Centroid-based texture classification using the SIRV representation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Centroid-based texture classification using the SIRV representation

Résumé

This paper introduces a centroid-based (CB) supervised classification algorithm of textured images. In the context of scale/orientation decomposition, we demonstrate the possibility to develop centroid approach based on multivariate stochastic modeling. The main interest of the multivariate modeling comparatively to the univariate case is to consider spatial dependency as additional features for characterizing texture content. The aim of this paper is twofold. Firstly, we introduce the Spherically Invariant Random Vector (SIRV) representation for the modeling of wavelet coefficients. Secondly, from the specific properties of the SIRV process, i.e. the independence between the two sub-processes of the compound model, we derive centroid estimation scheme. Experiments from various conventional texture databases are conducted and demonstrate the interest of the proposed classification algorithm.
Fichier principal
Vignette du fichier
Schutz13_ICIP.pdf (144.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00865595 , version 1 (24-09-2013)

Identifiants

  • HAL Id : hal-00865595 , version 1

Citer

Aurélien Schutz, Lionel Bombrun, Yannick Berthoumieu. Centroid-based texture classification using the SIRV representation. IEEE International Conference on Image Processing, Sep 2013, Melbourne, Australia. pp.3810-3814. ⟨hal-00865595⟩
165 Consultations
307 Téléchargements

Partager

More