}]

Let jo such that P(Z; = jy) > 0. Notice that:
T(@) = P(Sm = 6) > ]P’(Zl 4+ ...+ 2y =mjo, My, = gaNm—l—l + ...ijo = 0)

We deduce that there exists ¢ > 0 such that ¢(¢) < Cr(¢) for all £ € N. By dominated
convergence, we deduce that lim, o0 D ey @(€)cne = D pen @) limy s yoo cpp = 1. O

lim ¢, .
n—+oo n.t
feN



CONDENSATION FOR GW TREES 25

Let py be the distribution of N. We have, using the decomposition of the GW tree with
respect to the descendants of () in A and Dwass formula (17):

(57) P(La => oGP (T4 =n) == E [N1gs,+n=n}] -
jEN

More generally, we have

1 J
(58) Pj(La(r) =n)=—E {Mjl{sn—i—Mj:n}} = E [Nl{Sn—l—Mj_l-i—N:n}} :

with N independent of S,, and M,;_
We set for £ € Z:

n E [Nl{snj +Mj,1,z+N=nj}]

(59) PG =0~
; E [N1is, n=n)]

The next lemma is the analogue of Lemma 8.3 in our current setting.
Lemma 8.7. For £ <0, we have lim, 4 By =1— /.

Proof. Recall that E [N]-{Sn—f—N:n}] = P(La(r) =n). Let £k > 0. By decomposing 7 under
P41 with respect to the number of children of the first tree in the forest, we get:

Prir(La(r = 2(j) Prij(La(r) =ny)
JeEN
k +J
]EN

1
Then use (58) and Lemma 8.6 to deduce that:

nPri1(La(T) =n)
n—+oo B [N1yg, 4 N=n}]

=k+ 1

This gives the lemma. O

In order to extend Lemma 8.7 in a weaker form for ¢ > 0, we give a preliminary lemma.
Set for £ > k, £,k € Z:
n
Cnyé(k) =E E N(X - £)+1{Snx+MX—k—1+N:nX} .
Notice that for £ € Z:
(60) Cro(€) = nBy JP(LA(T) =n).
We define z; = max(z,0).

Lemma 8.8. Assume p™ is aperiodic, non-generic with ,o(pA) =1. We have for k € Z such
that k < £:

i
n—+00 Cpy g(0)
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Proof. Notice that nN(X — ¢)4/nx is integrable. Mimicking the proof of Lemma 8.4 and
using that nx takes only two possible values a.s., we get for m, k € Z:

. E [%N(X - £)+l{Snx—mJFMX*l*ZJrN:nXik}}
lim

n—+4o00 E [%N(X — £)+1{SnX+MX—1—€+N:nX}:|

Then mimicking the proof of Lemma 8.6, we get for m € N and k € Z:

=1.

E [%N(X - €)+1{Snx+MX717Z+m+N:nX*k}:|

lim =1.

notoo [%N(X - €)+1{SnX+MX_1_e+N:nx}}
Then take m = ¢ — k > 0 to get the result. U
Lemma 8.9. Assume p* is aperiodic, non-generic with p(p ’4) =1. For £ >0, we have:

lim B,y=1-p+E[(X —4)4].

n—+oo
Proof. Let £ > —1. We have:
{—1
(61) Cpe(-1) = )= > p()G - OF [:j N 1{snj+Mj+Nnj}]
j=0

’I’LX
with the convention that Z@ = 0. Recall that lim, 4 By -1 = 2 and lim,, s o By o = 1,
thanks to Lemma 8.7 and thus (60) implies that:
Ch,—1(=1) = 2E [N1yg 4 N—p}| and Cpno(0) = E [N1{g, ynop}] -
We deduce from Lemma 8.8 that
lim Cn’o(_l) = lim 7071’0(_1)
n—+oo [ [N1{5n+N:n}] n—+00 Cn,O(O)

We deduce from (61) with £ = —1 and Lemma 8.6 that:

=1.

E | ax NS, +Mxt+N=n
(62) lim [ x Ay M X}]
e
Let ¢ > 1. We deduce from (61) with £ > 1, (60), (57), Lemma 8.6 and (62) that:

=1.

lim Bng—l—Zp Yi—0)—l=1—pu+E[(X —-20)4].

n—-+o0o

REFERENCES

[1] R. ABRAHAM and J. DELMAS. Local limits of conditioned galton-watson trees I: the infinite spine case.
arXiv:1304.4035, 2013.

[2] P. BILLINGSLEY. Convergence of probability measures. Wiley Series in Probability and Statistics: Prob-
ability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-Interscience
Publication.

[3] N. CURIEN and I. KORTCHEMSKI. Random non-crossing plane configurations: a conditioned Galton-
Watson tree approach. Random Struct. and Alg., To appear, 2013.



CONDENSATION FOR GW TREES 27

[4] M. DWASS. The total progeny in a branching process and a related random walk. J. Appl. Probability,
6:682-686, 1969.

[5] J. GEIGER and L. KAUFMANN. The shape of large Galton-Watson trees with possibly infinite variance.
Random Struct. and Alg., 25(3):311-335, 2004.

[6] S. JANSON. Simply generated trees, conditioned Galton-Watson trees, random allocations and conden-
sation. Probab. Surv., 9:103-252, 2012.

[7] T. JONNSSON and S. STEFANSSON. Condensation in nongeneric trees. J. Stat. Phys., 142:277-313,
2011.

[8] J. G. KEMENY. A probability limit theorem requiring no moments. Proc. Amer. Math. Soc., 10:607-612,
1959.

[9] D. KENNEDY. The Galton-Watson process conditioned on the total progeny. J. Appl. Probability,
12(4):800-806, 1975.

[10] H. KESTEN. Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab.
Statist., 22(4):425-487, 1986.

[11] N. MIMAMI. On the number of vertices with a given degree in a Galton-Watson tree. Adv. in Appl.
Probab., 37(1):229-264, 2005.

[12] J. NEVEU. Sur le théoréme ergodique de Chung-Erdés. C. R. Acad. Sci. Paris, 257:2953-2955, 1963.

[13] J. NEVEU. Arbres et processus de Galton-Watson. Ann. de U'Inst. Henri Poincaré, 22:199-207, 1986.

[14] D. RIZZOLO. Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the
number of vertices with out-degree in a given set. arXiv:1105.2528, 2013.

ROMAIN ABRAHAM, LABORATOIRE MAPMO, CNRS, UMR 7349, FEDERATION DENIS PoissoN, FR
2964, UNIVERSITE D’ORLEANS, B.P. 6759, 45067 ORLEANS CEDEX 2, FRANCE.
E-mail address: romain.abraham@univ-orleans.fr

JEAN-FRANGOIS DELMAS, UNIVERSITE PARIs-EsT, CERMICS (ENPC), F-77455 MARNE LA VALLEE,
FRANCE.
E-mail address: delmas@cermics.enpc.fr



