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On the controllability of quantum transport in an electronic

nanostructure∗

Florian Méhats† Yannick Privat‡ Mario Sigalotti§

Abstract

We investigate the controllability of quantum electrons trapped in a two-
dimensional device, typically a MOS field-effect transistor. The problem is modeled
by the Schrödinger equation in a bounded domain coupled to the Poisson equation for
the electrical potential. The controller acts on the system through the boundary con-
dition on the potential, on a part of the boundary modeling the gate. We prove that,
generically with respect to the shape of the domain and boundary conditions on the
gate, the device is controllable. We also consider control properties of a more realistic
nonlinear version of the device, taking into account the self-consistent electrostatic
Poisson potential.

Keywords: Schrödinger–Poisson system, quantum transport, nanostructures, controlla-
bility, genericity, shape deformation

AMS classification: 35J10, 37C20, 47A55, 47A75, 93B05

1 Introduction and main results

In order to comply with the growing needs of ultra-fast, low-consumption and high-
functionality operation, microelectronics industry has driven transistor sizes to the
nanometer scale [4, 23, 47]. This has led to the possibility of building nanostructures
like single electron transistors or single electron memories, which involve the transport
of only a few electrons. In general, such devices consist in an active region (called the
channel or the island) connecting two electrodes, known as the source and the drain, while
the electrical potential in this active region can be tuned by a third electrode, the gate.
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In many applications, the performance of the device will depend on the possibility of
controlling the electrons by acting on the gate voltage.

At the nanometer scale, quantum effects such as interferences or tunneling become
important and a quantum transport model is necessary. In this paper, we analyze the
controllability of a simplified mathematical model of the quantum transport of electrons
trapped in a two-dimensional device, typically a MOS field-effect transistor. The problem
is modeled by a single Schrödinger equation, in a bounded domain Ω with homogeneous
Dirichlet boundary conditions, coupled to the Poisson equation for the electrical potential.
This work is a first step towards more realistic models. For instance, throughout the paper,
the self-consistent potential modeling interactions between electrons is either neglected,
or (in the last section of the paper) considered as a small perturbation of the applied
potential.

The control on this system is done through the boundary condition on the potential, on
a part of the boundary modeling the gate. Degrees of freedom of the problem are the shape
of the nanometric device and the position of the gate and its associated Dirichlet boundary
conditions, modeling possible inhomogeneities: we prove that, generically with respect to
these degrees of freedom, the device is controllable. We recall that Genericity is a measure
of how frequently and robustly a property holds with respect to some parameters.

Controllability of general control-affine systems driven by the Schrödinger equation
has been widely studied in the recent years. The first positive controllability results for
infinite-dimensional quantum systems have been established by local inversion theorems
and the so-called return method [5, 6] (see also [8] for more recent results in this direction).
Other results have been obtained by Lyapunov-function techniques and combinations with
local inversion results [9, 30, 37, 38, 39, 41] and by geometric control methods, using
Galerkin or adiabatic approximations [10, 11, 12, 14, 19, 20]. Finally, let us conclude this
necessarily incomplete list by mentioning that specific arguments have been developed to
tackle physically relevant particular cases [7, 22, 33]. Let us also recall that genericity of
sufficient conditions for the controllability of the Schrödinger equation has been studied
in [35, 38, 40, 43].

Our analysis is based on the sufficient condition for approximate controllability ob-
tained in [10], which requires a non-resonance condition on the spectrum of the internal
Hamiltonian and a coupling property (the connectedness chain property) on the exter-
nal control field. Genericity is proved by global perturbations, exploiting the analytic
dependence of the eigenpairs of the Schrödinger operator.

1.1 The quantum transport model

The unperturbed device

Let us write a first model. In the following, Ω denotes a rectangle in the plane.
We assume without loss of generality that Ω = (0, π) × (0, L) for some L > 0, so

that, with the notations of Figure 1, one has ΓsD = {0} × [0, L], ΓdD = {π} × [0, L],
ΓN = [0, π]×{0} and ΓgD = [0, π]×{L}. We set ΓD = ΓsD ∪ΓdD ∪ΓgD. In the whole paper,
the notation ∂

∂ν denotes the outward normal derivative.
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Figure 1: Representation of the transistor

We focus on the control problem




i∂tψ(t, x) = −∆ψ(t, x) + V (t, x)ψ(t, x), (t, x) ∈ R+ × Ω

−∆V (t, x) = 0, (t, x) ∈ R+ × Ω,

ψ(t, x) = 0, (t, x) ∈ R+ × ∂Ω,

V (t, x) = χ(x)Vg(t), (t, x) ∈ R+ × ΓgD,

V (t, x) = Vs = 0, (t, x) ∈ R+ × ΓsD,

V (t, x) = Vd = 0, (t, x) ∈ R+ × ΓdD,

∂V

∂ν
(t, x) = 0, (t, x) ∈ R+ × ΓN .

(1.1)

The factor χ is an approximation of the constant function 1Q(Γg
D) that models spatial

inhomogeneities, and is assumed to belong to

C1
0(Γ

g
D) = {χ ∈ C1(ΓgD) : χ(0, L) = χ(π, L) = 0}.

The vanishing condition on the boundary of the gate guarantees the continuity of the
Dirichlet condition in the equation for V . This, in turns, ensures that the trace of V (t, ·)
on ΓsD ∪ ΓgD ∪ ΓdD belongs to H1/2(ΓsD ∪ ΓgD ∪ ΓdD), and then V (t, ·) ∈ H1(Ω).

Here, ψ is the wave function of the electrons, satisfying the Schrödinger equation with
the potential V . This potential solves the Poisson equation with a vanishing right-hand
side, which means that we neglect the self-consistent electrostatic effects. In Section 3.2, as
a generalization, we incorporate the self-consistent potential in the model as a perturbation
of the applied potential V .

Let us comment on the boundary conditions. The wavefunction ψ is subject to homo-
geneous Dirichlet boundary conditions, modelling the fact that the electrons are trapped
in the device. For the potential V , the only nontrivial boundary condition is taken at
the upper side of the rectangle ΓgD where the gate is located. The applied grid voltage
t 7→ Vg(t), with values in [0, δ] for some δ > 0 fixed throughout the paper, is seen as
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a control, in the sense that the evolution of the system can be driven by its choice. At
the source and drain contacts ΓsD and ΓdD, we impose homogeneous Dirichlet boundary
conditions: we assume indeed for simplicity that Vs = Vd = 0, the goal of this paper being
to study the possibility of controlling by the gate. Finally, a Neumann boundary condition
is imposed at the lower side ΓN of the rectangle, assumed in contact with the bulk where
electrical neutrality holds.

The existence and uniqueness of mild solutions of (1.1) in C0(R, L2(Ω,C)) for Vg in
L∞(R, [0, δ]) is then a consequence of general results for semilinear equations (see, for
instance [3] or [42]).

Problem with shape inhomogeneities

The problem above can be seen as an idealization, in the sense that the shape of the device
is assumed to be perfectly rectangular.

Irregularities and inhomogeneities can be introduced in the model as follows. Let Q
be in

Diff1
0 = {Q : R2 → R2 | Q orientation-preserving C1-diffeomorphism}

and χ be a function in

C1
0(Q(ΓgD)) = {χ ∈ C1(Q(ΓgD)) : χ(Q(0, L)) = χ(Q(π, L)) = 0}. (1.2)

Replacing Ω by Q(Ω), the resulting system writes





i∂tψ(t, x) = −∆ψ(t, x) + V (t, x)ψ(t, x), (t, x) ∈ R+ ×Q(Ω),

−∆V (t, x) = 0, (t, x) ∈ R+ ×Q(Ω),

ψ(t, x) = 0, (t, x) ∈ R+ ×Q(∂Ω),

V (t, x) = Vg(t)χ(x), (t, x) ∈ R+ ×Q(ΓgD),

V (t, x) = 0, (t, x) ∈ R+ ×Q(ΓsD ∪ ΓdD),

∂V

∂ν
(t, x) = 0, (t, x) ∈ R+ ×Q(ΓN ).

(1.3)

We clearly have V (t, x) = Vg(t)V
Q,χ
0 (x) where V Q,χ

0 solves





−∆V Q,χ
0 (x) = 0, x ∈ Q(Ω)

V Q,χ
0 (x) = χ, x ∈ Q(ΓgD)

V Q,χ
0 (x) = 0, x ∈ Q(ΓsD ∪ ΓdD)

∂V Q,χ
0

∂ν
(x) = 0, x ∈ Q(ΓN ).

(1.4)

As for the unperturbed system, mild solutions of (1.3) in C0(R, L2(Q(Ω,C)) exist and are
unique for Vg in L∞(R, [0, δ]).
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1.2 Action of the grid voltage on the system

A control approach

Our aim is to understand to what extent the system can be manipulated through the grid
voltage. In this perspective, the time-varying parameter Vg(·) is seen as a control law and
the objective is to characterize the controllability properties of the resulting system.

