On the controllability of quantum transport in an electronic nanostructure
Résumé
We investigate the controllability of quantum electrons trapped in a two-dimensional device, typically a MOS field-effect transistor. The problem is modeled by the Schrödinger equation in a bounded domain coupled to the Poisson equation for the electrical potential. The controller acts on the system through the boundary condition on the potential, on a part of the boundary modeling the gate. We prove that, generically with respect to the shape of the domain and boundary conditions on the gate, the device is controllable. We also consider control properties of a more realistic nonlinear version of the device, taking into account the self-consistent electrostatic Poisson potential.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...