Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

Résumé

Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in details.
Fichier principal
Vignette du fichier
manuscript.pdf (965.12 Ko) Télécharger le fichier
supplementary_material.pdf (236.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Autre
Loading...

Dates et versions

hal-00906934 , version 1 (20-11-2013)

Identifiants

  • HAL Id : hal-00906934 , version 1

Citer

François Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. 2013. ⟨hal-00906934⟩
116 Consultations
321 Téléchargements

Partager

More