Definition 1.1. We say that the control system (1.3) is approximately controllable if, for
every ψ0, ψ1 ∈ L2(Q(Ω),C) with unit norm and every ε > 0, there exist a positive time T
and a control Vg ∈ L∞([0, T ], [0, δ]) such that the solution ψ of (1.3) with initial condition
ψ(0) = ψ0 satisfies ‖ψ(T )− ψ1‖L2(Q(Ω)) < ε.

Notice that, for quantum control systems with bounded control operators, exact con-
trollability1 cannot be expected (see [3, 46]). This justifies our choice of approximate
controllability as a notion of arbitrary maneuverability of the system. Other possible no-
tions of controllability considered in the literature are exact controllability between smooth
enough wavefunctions (see [6, 8]) or exact controllability in infinite time (see [41]).

The issue of determining whether (1.3) is approximately controllable for a given pair
(Q,χ) seems a difficult task in general, since the known sufficient criteria for approximate
controllability require a fine knowledge of the spectral properties of the operators involved
(see Section 2.1). Instead, our main goal is to study the controllability properties of the
model which hold true generically with respect to the diffeomorphism Q and the boundary
condition χ. Genericity is a measure of how often and with which degree of robustness a
property holds. More precisely, a property described by a boolean function P : X → {0, 1}
is said to be generic in a Baire space X if there exists a residual set2 Y ⊂ X such that
every x in Y satisfies the property P , that is, P (x) = 1. Recall that a residual set is in
particular dense in X.

Genericity results with respect to χ and (Q,χ)

We are now ready to state our two main results. First consider the problems of the form
(1.3) where Q = Id, for which the genericity of the controllability is considered only with
respect to variations of the boundary condition χ on the grid ΓgD. We allow χ to vary
within the class C1

0(Γ
g
D) defined in (1.2), whose metric is complete, making it a Baire space.

We have the following genericity result.

Theorem 1.2. Let L2 6∈ π2Q. For Q = Id and a generic χ in C1
0(Γ

g
D), the control problem

(1.3) is approximately controllable.

Consider now the entire class of problems of the form (1.3). In order to endow it with
a topological structure, we identify (1.3) with the triple (Q(Ω), Q(ΓgD), χ). The family of

1System (1.3) would be exactly controllable if for every ψ0, ψ1 ∈ L2(Q(Ω),C) with unit norm, there
existed a positive time T and a control Vg ∈ L∞([0, T ], [0, δ]) such that ψ(T ) = ψ1, where ψ denotes the
solution of (1.3) corresponding to Vg with initial condition ψ(0) = ψ0.

2i.e. the intersection of countably many open and dense subsets.
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problems is then given by

P = {(Q(Ω), Q(ΓgD), χ) | (Q(Ω), Q(ΓgD)) ∈ Σ and χ ∈ C1
0(Q(ΓgD))}, (1.5)

where
Σ = {(Q(Ω), Q(ΓgD)) | Q ∈ Diff1

0}.
The metric induced3 by that of C1-diffeomorphisms and by the C1 metric on C1

0(Γ
g
D) makes

P complete ([36]). In particular, P is a Baire space.

Theorem 1.3. For a generic element of P, the control problem (1.3) is approximately
controllable.

The proofs of Theorems 1.2 and 1.3 can be found in Sections 2.4 and 2.5, respectively.
They are based on a general sufficient condition for controllability proved in [10] and
recalled in Section 2.1 below. In a nutshell, such a condition is based, on the one hand, on
a nonresonance property of the spectrum of the Schrödinger operator and, on the other
hand, on a coupling property for the interaction term (see the notion of connectedness chain
introduced in Definition 2.1). These properties are expressed as a countable number of
open conditions. Their density is proved through a global analytic propagation argument.

In Section 3, we present two generalizations of these results, motivated by the applica-
tions. First, in Subsection 3.1, we consider a situation where the gate only partially covers
the upper side of the rectangle domain. Then, in Subsection 3.2, we take into account
in our model the self-consistent electrostatic Poisson potential, as a perturbation of the
applied potential V .

2 Proof of the genericity results

2.1 General controllability conditions for bilinear quantum systems

We recall in this section a general approximate controllability result for bilinear quantum
systems obtained in [10].

Let H be a complex Hilbert space with scalar product 〈·, ·〉 and A,B be two linear
skew-adjoint operators on H. Let B be bounded and denote by D(A) the domain of A.
Consider the controlled equation

dψ

dt
(t) = (A+ u(t)B)ψ(t), u(t) ∈ [0, δ], (2.1)

with δ > 0. We say that A satisfies assumption (A) if there exists an orthonormal basis
(φk)k∈N of H made of eigenvectors of A whose associated eigenvalues (iλk)k∈N are all
simple.

3This metric is defined, for (Ω1,Γ1, χ1) and (Ω2,Γ2, χ2) in P, by

inf
{

‖Q1 −Q2‖C1(Ω,R2) + ‖χ1 ◦Q1 − χ2 ◦Q2‖C1(Γ
g

D
,R) | Qj ∈ Diff1

0, Qj(Ω) = Ωj , Qj(Γ
g
D) = Γj , j = 1, 2

}

.
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Definition 2.1. A subset S of N2 couples two levels j, k in N if there exists a finite
sequence

(
(s11, s

1
2), . . . , (s

p
1, s

p
2)
)
in S such that

(i) s11 = j and sp2 = k;

(ii) sj2 = sj+1
1 for every 1 6 j 6 p− 1.

S is called a connectedness chain if S couples every pair of levels in N.
S is a non-resonant connectedness chain for (A,B,Φ) if it is a connectedness chain,

〈φj , Bφk〉 6= 0 for every (j, k) ∈ S, and λs1 − λs2 6= λt1 − λt2 for every (s1, s2) ∈ S with
s1 6= s2 and every (t1, t2) in N2 \ {(s1, s2)} such that 〈φt1 , Bφt2〉 6= 0.

Theorem 2.2 ([10]). Let A satisfy (A) and let Φ = (φk)k∈N be an orthonormal basis of
eigenvectors of A. If there exists a non-resonant connectedness chain for (A,B,Φ) then
(2.1) is approximately controllable.

Remark 1. The simplicity of the spectrum required in Definition 2.1 is not necessary.
The construction in [10] is indeed slightly more general and we refer to that paper and
[11] for further details.

We also recall that a similar result based on a stronger requirement has been proposed
in [20]. In that paper, the spectrum of the operator A was asked to be non-resonant, in
the sense that every nontrivial finite linear combination with rational coefficients of its
eigenvalues was asked to be nonzero.

Remark 2. The statement of Theorem 2.2 could be strengthened, according to the results
in [10], in two other directions: first, the controllability could be extended beyond single
wavefunctions, towards ensembles (controllability in the sense of density matrices and
simultaneous controllability); second, unfeasible trajectories in the unit sphere of H turn
out to be trackable (i.e., they can be followed approximately with arbitrary precision
by admissible ones) at least when the modulus (but not the phase) of the components
of the wavefunction are considered. Moreover, the proof of Theorem 2.2 given in [10] is
constructive, leading to a control design algorithm based on the knowledge of the spectrum
of the operator A (see also [19] for an alternative construction).

Remark 3. Another consequence of the Lie–Galerkin approach behind Theorem 2.2 is
that the conclusions of Theorems 1.2 and 1.3 could be strengthened by stating approximate
controllability in stronger topologies provided that V Q,χ

0 belongs to H2(Q(Ω)) (this is
always the case in the framework of Theorem 1.2 as it follows from standard elliptic
regularity results in rectangles). The key point is that approximate controllability can be
obtained by requiring, in addition, that the total variation and the L1 norm of the control
law are bounded uniformly with respect to the tolerance (see [10, 19]). Proposition 3
in [13] and Proposition 6 in [14] then implies that, for an initial and final conditions
ψ0, ψ1 ∈ H2(Ω), for every tolerance ε > 0, there exists a control steering ψ0 to an ε-
neighbourhood of ψ1 for the L2-norm, while satisfying a uniform bound (independent of
ε) for the H2-norm. An interpolation argument allows to conclude that, for ξ ∈ (0, 2), ψ0

can be steered ε-close to ψ1 in the Hξ-norm.
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2.2 Preliminary steps of the proofs

The proofs of Theorems 1.2 and 1.3 are based on the idea of propagating sufficient con-
trollability conditions using analytic perturbations ([28, 35, 43]). This is possible since the
general controllability criterion for quantum systems seen in the previous section can be
seen as a countable set of nonvanishing scalar conditions.

More precisely, let us denote by Λ(Q(Ω)) the spectrum of the Laplace–Dirichlet oper-
ator on Q(Ω) and, for every (Q(Ω), Q(ΓgD), χ) ∈ P such that Λ(Q(Ω)) is simple (i.e., each
eigenvalue is simple), define

S(Q(Ω), Q(ΓgD), χ) =

{
(k, j) ∈ N2 |

∫

Q(Ω)
V Q,χ
0 (x)φk(x)φj(x)dx 6= 0

}
, (2.2)

where {φj}j∈N is a Hilbert basis of eigenfunctions of the Laplace–Dirichlet operator on
Q(Ω), ordered following the growth of the corresponding eigenvalues.

