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ABSTRACT

This paper introduces a centroid-based (CB) supervised clas-

sification algorithm of textured images. In the context of

scale/orientation decomposition, we demonstrate the pos-

sibility to develop centroid approach based on multivariate

stochastic modeling. The main interest of the multivariate

modeling comparatively to the univariate case is to consider

spatial dependency as additional features for characterizing

texture content. The aim of this paper is twofold. Firstly, we

introduce the Spherically Invariant Random Vector (SIRV)

representation for the modeling of wavelet coefficients. Sec-

ondly, from the specific properties of the SIRV process,

i.e. the independence between the two sub-processes of the

compound model, we derive centroid estimation scheme.

Experiments from various conventional texture databases

are conducted and demonstrate the interest of the proposed

classification algorithm.

Index Terms— textured images, Jeffrey divergence,

SIRV model, centroid, supervised classification.

1. INTRODUCTION

Classification of textured images is used in a large field of ap-

plications ranging from the classification of orchards from re-

mote sensing images, to quality check of manufactured pieces

by comparison of internal structures. Among classification

methods, clustering approaches have known an increased in-

terest providing effective and tractable algorithms for various

domains. Classification techniques based on clustering such

as supervised centroid-based (CB) and unsupervised k-means

methods assume that (i) textured images are sorted in k sub-

collections of samples, i.e. the clusters, (ii) each cluster can

be represented by the most centrally localized object, i.e. the

barycenter or centroid. Evaluating a centroid implies to de-

fine an adapted measure of similarity/dissimilarity between a

set of estimated parameters characterizing each sample in the

cluster. For texture clustering, the main purpose is thus to de-

fine an effective set of parameters and a dissimilarity measure

which can be minimized in order to estimate the centroid co-

ordinates in the parameter space knowing the sub-set of sam-

ples associated to the cluster. Over the last decade, numerous
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works devoted to texture analysis have shown the interest to

use jointly scale-space decomposition and stochastic model-

ing for characterizing the textural content [1, 2, 3, 4, 5, 6]. The

more recent works proposed parametric probability density

function (pdf), i.e. prior such as Generalized Gaussian den-

sity (GGD) or Weibull density, to fit the empirical histogram

of sub-band coefficients [2, 3]. Moreover, some works have

pointed out the pertinence to consider multivariate modeling

such as multivariate GGD [7], Spherically Invariant Random

Vector (SIRV) [8, 9], and copulas based models [10] in order

to take into account the spatial dependency [7, 8, 9, 10] rather

than simple univariate modeling. Incorporate the dependency

in the model enables us to increase the performance of clas-

sification methods. However, regardless of the model used,

the result is that homogeneous texture samples are summa-

rized by a finite set of pdfs, one for each detail sub-band of

the decomposition, characterized respectively by a limited set

of parameters. In complement, these works have also pro-

posed to exploit probabilistic dissimilarity such as Kullback-

Leibler divergence (KL) [2, 3], geodesic distance [8], optimal

transport [11], or Jeffrey divergence (J) [12] following the

well-founded Bayesian theory. Concerning the issue of the

centroid estimation in the context of texture analysis, Choy

and Tong [3] have developed a solution based on the univari-

ate modeling using the GGD model and the Kullback-Leibler

divergence. However, no propositions have yet been made to

extend this proposal to non-trivial multivariate model, which

is the main contribution of the paper.

This paper introduces a CB classification algorithm based

on the SIRV distribution for the modeling of wavelet coeffi-

cients [9]. By exploiting the independence between the multi-

plier τ and the Gaussian vector ~g, the Jeffrey divergence of the

joint vector ~y = (τ,~g) admits a close-form expression. Based

on this observation, we propose an algorithm to estimate the

centroid from a collection of SIRV parameters. The paper is

structured as follows. Section 2 introduces the SIRV distribu-

tion for the modeling of wavelet coefficients. Section 3 de-

rives the proposed algorithm to compute the centroid. Some

classification results are next presented in Section 4 to eval-

uate the performance of the proposed CB classification algo-

rithm on texture databases. Conclusions and future works are

finally reported in Section 5.



 

Fig. 1. Box-plots of the Kolmogorov distance on the VisTex

database for various multiplier models (Weibull, Gamma and

Inverse Gamma).

