Stability of an inverse problem for the discrete wave equation and convergence results - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2015

Stability of an inverse problem for the discrete wave equation and convergence results

Sylvain Ervedoza
Axel Osses
  • Fonction : Auteur
  • PersonId : 843352

Résumé

Using uniform global Carleman estimates for discrete elliptic and semi-discrete hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterparts, include new terms depending on the discretization parameter h. From these stability results, we design a numerical method to compute convergent approximations of the continuous potential.
Fichier principal
Vignette du fichier
Article-FinalVersion-normalclass.pdf (608.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00874565 , version 1 (18-10-2013)
hal-00874565 , version 2 (26-09-2014)

Identifiants

Citer

Lucie Baudouin, Sylvain Ervedoza, Axel Osses. Stability of an inverse problem for the discrete wave equation and convergence results. Journal de Mathématiques Pures et Appliquées, 2015, 103 (6), pp.1475. ⟨10.1016/j.matpur.2014.11.006⟩. ⟨hal-00874565v2⟩
335 Consultations
220 Téléchargements

Altmetric

Partager

More