Theorem 1.3 is proved by applying Theorem 2.2 with A the Laplace–Dirichlet operator
on Q(Ω) multiplied by i and B the multiplicative operator defined by Bψ = −iV Q,χ

0 ψ.
We then show that both sets

P1 = {(Q(Ω), Q(ΓgD), χ) ∈ P | Λ(Q(Ω)) non-resonant},

where the notion of non-resonant spectrum is the one introduced in Remark 1, and

P2 = {(Q(Ω), Q(ΓgD), χ) ∈ P | Λ(Q(Ω)) simple, S(Q(Ω), Q(ΓgD), χ) connectedness chain}

are residual in P. Their intersection is therefore residual as well (it is itself the intersection
of countably many open dense sets). The following result resumes these considerations.

Proposition 2.3. If P1 and P2 are residual then the control problem (1.3) is approximately
controllable for a generic element of P.

The situation is slightly different for the proof of Theorem 1.2, since the fact that
Q = Id prevents Λ(Q(Ω)) = Λ(Ω) from being non-resonant. Recall that (0, δ) is the
interval of admissible control values (see Section 1.1). We are then led to rewrite, for
every ρ ∈ [0, δ), equation (1.3) in the case Q = Id as

{
i∂tψ(t, x) = (−∆+ ρV Id,χ

0 (x))ψ(t, x) + (Vg(t)− ρ)V Id,χ
0 (x)ψ(t, x), (t, x) ∈ R+ × Ω,

ψ(t, x) = 0, (t, x) ∈ R+ × ∂Ω.

(2.3)

We apply Theorem 2.2 to (2.3) with A = −i(−∆ + ρV Id,χ
0 Id) on Ω (with Dirichlet

boundary conditions) and B = −iV Id,χ
0 Id. In analogy to the notation introduced above,

let

Pρ
1,BC = {χ ∈ C1

0(Γ
g
D) | the spectrum of −∆+ ρV Id,χ

0 Id is weakly non-resonant},

where a sequence (λn)n∈N is said to be weakly non-resonant if λs1 − λs2 6= λt1 − λt2 for
every (s1, s2), (t1, t2) ∈ N2 with s1 6= s2 and (s1, s2) 6= (t1, t2).
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Moreover, let

Pρ
2,BC ={χ ∈ C1

0(Γ
g
D) | the spectrum of −∆+ ρV Id,χ

0 Id is simple

and Sρ(χ) is a connectedness chain}
where

Sρ(χ) =

{
(k, j) ∈ N2 |

∫

Ω
V Id,χ
0 (x)φk,ρ(x)φj,ρ(x)dx 6= 0

}
(2.4)

and {φj,ρ}j∈N is a Hilbert basis of eigenfunctions of −∆+ ρV Id,χ
0 Id, ordered following the

growth of the corresponding eigenvalues.
System (2.3) is approximately controllable if χ ∈ Pρ

1,BC ∩ Pρ
2,BC for some ρ ∈ (0, δ).

Theorem 1.2 is then proved through the following proposition, playing the role of
Proposition 2.3 in the case Q = Id.

Proposition 2.4. Let L2 6∈ π2Q and Q = Id. If there exists ρ ∈ (0, δ) such that Pρ
1,BC

and Pρ
2,BC are residual then the control problem (1.3) is approximately controllable for a

generic χ in C1
0(Γ

g
D).

A crucial tool for proving that the sets introduced above are residual is the following
proposition, stating that V Q,χ

0 is analytic with respect to Q and χ.

Proposition 2.5. Let I be an open interval and I ∋ t 7→ (Qt, ϕt) be an analytic curve in
the product of Diff1

0 with the space C1
0(Γ

g
D) defined in (1.2). Denote by χt the composition

ϕt ◦ Q−1
t and by V0,t the function V Qt,χt

0 defined as in (1.4). Then t 7→ V0,t ◦ Qt is an
analytic curve in H1(Ω).

The proof of the proposition is given in next section. One important consequence for
our argument is the following corollary.

Corollary 2.6. Let P̂ be one of the sets P1, P2, Pρ
1,BC, P

ρ
2,BC. If P̂ is nonempty, then

P̂ is residual. Moreover, if Pρ
j,BC is nonempty for j ∈ {1, 2} and ρ ∈ [0, δ), then Pρ′

j,BC is
nonempty (and hence dense) for almost all ρ′ ∈ [0, δ).

Proof of Corollary 2.6. In order to avoid redundancies, we prove the corollary only in the
case P̂ = P2. The proof can be easily adapted to the other cases.

Let us first prove that P2 is the intersection of countably many open sets. We claim
that P2 = ∩n∈NAn, where An is the set of triples (Q(Ω), Q(ΓgD), χ) ∈ P such that the first
n eigenvalues of the Laplace–Dirichlet operator on Q(Ω) are simple and there exist r ∈ N

and r other simple eigenvalues of λk1 , . . . , λkr such that the matrix
(∫

Q(Ω)
φjφlV

Q,χ
0

)

j,l∈{1,...,n}∪{k1,...,kr}

(2.5)

is connected4, where each φj is an eigenfunction corresponding to λj . It is clear that an
element of ∩n∈NAn is in P2, since its corresponding spectrum is simple and a connectedness

4We recall that a m×m matrix C = (cjl)
m
j,l=1 is said to be connected if for every pair of indices j, l =

1, . . . ,m there there exists a finite sequence j1, . . . , jw ∈ {1, . . . ,m} such that cjj1cj1j2 · · · cjw−1jwcjwl 6= 0.
The set {(j, l) | cjl 6= 0} is said to be a connectedness chain for C.
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chain is given by the union of all the connectedness chains for the matrices of the type
(2.5). Conversely, if (Q(Ω), Q(ΓgD), χ) ∈ P2, then there exists a bijection ξ : N → N such
that each matrix (∫

Q(Ω)
φξ(j)φξ(l)V

Q,χ
0

)

j,l∈{1,...,n}

is connected (see [35, Remark 4.2]). Given n ∈ N, let N be such that ξ({1, . . . , N}) ⊃
{1, . . . , n}. Then, taking r = N −n and {λk1 , . . . , λkr} = {λξ(1), . . . , λξ(N)} \ {λ1, . . . , λn},
we have that (Q(Ω), Q(ΓgD), χ) ∈ An.

Since each An is open (by continuity of the eigenpairs corresponding to simple eigen-
values), we have proved that P2 is the intersection of countably many open sets.

Let us now show that P2 is dense if it is nonempty. Fix (Q(Ω), Q(ΓgD), χ) ∈ P2 and let

S̄ = S(Q(Ω), Q(ΓgD), χ).

Let I ∋ t 7→ (Qt, ϕt) be an analytic curve in the product Diff1
0 × C1

0(Γ
g
D) and assume

that there exists t0 ∈ I such that Qt0 = Q and ϕt0 ◦ Q = χ. According to Rellich’s
theorem (see [32, 45]), there exists I ∋ t 7→ (λj(t), φj(t))j∈N such that (λj(t), φj(t))j∈N is a
complete family of eigenpairs of the Laplace–Dirichlet operator on Qt(Ω) for every t ∈ I,
with I ∋ t 7→ λj(t) and I ∋ t 7→ φj(t) ◦Qt analytic in R and in L2(Ω,R), respectively, for
every j ∈ N.

Proposition 2.5 implies that for every j, k ∈ N, the function

t 7→
∫

Qt(Ω)
φj(t)φk(t)V

Qt,ϕt◦Q
−1
t

0

is analytic on I. Moreover, the spectrum Λ(Qt(Ω)) is simple for almost every t ∈ I.
We can assume that the sequence (λj(t0))j∈N is (strictly) increasing. For every t ∈ I

such that Λ(Qt(Ω)) is simple, there exists ξt : N → N bijective such that (λξt(j)(t))j∈N is

increasing. By analyticity of t 7→
∫
Qt(Ω) φj(t)φk(t)V

Qt,ϕt◦Q
−1
t

0 for each (j, k) ∈ S̄, we have
that

{(ξ−1
t (j), ξ−1

t (k)) | (j, k) ∈ S̄} ⊂ S(Qt(Ω), Qt(Γ
g
D), ϕt ◦Q−1

t )

for almost every t ∈ I. Since for every bijection ξ̂ : N → N the set {(ξ̂(j), ξ̂(k)) | (j, k) ∈ S̄}
is a connectedness chain, we conclude that for almost every t ∈ I, S(Qt(Ω), Qt(Γ

g
D), ϕt ◦

Q−1
t ) is a connectedness chain. Hence, for almost every t ∈ I, (Qt(Ω), Qt(Γ

g
D), ϕt ◦Q−1

t ) ∈
P2.