2. STOCHASTIC MODEL

To model wavelet coefficients, Spherically Invariant Random

Vectors (SIRV) have been proposed in [9]. This class of

models has been introduced to take into account the non-

Gaussianity of the signal. Compared to other multivariate

models (copula, MGGD, ...), this family of distributions has

found a great interest in modeling the spatial dependency

of wavelet coefficients. Let ~x be a d−dimensional vector

following a SIRV distribution, it yields that ~x admits the

stochastic representation:

~x =
√
τ~g, (1)

where τ is a scalar random variable called multiplier (τ ∈
R

+) and ~g a real Gaussian vector with zero mean and covari-

ance matrix Σ = E{~g~gT }. Processes τ and ~g are assumed

independent. In the literature [8], various models issued from

the Pearson system have been introduced to represent the mul-

tiplier τ such as Gamma, Inverse Gamma and Fisher distri-

butions. In this paper, the univariate Weibull distribution is

considered to model the multiplier. Its pdf is:

pw(τ ; a, b) =
a

b

(τ

b

)a−1

exp
{

−
(τ

b

)a}

(2)

where a and b are respectively the shape and scale parameters.

Since the SIRV model is uniquely defined with respect to the

covariance matrix parameter up to a multiplicative constant,

the multiplier τ is normalized to have an unitary mean, i.e.

E{τ} = 1. It yields that b = (Γ (1/a+ 1))
−1

. SIRV param-

eters are hence extracted according to the SIRV estimation

scheme developed in [13].

To evaluate the benefit of the SIRV model for characteriz-

ing texture content, the empirical histogram of the multiplier

τ has been computed for each sub-band of textured images

from the VisTex database. This histogram is then modeled

Fig. 2. Principal component analysis on dissimilarity ma-

trix between - textured images: left the 2 principal directions,

right the 2nd and 3rd direction.

by three univariate distributions [8] i.e. Weibull, Gamma, and

Inverse Gamma. The Kolmogorov distance, denoted dK , is

next used to evaluate the goodness-of-fit of the multplier. The

Kolmogorov distance is defined as:

dK = sup
τ
|F (τ)− FN (τ)|. (3)

where FN (·) is the empirical cumulative distribution func-

tion (cdf) and F (·) is the theoretical (hypothesized) cdf.

Fig. 1 draws three box-plots of the Kolmogorov distance for

three multiplier models, namely Weibull, Gamma and Inverse

gamma pdfs. In this experiment, the steerable pyramid de-

composition has been used and a 3×3 neighborhood has been

considered to model the spatial dependency of the wavelet

coefficients. As observed, the Weibull model exhibits the best

performance. In the following, the Weibull distribution will

be considered as prior model for the multiplier.

Unfortunately, no closed-form expression exists for the

pdf of the multivariate vector ~x for the case of Weibull dis-

tributed multiplier. However, characterizing texture content

can be provided considering vector ~y = (τ,~g) resulting from

the SIRV representation. In this case and using the indepen-

dence between τ and ~g, the joint pdf of vector ~y is

pY (~y;λ) = pw(τ ; a) pG(~g; Σ) (4)

where λ = {a,Σ} is the parametric vector associated to the

SIRV model. The components λ form a parametric Rieman-

nian manifold. In the sequel of the paper, we call M the

corresponding manifold.

In the general context of classification, a dissimilarity

measure is required to compute the similarity of two images

based on their respective set of features. In this paper, the Jef-

frey divergence (J) is considered to compute the probabilistic

distance between two parametric vectors. By working on the

vector ~y = (τ,~g), the Jeffrey divergence is obtained using the

chain rule, since the multiplier parameter τ and the Gaussian



process ~g are independent in the SIRV model.

J
(

p(~y;λ), p(~y;λ′)
)

= J
(

pG(~g; Σ), pG(~g; Σ
′)
)

+

J
(

pw(τ ; a), pw(τ ; a
′)
)

. (5)

The first term in (5) corresponds to J for the multivariate

Gaussian process, while the second term corresponds to J
between the stochastic model of the multiplier. Both terms

admit a closed-form expression recalled below:

J (pG(~g; Σ), pG(~g; Σ
′)) =

1

2
Tr
(

(Σ′)−1Σ
)

+

1

2
Tr
(

Σ−1Σ′
)