We conclude on the density of P2 by considering all analytic curves t 7→ (Qt, ϕt)
passing through (Q,χ). Indeed, given an element (Q(Ω), Q(ΓgD), χ) in P2, the set Q of
diffeomorphisms that can be joined to Q by an analytic curve in Diff1

0 contains Q ◦Diff∞
0 ,

where Diff∞
0 denotes the set of smooth orientation-preserving diffeomorphisms (see, e.g.,

[1]). In particular Q is dense in Diff1
0. Perturbing the boundary condition χ by linear

interpolation, one easily gets that the elements of P which can be joined through analytic
paths of the type t 7→ (Qt, ϕt) to (Q(Ω), Q(ΓgD), χ) is dense in P. Since almost every
element of an analytic path in P through (Q(Ω), Q(ΓgD), χ) is in P2, then P2 is dense in
P.
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The second part of the statement is proved by analogous analyticity considerations
with respect to the parameter ρ.

2.3 Proof of Proposition 2.5

Denote by ϕ̂t the extension of ϕt on Ω which is constant on every vertical segment. Then
t 7→ ϕ̂t is an analytic curve in C1(Ω) with ϕ̂t ≡ 0 on ΓsD ∪ ΓdD.

Define χ̂t = ϕ̂t ◦ Q−1
t and let V̂0,t = V0,t − χ̂t. Notice that V̂0,t is a solution to the

problem 



−∆V̂0,t(x) = ∆χ̂t , x ∈ Qt(Ω),

V̂0,t(x) = 0, x ∈ Qt(ΓD),

∂V̂0,t
∂ν

(x) = 0, x ∈ Qt(ΓN ).

(2.6)

Equivalently, ∫

Qt(Ω)
∇V̂0,t(x) · ∇φ(x) dx =

∫

Qt(Ω)
∆χ̂t(x)φ(x) dx,

for every φ ∈ H1
0,Qt(ΓD)(Qt(Ω)), where

H1
0,Qt(ΓD)(Qt(Ω)) = {φ ∈ H1(Qt(Ω)) | φ = 0 on Qt(ΓD)}.

Fix t0 ∈ I and notice that, for every t ∈ I,

H1
0,Qt(ΓD)(Qt(Ω)) = {φ ◦Qt0 ◦Q−1

t | φ ∈ H1
0,Qt0 (ΓD)(Qt0(Ω))}.

Set Rt = Qt ◦Q−1
t0

. By the standard change of coordinates formula,
∫

Qt0 (Ω)
((DRTt )

−1∇Wt) · ((DRTt )−1∇φ)Jt =
∫

Qt0 (Ω)
(∆χ̂t ◦Rt)φJt

for every φ ∈ H1
0,Qt0 (ΓD)(Qt0(Ω)), where DRt and DRTt are, respectively, the Jacobian

matrix of Rt and its transpose, while Wt = V̂0,t ◦Rt and Jt = det(DRt).
In other words, (t,Wt) is the solution of F (t,Wt) = 0 ∈ H−1

0,Qt0
(Qt0(Ω)), where

H−1
0,Qt0

(Qt0(Ω)) stands for the dual space of H1
0,Qt0

(Qt0(Ω)) with respect to the pivot

space L2(Qt0(Ω)), with

F (t,W ) = −div(At∇W )− (∆χ̂t ◦Rt)Jt,
At = Jt(DRt)

−1(DRTt )
−1.

The analyticity ofWt with respect to t follows by the implicit function theorem, since F is
analytic from I ×H1

0,Qt0 (ΓD)(Qt0(Ω)) into H
−1
0,Qt0

(Qt0(Ω)) and the operator DWF (t0,Wt0)

is an isomorphism of H1
0,Qt0 (ΓD)(Qt0(Ω)) into H−1

0,Qt0
(Qt0(Ω)). Indeed, by linearity of F

with respect to W and because Rt0 is the identity, DWF (t0,Wt0)Z is nothing else that
−∆Z, which is an isomorphism from H1

0,Qt0
(Qt0(Ω)) to H

−1
0,Qt0

(Qt0(Ω)), by Lax-Milgram’s

lemma.
This concludes the proof of Proposition 2.5.
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2.4 Proof of Theorem 1.2

Notice that the assumption L2 6∈ π2Q guarantees that the spectrum of the Laplace–
Dirichlet operator on Ω is simple.

According to Proposition 2.4 and Corollary 2.6, we are left to prove that there exist
ρ1, ρ2 ∈ [0, δ) such that Pρ1

1,BC and Pρ2
2,BC are nonempty. The second part of the statement

of Corollary 2.6, indeed, implies then that there exists ρ ∈ (0, δ) such that Pρ
1,BC ∩ Pρ

2,BC

is residual.
The proof that Pρ

1,BC is nonempty for some ρ ∈ (0, δ) is made in Section 2.4.1, while

it is shown in Section 2.4.2 that P0
2,BC is nonempty.

2.4.1 There exists ρ ∈ (0, δ) such that Pρ
1,BC is nonempty

Let n denote a positive integer and χn ∈ C∞(ΓgD) be defined by

χn(x1, L) = cosh(nL) sin (nx1) . (2.7)

Notice that in this case the solution V Id,χn
0 of (1.4) is explicitly given by

V Id,χn
0 (x) = sin(nx1) cosh(nx2), x = (x1, x2) ∈ Ω.

Proposition 2.7. Let L2 6∈ π2Q. If n is odd, then χn is in Pρ
1,BC for almost every

ρ ∈ (0, δ).

Proof. The eigenpairs of the Laplace–Dirichlet operator on Ω are naturally parameterized
over N2 as follows: for every j = (j1, j2) ∈ N2, let

λj = j21 + j22
π2

L2
, φj(x) =

2√
πL

sin(j1x1) sin
(
j2
π

L

)
.

For every ρ ∈ [0, δ), denote by (λj(ρ))j∈N2 the spectrum of −∆+ ρV Id,χn
0 Id. Moreover,

notice that each function λj(·) can be chosen to be analytic on [0, δ), with λj(0) = λj =

j21 + j22
π2

L2 . Indeed, local analyticity follows from Kato–Rellich theorem (see [44, Theorem
XII.13]) and global one from the fact that the derivative of each λj(·) (which can be
computed as in (2.8) below) is uniformly bounded.

Let us evaluate the derivative of each λj(ρ) at ρ = 0. Denote αj =
dλj
dρ

∣∣∣
ρ=0

. Recall

that the derivative of the eigenvalues can be computed according to the formula

αj =

∫

Ω
V Id,χn
0 (x1, x2)φj(x1, x2)

2 dx1 dx2 (2.8)

(see, for instance, [26]).
We assume that

λj(0)− λk(0) = λj′(0)− λk′(0), (2.9)

αj − αk = αj′ − αk′ (2.10)
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for some j,k, j′,k′ ∈ N2 with (k, j) 6= (k′, j′) and we show that (k,k′) = (j, j′). By
analyticity we then have that λj(ρ) − λk(ρ) = λj′(ρ) − λk′(ρ) only for isolated values of
ρ ∈ (0, δ) and the proposition follows by the countability of N2 × N2.

According to (2.9), we have

j21
π2

+
j22
L2

− k21
π2

− k22
L2

=
j′21
π2

+
j′22
L2

− k′21
π2

− k′22
L2
.

Since L2 /∈ π2Q, we get

j21 − k21 = j′21 − k′21 , (2.11)

j22 − k22 = j′22 − k′22 . (2.12)

Computing (2.8) using the expression

V Id,χn
0 (x1, x2) = sin(nx1) cosh(nx2),

we have

αj =
4

Lπ

∫ π

0
sin(nx1) sin(j1x1)

2 dx1

∫ L

0
cosh(nx2) sin

(
j2πx2
L

)2

dx2

= −32Lπ sinh(nL)

n2
j21

4j21 − n2
j22

(2π)2j22 + n2
.

Hence, we can rewrite (2.10) as

j21j
2
2

(4j21 − n2)((2π)2j22 + n2)
− k21k

2
2

(4k21 − n2)((2π)2k22 + n2)

=
j′21 j

′2
2

(4j′21 − n2)((2π)2j′22 + n2)
− k′21 k

′2
2

(4k′21 − n2)((2π)2k′22 + n2)
, (2.13)

from which we obtain, up to reduction to common denominator,

j21j
2
2(4k

2
1 − n2)(4j′21 − n2)(4k′21 − n2)((2π)2k22 + n2)((2π)2j′22 + n2)((2π)2k′22 + n2)

−k21k22(4j21 − n2)(4j′21 − n2)(4k′21 − n2)((2π)2j22 + n2)((2π)2j′22 + n2)((2π)2k′22 + n2)

−j′21 j′22 (4j21 − n2)(4k21 − n2)(4k′21 − n2)((2π)2j22 + n2)((2π)2k22 + n2)((2π)2k′22 + n2)

+k′21 k
′2
2 (4j

2
1 − n2)(4j′21 − n2)(4k21 − n2)((2π)2j22 + n2)((2π)2j′22 + n2)((2π)2k22 + n2) = 0.

We can rewrite the latter expression in the form P (2π) = 0 where P is an integer polyno-
mial of degree at most 6.

Since 2π is a transcendental number, we necessarily have P = 0. In particular, its
leading coefficient vanishes, that is,

0 =j22k
2
2j

′2
2 k

′2
2 (j

2
1(4k

2
1 − n2)(4j′21 − n2)(4k′21 − n2)− k21(4j

2
1 − n2)(4j′21 − n2)(4k′21 − n2)

− j′21 (4j
2
1 − n2)(4k21 − n2)(4k′21 − n2) + k′21 (4j

2
1 − n2)(4k21 − n2)(4j′21 − n2)). (2.14)
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A simple computation leads to

(k21 − k′21 )(4j
2
1 − n2)(4j′21 − n2) = (j21 − j′21 )(4k

2
1 − n2)(4k′21 − n2). (2.15)

Recall that we are assuming (k, j) 6= (k′, j′) and that we want to prove that
(k,k′) = (j, j′). Assume for now that

k1 6= k′1. (2.16)

According to (2.11) we also have j1 6= j′1. Equation (2.15), moreover, yields

4(k21k
′2
1 − j21j

′2
1 ) = n2(k21 + k′21 − j21 − j′21 ).

Using again (2.11) on both sides of the equality we get

2(k21(k
2
1 − j21 + j′21 )− j21j

′2
1 ) = n2(k21 − j21),

which implies
(k21 − j21)(n

2 − 2(k21 + j′21 )) = 0.

Since n is odd, we necessarily have n2 6= 2(k21 + j′21 ), which implies (jointly with (2.11))

k1 = j1, k′1 = j′1.

Equation (2.13) becomes

k21
4k21 − n2

(
j22

(2π)2j22 + n2
− k22

(2π)2k22 + n2

)
=

k′21
4k′21 − n2

(
j′22

(2π)2j′22 + n2
− k′22

(2π)2k′22 + n2

)
.

(2.17)
We are going to use several times the following technical result.

Lemma 2.8. Let ξ be a transcendental number, and take a, b, c, d, γ ∈ N and µ ∈ Q \ {0}.
If

a

aξ + γ
− b

bξ + γ
= µ

(
c

cξ + γ
− d

dξ + γ

)
(2.18)

then one of the properties holds true: (i) (a, c) = (b, d), (ii) µ = 1 and (a, b) = (c, d), (iii)
µ = −1 and (a, b) = (d, c).

Proof. The proof consists simply in noticing that (2.18) is equivalent to the equality

a

aX + γ
− b

bX + γ
= µ

(
c

cX + γ
− d

dX + γ

)

between rational functions in the variable X and in comparing their poles.
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Applying the lemma to the identity (2.17), we get that either (j2, j
′
2) = (k2, k

′
2), and

hence (k,k′) = (j, j′) as desired, or {j2, k2} = {j′2, k′2}. In the latter case, moreover, (2.12)
implies that (j2, k2) = (j′2, k

′
2), which yields

k21
4k21 − n2

=
k′21

4k′21 − n2
,

since we are in case (ii) of Lemma 2.8. Since the map x 7→ x2/(4x2 − n2) is injective on
[1,+∞) then k1 = k′1, which contradicts (2.16).

Let now
k1 = k′1, k2 6= k′2. (2.19)

Identity (2.11) implies that j1 = j′1 and equation (2.13) simplifies to

j21
4j21 − n2

(
j22

(2π)2j22 + n2
− j′22

(2π)2j′22 + n2

)
=

k21
4k21 − n2

(
k22

(2π)2k22 + n2
− k′22

(2π)2k′22 + n2

)
.

(2.20)
Let us apply again Lemma 2.8. Case (i) is ruled out by assumption (2.19). Hence,
{j2, j′2} = {k2, k′2} and it follows from (2.12), using the same argument as before, that
(j2, j

′
2) = (k2, k

′
2) and j1 = k1. We conclude also in this second case that (k,k′) = (j, j′)

and this concludes the proof of Proposition 2.7.

2.4.2 P0
2,BC is nonempty

Let χn be defined as in the previous section (see equation (2.7)).

Proposition 2.9. If n is even then χn ∈ P0
2,BC.

Proof. We use below the same parameterization on N2 of eigenpairs of the Laplace–
Dirichlet operator as in Section 2.4.1. Notice that the notion of connectedness chain
introduced in Definition 2.1 and (2.2) and (2.4) naturally extends to subsets of (N2)2.
Then, χn is in P0

2,BC if and only if

{
(j,k) ∈ (N2)2 |

∫

Ω
V Id,χn
0 (x)φk(x)φj(x)dx 6= 0

}

is a connectedness chain.
In order to prove that S0(χn) = S(Ω,ΓgD, χn) is a connectedness chain, we are led to

compute the quantities
∫

Ω
V Id,χn
0 (x)φj(x)φk(x)dx =

4

Lπ
AnjkBnjk, j,k ∈ (N2)2,

with

Anjk =

∫ π

0
sin(nx1) sin(j1x1) sin(k1x1)dx1

and

Bnjk =

∫ L

0
cosh(nx2) sin

(
j2πx2
L

)
sin

(
k2πx2
L

)
dx2.
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A tedious but straightforward computation proves that

Anjk =





0 if j1 + k1 + n is even,

−4j1k1n

(j1 + k1 − n)(j1 − k1 + n)(−j1 + k1 + n)(j1 + k1 + n)
otherwise,

whereas

Bnjk =
2(−1)j2+k2L2nπ2j2k2 sinh(nL)

(π2(j2 − k2)2 + n2)(π2(j2 + k2)2 + n2)
.

One immediately sees that the coefficients Bnjk cannot vanish. As for the coefficients
Anjk, if n is even then Anjk vanishes if and only if j1 and k1 have the same parity. Then
S(Ω,ΓgD, χn) = {(j,k) | j1 + k1 is odd} is a connectedness chain: indeed, given j and k in
N2, either j1 + k1 is odd, and then (j,k) ∈ S(Ω,ΓgD, χn), or j1 + k1 is even and then (j, j′)
and (j′,k) are in S(Ω,ΓgD, χn) with j′ = (j1 + 1, j2).

Notice that, conversely, if n is odd then Anjk vanishes if and only if j1 + k1 is odd.
Hence, S(Ω,ΓgD, χn) cannot couple j and k when j1 + k1 is odd. Therefore, χn 6∈ P0

2,BC

for n odd.

2.5 Proof of Theorem 1.3

According to Proposition 2.3 and Corollary 2.6, we are left to prove that P1 is nonempty.
Indeed, we already showed in the previous section that P0

2,BC is nonempty, which implies

that P2, which contains {(Ω,ΓgD, χ) | χ ∈ P0
2,BC}, is nonempty as well. We actually prove

directly that P1 is residual, based on a general result proved in [43].

Lemma 2.10. The set P1 is residual.

Proof. Thanks to [43, Theorem 2.3], the lemma is proved if we show that for every ℓ ∈ N

and q = (q1, . . . , qℓ) ∈ Qℓ\{0} there exists (Q(Ω), Q(ΓgD), χ) ∈ P such that the first ℓ eigen-

values λ1, . . . , λℓ of the Dirichlet–Laplace operator on Q(Ω) are simple and
∑ℓ

j=1 qjλj 6= 0.

Fix ℓ ∈ N and q = (q1, . . . , qℓ) ∈ Qℓ \ {0}. Let L̂ > 0 be such that π2ℓ2 < L̂2 and
consider Ω̂ = (0, π) × (0, L̂). The choice of L̂ is such that the ℓ smallest eigenvalues of
−∆ on Ω̂ with Dirichlet boundary conditions are λj = 1+ j2π2/L̂2, which are simple and
whose corresponding eigenfunctions are (up to normalization)

φj(x1, x2) =
2 sin(x1) sin(jπx2/L̂)√

πL̂
.

Let X be a C1 vector field on R2 with compact support intersecting {0}×(0, L̂) but not
any other side of Ω̂. For t0 > 0 small enough and t ∈ (−t0, t0), I + tX is a diffeomorphism
between Ω̂ and its image, which we will denote by Ω̂t.

Denote by (λj(t))j∈N the spectrum of the Laplace–Dirichlet operator on Ω̂t. According
to Rellich’s theorem (see [32, 45]), each function λj(·) can be chosen to be analytic on
(−t0, t0). Moreover, up to reducing t0, we can assume that λ1(t), . . . , λℓ(t) are simple for
t ∈ (−t0, t0).
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It is well known that

λ̇j(0) = −
∫

∂Ω̂

(
∂φj
∂ν

)2

(X · ν)

for every j such that λj(0) is simple (see, for instance, [27]). Notice that

(
∂φj
∂ν

)2

=
4 sin2(jπx2/L̂)

πL̂

on {0} × (0, L̂) for j = 1, . . . , ℓ.
Henceforth, since x2 7→ sin2(jπx2/L̂), j = 1, . . . , ℓ, are linearly independent functions

on (0, L̂) (as it follows from the trigonometric formula sin2 θ = 1 − cos(2θ)/2 and by
injectivity of Fourier series), then we can choose the vector field X in such a way that

ℓ∑

j=1

qj λ̇j(0) 6= 0.