− d (6)

and

J(pw(τ ; a), pw(τ ; a
′)) =

(

2− a′

a
− a

a′

)

Ψ(1)− 2+

A(a, a′) +A(a′, a) + (a− a′) log

{

Γ(1/a′ + 1)

Γ(1/a+ 1)

}

(7)

where Γ denotes the gamma function defined by Γ(z) =
∫

R+ tz−1e−1.dt, Ψ is the digamma function Ψ(z) = Γ′(z)/Γ(z)
and

A(a, a′) =

(

Γ(1/a′ + 1)

Γ(1/a+ 1)

)a′

Γ

(

a′

a
+ 1

)

. (8)

To evaluate the potential of the proposed SIRV model for

representing texture images, a spectral clustering technique is

used. After computing the similarity matrix based on the Jef-

frey divergence, a dimensionality reduction algorithm is per-

formed to observe the repartition of the initial images. Fig. 2

displays, for six classes of textured images from the VisTex

database, principal component analysis of their respective dis-

similarity. As observed, for each class, the cluster can be well

approximated by one element: the centroid.

3. CENTROID COMPUTATION

Let Λ = (λn)
NTr

n=1 be a collection of NTr parametric vectors

from a specific class of textured images. In [3], Choy and

Tong have introduced an iterative algorithm to estimate the

barycentric sample λ̄ (also called centroid) from this collec-

tion of samples. Let l(λ) be the cost function defined by:

l(λ) =
1

NTr

NTr
∑

n=1

J(p(~y;λ), p(~y;λn)), (9)

the centroid λ̄ is obtained as the solution of the following op-

timization problem:

λ̄ = arg min
λ∈M

l(λ). (10)

By combining (5) and (10), the optimization problem can

be split into two simpler problems: one for the multivariate

Gaussian part and one for the univariate Weibull part. It yields

that the centroid λ̄ = {ā, Σ̄} is composed by two centroids:

ā = arg min
a∈Mw

1

NTr

NTr
∑

n=1

J
(

pw(τ ; a), pw(τ ; an)
)

; (11)

Σ̄ = arg min
Σ∈MG

1

NTr

NTr
∑

n=1

J
(

pG(~g; Σ), pG(~g; Σn)
)

. (12)

In the following subsection, we sequentially present how

those two centroids are computed.

3.1. Centroid for the multivariate Gaussian part

Let (Σn)
NTr

n=1 be a collection of covariance matrices. Baner-

jee et al. have considered the Kullback-Leibler divergence as

similarity measure and have derived a closed-form expression

for the right-sided (Σ̄R) and left-sided (Σ̄L) centroids [14], it

yields:

Σ̄R =

(

1

NTr

NTr
∑

n=1

Σ−1
n

)−1

and Σ̄L =
1

NTr

NTr
∑

n=1

Σn.

(13)

Nielsen and Nock have further extended this work to compute

the Jeffrey centroid Σ̄. They proved in [15] that Σ̄ is inside

the geodesic existing between Σ̄R and Σ̄L:

∃ξ ∈ [0, 1] such that Σ̄ = (1− ξ)Σ̄R + ξΣ̄L, (14)

and that Σ̄ is equidistant to each centroid. It yields:

KL(pg(~g; Σ̄R)‖pg(~g; Σ̄)) = KL(pg(~g; Σ̄)‖pg(~g; Σ̄L)). (15)

This first optimization problem is solved by dichotomy on

the geodesic linking left-sided centroid Σ̄L to right-sided cen-

troid Σ̄R.

3.2. Centroid of Weibull

Let (an)
NTr

n=1 be a collection of Weibull shape parameters. The

centroid ā, solution of (11), is obtained by finding the root of:

dlw
da

(a) = A1Ψ(1)−A2Ψ

(

1

a
+ 1

)

+A3 +A4, (16)

where

A1 =
1

a2

NTr
∑

n=1

1

NTr
an −

1

NTr

NTr
∑

n=1

1

an
, (17)

A2 =
1

a2

NTr
∑

n=1

1

NTr
an(1−A(a, an))−

1

a

+
1

a

NTr
∑

n=1

1

NTr
A(an, a), (18)



Algorithm 1 Pseudo-code to compute the centroid λ̄

Require: Collection of parametric vector Λ = (an,Σn)
NTr

n=1

Ensure: Centroid λ̄ = (ā, Σ̄)
1: Compute Σ̄L and Σ̄R with (13)