Hence, there exists t ∈ (−t0, t0) such that
∑ℓ

j=1 qjλj(t) 6= 0 and the lemma is proved
taking Q = Id + tX.

3 Generalizations

In this section we provide some generalizations of the results obtained in Theorems 1.2
and 1.3. In Section 3.1 we consider gates which do not cover the entire upper side of the
rectangle Ω. In Section 3.2 we include some physically motivated nonlinear correction to
the coupling term between the Poisson and the Schrödinger equation.

3.1 Partial gate with linear coupling

The model that we consider here is the following,





i∂tψ(t, x) = −∆ψ(t, x) + V (t, x)ψ(t, x), (t, x) ∈ R+ × Ω,

−∆V (t, x) = 0, (t, x) ∈ R+ × Ω,

ψ(t, x) = 0, (t, x) ∈ R+ × ∂Ω,

V (t, x) = Vg(t)χ(x), (t, x) ∈ R+ × ΓgD,

V (t, x) = 0, (t, x) ∈ R+ × ΓsD ∪ ΓdD,

∂V

∂ν
(t, x) = 0, (t, x) ∈ R+ × ΓN .

(3.1)

The set Ω still denotes the rectangle (0, π) × (0, L), L > 0. The gate ΓgD is now reduced
to a compactly contained subinterval of [0, π]×{L}, while ΓN = Γ1

N ∪Γ2
N ∪Γ3

N is now the
union of three connected components, as illustrated in Figure 2.
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Figure 2: Representation of the transistor with partial gate

As in the previous sections, we can consider a deformation of Ω by introducing a
transformation Q ∈ Diff1

0, with χ ∈ C1(Q(ΓgD)). Similarly to what is done in Section 1.2
and with a slight abuse of notations, we denote by P the class of corresponding problems,
identified with

P = {(Q(Ω), Q(ΓgD), χ) | (Q(Ω), Q(ΓgD)) ∈ Σ and χ ∈ C1(Q(ΓgD))}, (3.2)

where
Σ = {(Q(Ω), Q(ΓgD)) | Q ∈ Diff1

0}.
We obtain the following result.

Theorem 3.1. For a generic element of P, the control problem (3.1) is approximately
controllable.

Proof. The proof consists in an adaptation of the one of Theorem 1.3. We denote by P1

and P2 the sets defined in analogy to what is done in Section 2.2. The same argument as
in Proposition 2.3 allows us to prove the theorem by showing that P1 and P2 are residual.

Notice that the condition defining the set P1 actually depends only on Q(Ω), and not
on Q(ΓgD) and χ. Hence, as proved in Lemma 2.10, P1 is residual.

Let us focus on the set P2. It is crucial for our argument to notice that the analyticity
of V Q,χ

0 with respect to Q and χ still holds in the case of partial gates, as it can be seen
by a straightforward adaptation of Proposition 2.5. As a consequence, as it was done in
Corollary 2.6, it is sufficient to prove that the set P2 is nonempty. For that purpose we
proceed by defining a suitable subclass of P in which we are able to prove the density of
P2.

Indeed, consider L̃ > 0 such that L̃2 6∈ π2Q and define Ω̃ = (0, π) × (0, L̃). Let us
introduce the subclass P̃ of P defined by

P̃ = {(Q(Ω), Q(ΓgD), χ) ∈ P | Q(Ω) = Ω̃, Q(ΓgD) ⊂ [0, π]× {L̃}}.
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Denote by (φj)j∈N2 an L2-orthonormal basis for the Laplace–Dirichlet operator on Ω̃.
Let n ∈ N be even, χn be defined as in (2.7) (see Proposition 2.9) and let

S = S(Q(Ω), Q(ΓgD), χn).

The intersection of P2 with P̃ contains in particular those elements (Q(Ω), Q(ΓgD), χ) ∈ P̃
such that S ⊂ S(Q(Ω), Q(ΓgD), χ), i.e.,

P2 ∩ P̃ ⊃
⋂

(j,k)∈S

Ojk

where, for every j,k ∈ N2,

Ojk = {(Q(Ω), Q(ΓgD), χ) ∈ P̃ |
∫

Ω̃
V Q,χ
0 φjφk 6= 0}.

Clearly, each Ojk is open in P̃. The proof of the theorem is concluded by showing that
Ojk is dense for every (j,k) ∈ S. Actually, we just need to prove that for every (j,k) ∈ S

there exists an element (Qj,k(Ω), Qj,k(Γgp,D), χ
j,k) in Ojk: indeed, any other element of P̃

can be connected to (Qj,k(Ω), Qj,k(Γgp,D), χ
j,k) by an analytic path within P̃, along which

V Q,χ
0 varies analytically (while φj and φk do not vary at all). In particular, almost every

element of the path is in Ojk, whence the density of Ojk in P̃.

Let us introduce a sequence (Γgp,D)p∈N of segments included in (0, π)× {L̃} increasing
for the inclusion and such that

+∞⋃

p=1

Γgp,D = (0, π)× {L̃}.

For every p ∈ N let Qp ∈ Diff1
0 be such that Qp(Ω) = Ω̃ and Qp(Γ

g
D) = Γgp,D, and

ηp = χn

∣∣∣
Γg
p,D

∈ C1(Γgp,D).

The following continuity result holds true and concludes the proof of the theorem.

Lemma 3.2. Define V p
0 = V

Qp,ηp
0 . The sequence (V p

0 )p∈N converges strongly in H1(Ω̃) to

V Id,χn
0 as p→ +∞.

By a slight notational abuse we denote by χn its extension on Ω̃ satisfying χn(x1, x2) =
χn(x1, L̃) for every (x1, x2) ∈ Ω̃. Let us introduce the lift Wp = V p

0 − χn. Thus, Wp is the
solution of the following partial differential equation





−∆Wp(x) = n2χn(x), x ∈ (0, π)× (0, L̃),

Wp(x) = 0, x ∈ Γgp,D ∪ ({0, π} × [0, L̃]),

∂Wp

∂ν
(x) = 0, x ∈ ([0, π]× {0}) ∪ (([0, π]× {L̃})\Γgp,D),

(3.3)
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whose variational formulation is written as follows: find Wp in

Vp =
{
v ∈ H1(Ω) | v = 0 on Γgp,D ∪ ({0, π} × [0, L̃])

}

such that for every v ∈ Vp, one has

∫

Ω̃
∇Wp(x) · ∇v(x)dx = n2

∫

Ω̃
v(x)χn(x)dx. (3.4)

By definition, each V p
0 is harmonic and reaches its maximal and minimal values on the

boundary of Ω̃ at some points where the normal derivative of V p
0 does not vanish, as it

follows from the Hopf maximum principle. Thus, ‖V p
0 ‖L∞(Ω̃)

6 max
x1∈[0,π]

|χn(x)| 6 cosh(nL̃).

As a consequence, the sequences (V p
0 )p∈N and (Wp)p∈N are uniformly bounded (with re-

spect to p) in L2(Ω̃). Taking now v =Wp in (3.4) yields

‖∇Wp‖2L2(Ω̃)
6 n2‖χn‖L2(Ω̃)

‖Wp‖L2(Ω̃)
.

The sequence (Wp)p∈N is thus bounded in H1(Ω̃) and, from Rellich compactess embedding

theorem, converges up to a subsequence weakly in H1(Ω̃) and strongly in L2(Ω̃) to some
W∞ ∈ H1(Ω̃). In the sequel, we will still denote by (Wp)p∈N the considered subsequence.

Taking tests functions v in C∞(Ω̃) with compact support in (3.4) yields immediately that
W∞ satisfies

−∆W∞ = n2χn

in distributional sense. By compactness of the trace operator, one has necessarilyW∞ = 0
on {0, π}×[0, L̃]. Since the sequence (Γgp,D)p∈N is increasing for the inclusion and converges

to (0, π)× {L̃}, one sees that for any compact K ⊂ (0, π)× {L̃} there exists p0 such that
Wp = 0 on K for every p > p0. Thus, one yields W∞ = 0 on (0, π)×{L̃}. Finally, since Vp
is increasing with respect to p, it is obvious that for every p ∈ N and v ∈ Vp, W∞ satisfies

∫

Ω̃
∇W∞(x) · ∇v(x)dx = n2

∫

Ω̃
v(x)χ∞(x)dx. (3.5)

Introduce V∞ =
⋃+∞
p=0 VP , that is,

V∞ =
{
v ∈ H1(Ω) | v = 0 on ((0, π)× {L̃}) ∪ ({0, π} × [0, L̃])

}
.

It is clear that W∞ satisfies (3.5) for every v ∈ V∞. By taking v = Wp in (3.4) and

since (Wp)p∈N converges strongly in L2(Ω̃) to W∞, it follows that ‖Wp‖H1(Ω̃)
converges

to ‖W∞‖
H1(Ω̃)

as p → +∞. Since (Wp)p∈N also converges weakly in H1(Ω̃) to W∞, we

deduce that this convergence is in fact strong in H1(Ω̃), whence the result.
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3.2 Nonlinear coupling

In this section, we show how the approximate controllability results proved in the previous
sections can be applied to obtain some suitable controllability property for a nonlinear sys-
tem. We now take into account selfconsistent electrostatic interactions between electrons
in the Poisson equation. For simplicity, we only consider the case where the gate covers
the entire upper side of the domain Ω.

We consider here the following Schrödinger–Poisson system,





i∂tψ(t, x) = −∆ψ(t, x) + V (t, x)ψ(t, x), (t, x) ∈ R+ × Ω,

−∆V (t, x) = α|ψ(t, x)|2, (t, x) ∈ R+ × Ω,

ψ(t, x) = 0, (t, x) ∈ R+ × ∂Ω,

V (t, x) = Vg(t)χ(x), (t, x) ∈ R+ × ΓgD,

V (t, x) = 0, (t, x) ∈ R+ × ΓsD ∪ ΓdD,

∂V

∂ν
(t, x) = 0, (t, x) ∈ R+ × ΓN .

(3.6)

Here, α > 0 denotes a dimensionless parameter that quantifies the strength of nonlinear
effects; 1/

√
α is the so-called scaled Debye length. The domain Ω is the rectangle (0, π)×

(0, L) in the configuration of Figure 1: the gate is the entire segment ΓgD = [0, π] × {L}
and the Neumann boundary is ΓN = [0, π]× {0}.

In order to exploit elliptic regularity properties, we consider here smoother perturba-
tion parameters than in previous sections, taking the diffeomorphism Q in Diff2

0 (the class
of C2 orientation-preserving diffeomorphism of R2) and χ ∈ C1

0(Q(ΓgD)).
It is convenient to split the potential into the sum of the control potential and the

nonlinear potential as V (t, x) = Vg(t)V0(x) + Wψ(t, x). The resulting equation in the
deformed domain can be written as

i∂tψ = −∆ψ + Vg(t)V0ψ +Wψψ, in R+ ×Q(Ω), (3.7)

where V0 and Wψ are the solutions of





−∆V0(x) = 0, x ∈ Q(Ω),

V0(x) = χ(x), x ∈ Q(ΓgD),

V0(x) = 0, x ∈ Q(ΓsD ∪ ΓdD),

∂V0
∂ν

(x) = 0, x ∈ Q(ΓN ),

(3.8)

and 



−∆Wψ(t, x) = α|ψ(t, x))|2, (t, x) ∈ R+ ×Q(Ω),

Wψ(t, x) = 0, (t, x) ∈ R+ ×Q(ΓgD ∪ ΓsD ∪ ΓdD),

∂Wψ

∂ν
(t, x) = 0, (t, x) ∈ R+ ×Q(ΓN ).

(3.9)

Before stating our approximate controllability result for (3.7), we address the ques-
tion of well-posedness of this Cauchy problem. Two kinds of results are available for
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Schrödinger–Poisson systems, see [18]. In the whole-space case Ω = R2, Strichartz esti-
mates enable to benefit from the dispersive and smoothing properties of the Schrödinger
group and construct a unique global L2 solution to the problem [24, 25, 17]. In a general
domain Ω, for more regular initial data in H1 or H2, the analysis is simpler and the proof
of global well-posedness can rely on energy estimates, see [2, 16, 29, 34].

However, none of these results apply to our situation, which requires a specific study.
Indeed, dealing with a problem set on general bounded domains Q(Ω), our analysis cannot
rely on Strichartz estimate and we have to assume that the Cauchy data are more regular
than L2, for instance that they belong to the energy space H1. In this case, the proof
of local in time existence and uniqueness of a solution to (3.7) is not a difficult task and
the main issue is the question of global existence. As we said above, the proof of global
existence usually relies on an energy estimate for (3.7), (3.8), (3.9). When the applied
potential Vg(t) is differentiable, this estimate can be obtained by multiplying (3.7) by ∂tψ
and integrating on [0, t]×Q(Ω), and reads

‖∇ψ(t)‖2L2(Q(Ω)) +
1

2α
‖∇Wψ(t)‖2 + Vg(t)

∫

Q(Ω)
V0(x)|ψ(t, x)|2 dx

= ‖∇ψ0‖2L2(Q(Ω)) +
1

2α
‖∇Wψ0‖2 + Vg(0)

∫

Q(Ω)
V0(x)|ψ0(x)|2 dx

+

∫ t

0

∫

Q(Ω)
∂tVg(s)V0(x)|ψ(s, x)|2 dsdx.

For completeness, we consider in the following nonsmooth control functions Vg ∈
L∞([0, T ], [0, δ]), where δ > 0 is given: for instance, Vg can be piecewise constant. In
the general case, we follow another path to prove that the energy of the system – say
the H1 norm of ψ – remains bounded on any [0, T ], independently of the derivative of
the control. We state this result in the following proposition, whose proof is based on a
Brézis–Gallouet type argument [15].

Proposition 3.3. Let T > 0, let Q ∈ Diff2
0, let χ ∈ C1

0(Q(ΓgD)), and let Vg ∈
L∞([0, T ], [0, δ]). Then, for every ψ0 ∈ H1

0 (Q(Ω)), the system (3.7), (3.8), (3.9) admits
a unique mild solution ψ ∈ C0([0, T ], H1

0 (Q(Ω))) and there exists c > 0 such that, for all
t ∈ [0, T ],

‖ψ(t, ·)‖H1 6 exp
(
cect
)
. (3.10)

The constant c only depends on δ, α0, Q, ‖ψ0‖H1 and ‖χ‖C1.

Proof. Let us first prove the local well-posedness of the Cauchy problem in H1
0 (Q(Ω)).

For all T0 > 0, we set XT0 = C0([0, T0], H
1
0 (Q(Ω))) with the norm

‖u‖XT0
= max

t∈[0,T0]
‖∇u(t)‖L2 .

Denoting by (eiτ∆)τ∈R the group of unitary transformations generated by the operator i∆
with Dirichlet boundary conditions, a mild solution ψ ∈ XT0 of (3.7) satisfies

ψ(t, ·) = e−it∆ψ0(·) +
∫ t

0
e−i(t−s)∆(Vg(s)V0(·) +Wψ(s, ·))ψ(s, ·)ds, (3.11)
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where V0 and Wψ are defined by (3.8) and (3.9), and can be characterized as a fixed-point
of the mapping S : XT0 → XT0 given by

S(ψ) = e−it∆ψ0(·) +
∫ t

0
e−i(t−s)∆(Vg(s)V0(·) +Wψ(s, ·))ψ(s, ·)ds.

Let R > ‖∇ψ0‖L2 be fixed and define

BR = {u ∈ XT0 : ‖u‖XT0
6 R}.

We will prove that, for T0 small enough, S is a contraction mapping on BR.
By elliptic regularity, since the function χ belongs to C1 and vanishes at the boundary

of the grid, the fixed potential V0 which solves (3.8) belongs (at least) to H3/2(Q(Ω)): see
[21], chapter 8, concerning the mixed problem for the Laplacian in curved domains with
corners, and [31] for the treatment of the Dirichlet-Dirichlet corners.

Denoting in the following by C any positive constant depending only on the domain
Q(Ω), the Sobolev embeddings H3/2 →֒ W 1,4, H1 →֒ L4, H3/2 →֒ L∞ and the Poincaré
inequality yield

‖∇(V0ψ)‖L2 6 ‖(∇V0)ψ‖L2 + ‖V0∇ψ‖L2 6 ‖∇V0‖L4‖ψ‖L4 + ‖V0‖L∞‖∇ψ‖L2

6 C‖V0‖H3/2‖∇ψ‖L2 . (3.12)

By elliptic regularity and Sobolev embeddings, we have for all ψ, ψ̃ ∈ H1
0 (Ω)

‖Wψ −W
ψ̃
‖H2 6 Cα‖|ψ|2 − |ψ̃|2‖L2 6 Cα(‖ψ‖L4 + ‖ψ̃‖L4)‖ψ − ψ̃‖L4

6 Cα(‖∇ψ‖L2 + ‖∇ψ̃‖L2)‖∇(ψ − ψ̃)‖L2 , (3.13)

so, proceeding as for (3.12), we get

‖∇(Wψψ −W
ψ̃
ψ̃)‖L2 6 Cα(‖∇ψ‖2L2 + ‖∇ψ̃‖2L2)‖∇(ψ − ψ̃)‖L2 .