2: Initialization ξm = 0 and ξM = 1
3: for i = 1, . . . , Niter do

4: ξ ← 1
2 (ξm + ξM )

5: Σ̄← (1− ξ)Σ̄R + ξΣ̄L

6: tmp← KL(pG(~g; Σ̄R)‖pG(~g; Σ̄))
7: si← tmp− KL(pG(~g; Σ̄)‖pG(~g; Σ̄L))
8: if si < 0 then ξm ← ξ else ξM ← ξ endif

9: end for

10: Let f be the derivative (16)

11: ā← root of f

A3 = − 1

a2

NTr
∑

n=1

1

NTr
anA(a, an)Ψ

(an
a

+ 1
)

, (19)

and

A4 =
NTr
∑

n=1

1
NTr

(1−A(an, a)) log
{

Γ(1/an+1)
Γ(1/a+1)

}

+
NTr
∑

n=1

1
NTr

A(an,a)
an

Ψ
(

a
an

+ 1
)

. (20)

Practically, a simple dichotomy on R
+ is considered to find

the root of (16). To summarize, Algorithm. 1 is used to com-

pute the centroid {ā, Σ̄} from a collection of SIRV parametric

vectors.

4. NUMERICAL APPLICATION

Let Ns be the number of sub-bands of a multi-scale decom-

position. Let us consider the parametric vector λs of the pdf

associated to each sub-band. The collection T = (λs)
Ns

s=1

of those parametric vectors will represent the textured image.

Let (Tc,n)
NTr

n=1 be NTr training samples from the same class c.
Then, the centroid of this collection of sample is defined as

T̄ = (λ̄s)
Ns

s=1, where λ̄s = (ās, Σ̄s) is the centroid computed

as the solution of (11) and (12) at sub-band s. For each texture

class c = 1, . . . , Ncl, one centroid T̄c is computed according

to the proposed algorithm. l Let Tt be a test sample. This

sample is labeled to the class ĉ, corresponding to the class of

the closest centroid, i.e.

ĉ = arg min
c

J(Tt‖T̄c), (21)

where the dissimilarity measure J between two instances of

T is computed as the sum of the dissimilarity measures J be-

tween all sub-band distributions at each scale and orientation.

To evaluate the performance of the proposed supervised

classification algorithm, the database is split into a training

database and a disjoint testing database. Practically, NTr

Table 1. Kappa index for various stochastic models

GGD MG SIRV

[12] ~g τ (τ,~g)
Neigh. 1x1 3x3

VisTex 73% 88% 88% 59% 90%

OuTex 57% 62% 62% 47% 65%

VisTex C. 41% 57% 58% 26% 60%

training samples are randomly selected for each texture class,

the remaining sample are used as testing samples. Three

databases are considered here: VisTex [16], 40 classes, 16

sample per class; OuTex (TC 13) [17], 68 classes, 20 sample

per class and VisTex Complete [16], 167 classes, 16 sample

per class. In the following, 100 Monte Carlo runs have been

used to evaluate the performance of the different classifiers

(kappa index). The kappa index refers to the proportion of

consistent classifications observed beyond that expected by

chance alone [18, 19].

Table 1 draws the classification results of the centroid

based classifier obtained for various stochastic models. The

first column shows the classification results for an univariate

model (with GGD assumption) [12]. The next columns are

the classification results obtained with a model representing

the spatial distribution of wavelet coefficients. Various mod-

els are considered: the multivariate Gaussian (MG), and a

SIRV model when considering the joint distribution (τ,~g), the

Gaussian part (~g) and the multiplier part (τ). As observed, for

all texture databases, the classification results obtained with

the proposed SIRV model allows a gain of 2 points compared

to the multivariate Gaussian model.

5. CONCLUSION

This paper has addressed the problem of centroid-based (CB)

classification in the multivariate case. After introducing the

Spherically Invariant Random Vector (SIRV) distribution for

the modeling of wavelet coefficients, we have proposed an al-

gorithm to compute the centroid from a collection of SIRV

parameters. Supervised classification results on various tex-

ture databases have shown a gain compared to other classical

models.

Further works will concerns the extension of the proposed

work to a multi-barycentric classification algorithm in order

to handle the intra-class diversity of natural texture images.
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