Finally, using that e−it∆ is unitary on H1
0 (Q(Ω)), we obtain, for all ψ, ψ̃ ∈ BR

‖S(ψ))‖XT0
6 ‖∇ψ0‖L2 +

∫ T0

0
|Vg(s)| (‖∇(V0ψ)(s)‖L2 + ‖∇(Wψψ)(s)‖L2) ds

6 ‖∇ψ0‖L2 + CT0
(
‖Vg‖L∞‖V0‖H3/2R+ αR3

)

and

‖S(ψ)− S(ψ̃)‖XT0
6

∫ T0

0
|Vg(s)|

(
‖∇(V0(ψ − ψ̃))(s)‖L2 + ‖∇(Wψψ −W

ψ̃
ψ̃)(s)‖L2

)
ds

6 CT0
(
‖Vg‖L∞‖V0‖H3/2 + 2αR2

)
‖ψ − ψ̃‖XT0

.

Hence, it is clear that, since ‖∇ψ0‖L2 < R, choosing T0 small enough ensures S(ψ) ∈
BR and ‖S(ψ) − S(ψ̃)‖XT0

< q‖ψ − ψ̃‖XT0
with q < 1. Then, the Banach fixed-point

theorem implies the existence of a unique mild solution to (3.7) on the time interval [0, T0].
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Furthermore, if the a priori estimate (3.10) is proved, then by a standard continuation
argument, the existence interval can be taken equal to [0, T ], which means that the solution
is in fact global in time.

Let us now prove the crucial estimate (3.10). We first recall that the L2 norm of ψ is
an invariant of (3.7): for all t > 0, one has ‖ψ(t)‖L2 = ‖ψ0‖L2 . To estimate the H1

0 norm
of ψ, we come back to (3.11) which yields

‖∇ψ(t)‖L2 6 ‖∇ψ0‖L2 + ‖Vg‖L∞

∫ t

0
‖∇(V0ψ)(s)‖L2ds+

∫ t

0
‖∇(Wψψ)(s)‖L2ds

6 ‖∇ψ0‖L2 + C‖Vg‖L∞‖V0‖H3/2

∫ t

0
‖∇ψ(s)‖L2ds+

∫ t

0
‖∇(Wψψ)(s)‖L2ds,

(3.14)

where we used (3.12). We thus need to estimate the product

‖∇(Wψψ)‖L2 6 ‖(∇Wψ)ψ‖L2 + ‖Wψ∇ψ‖L2 6 ‖∇Wψ‖L4‖ψ‖L4 + ‖Wψ‖L∞‖∇ψ‖L2 .
(3.15)

For the first term, we use elliptic regularity and Sobolev embedding,

‖∇Wψ‖L4 6 C‖Wψ‖W 2,4/3 6 Cα‖|ψ|2‖L4/3 = Cα‖ψ‖2
L8/3 .

Next, we recall the following two Gagliardo–Nirenberg inequalities: for all ψ ∈ H1
0 (Q(Ω)),

one has
‖ψ‖2

L8/3 6 ‖∇ψ‖1/2
L2 ‖ψ‖3/2L2 , ‖ψ‖L4 6 ‖∇ψ‖1/2

L2 ‖ψ‖1/2L2 .

Hence, the first term in the right hand side of (3.15) can be bounded linearly in ‖∇ψ‖L2

as
‖∇Wψ‖L4‖ψ‖L4 6 Cα‖ψ‖2L2‖∇ψ‖L2 = Cα‖ψ0‖2L2‖∇ψ‖L2 . (3.16)

The main source of concern is the second term in the right hand side of (3.15). Indeed,
‖Wψ‖L∞ cannot be bounded by a quantity which only depends on the L2 norm of ψ (an
L1 right-hand side in the elliptic equation (3.9) does not produce an L∞ potential), so
this term will necessarily lead to a super-linear estimate in ‖∇ψ‖L2 .

A key inequality in the proof will be the following one, proved by Brézis and Gallouet
in [15]. There exists a constant C > 0 such that, for all u ∈ H2(Ω), one has

‖u‖L∞ 6 C(1 + ‖u‖H1

√
log(1 + ‖u‖H2)). (3.17)

Let us multiply the first equation of (3.9) by Wψ and integrate on Q(Ω). After an
integration by parts, it comes

‖∇Wψ‖2L2 = α

∫

Q(Ω)
Wψ|ψ|2dx 6 α‖Wψ‖L∞‖ψ0‖2L2 . (3.18)

Therefore, from the Poincaré inequality, from (3.17) and (3.18), we deduce

‖Wψ‖2L∞ 6 C(1 + α‖Wψ‖L∞‖ψ0‖2L2 log(1 + ‖Wψ‖H2)),
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from which we get

‖Wψ‖L∞ 6 C(1 + α‖ψ0‖2L2 log(1 + ‖Wψ‖H2)).

Next, using (3.13) with ψ̃ = 0, we obtain

‖Wψ‖L∞ 6 C(1 + α‖ψ0‖2L2 log(1 +
√
α‖∇ψ‖L2)). (3.19)

Finally, gathering (3.14), (3.15), (3.16) and (3.19), one gets

‖∇ψ(t)‖L2 6 ‖∇ψ0‖L2 + C‖Vg‖L∞‖V0‖H3/2

∫ t

0
‖∇ψ(s)‖L2ds

+ C(1 + α‖ψ0‖2L2)

∫ t

0
(1 + log(1 +

√
α‖∇ψ(s)‖L2))‖∇ψ(s)‖L2ds

6 ‖∇ψ0‖L2 + Cδ‖χ‖C1

∫ t

0
‖∇ψ(s)‖L2ds

+ C(1 + α‖ψ0‖2L2)

∫ t

0
(1 + log(1 +

√
α0‖∇ψ(s)‖L2))‖∇ψ(s)‖L2ds

where we used ‖Vg‖L∞ 6 δ and ‖V0‖H3/2 6 C‖χ‖C1 . A logarithmic Gronwall lemma (see
[15]) yields the a priori estimate (3.10). The proof of the proposition is complete.

As application of this proposition, one deduces the following approximate controllabil-
ity result for the nonlinear problem (3.7).

Theorem 3.4. For a generic triple (Q(Ω), Q(ΓDg ), χ) in P, defined as in (1.5), for every
ψ0 ∈ H1

0 (Q(Ω),C), ψ1 ∈ L2(Q(Ω),C), with ‖ψ0‖L2 = ‖ψ1‖L2 = 1, for every tolerance
ε > 0, there exist a positive time T , a control Vg ∈ L∞([0, T ], [0, δ]), and α0 > 0 such that,
if 0 < α 6 α0, then the solution of (3.7) satisfies ‖ψ(T )− ψ1‖L2(Q(Ω)) < ε.

Proof. Recall that, by Theorem 1.3, for a generic triple (Q(Ω), Q(ΓDg ), χ) in P, the linear
system (1.3) is approximately controllable. Fix then Q and χ such that (1.3) is approxi-
mately controllable. Fix ψ0 ∈ H1

0 (Q(Ω),C), ψ1 ∈ L2(Q(Ω),C), with ‖ψ0‖L2 = ‖ψ1‖L2 = 1
and ε > 0. Then there exist T > 0 and Vg ∈ L∞([0, T ], [0, δ]) such that the solution
ψlin of the linear equation (1.3) with initial condition ψ0 corresponding to Vg satisfies
‖ψlin(T )− ψ1‖L2 < ε/2.

Then, the solution ψ(t, x) of the nonlinear equation (3.7) with initial condition ψ0

corresponding to the control Vg reads

ψ(t, ·) = e−it∆ψ0(·) +
∫ t

0
e−i(t−s)∆(Vg(s)V0(·) +Wψ(s, ·))ψ(s, ·)ds

= ψlin(t, ·) +
∫ t

0
e−i(t−s)∆Wψ(s, ·)ψ(s, ·)ds. (3.20)
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The L∞ norm of Wψ can be estimated by using elliptic regularity for (3.9), a Sobolev
embedding and the bound (3.10) given in Proposition 3.3: for all t 6 T ,

‖Wψ(t)‖L∞ 6 C‖Wψ(t)‖H2 6 αC‖|ψ(t)|2‖L2 = αC‖ψ(t)‖2L4

6 αC‖ψ(t)‖2H1 6 αC exp(cecT ).

Fixing an upper bound αmax > 0 for α, the constant c > 0 can be chosen independent of α
and depending only on Q, χ, ψ0 and δ, which are all fixed. Hence, inserting this estimate
in (3.20) yields

‖ψ(T )− ψlin(T )‖L2 6

∫ t

0
‖Wψ(s, ·)ψ(s, ·)‖L2 ds 6

∫ t

0
‖Wψ(s, ·)‖L∞‖ψ(s, ·)‖L2 ds

6 αCT exp(cecT ),

where we used ‖ψ‖L2 = 1 and that e−iτ∆ preserves the L2-norm. Then it suffices to take

α0 = min

(
αmax,

ε

2CT exp(cecT )

)

and the theorem is proved.
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27(3):901–915, 2010.

[40] Vahagn Nersesyan. Global approximate controllability for Schrödinger equation in
higher Sobolev norms and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire,
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