From Toda to KdV - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

From Toda to KdV

Dario Bambusi
  • Fonction : Auteur
  • PersonId : 857760
Thomas Kappeler
  • Fonction : Auteur
  • PersonId : 945701
Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

For periodic Toda chains with a large number $N$ of particles we consider states which are $N^{-2}$-close to the equilibrium and constructed by discretizing arbitrary given $C^2-$functions with mesh size $N^{-1}.$ Our aim is to describe the spectrum of the Jacobi matrices $L_N$ appearing in the Lax pair formulation of the dynamics of these states as $N \to \infty$. To this end we construct two Hill operators $H_\pm$ -- such operators come up in the Lax pair formulation of the Korteweg-de Vries equation -- and prove by methods of semiclassical analysis that the asymptotics as $N \rightarrow \infty $ of the eigenvalues at the edges of the spectrum of $L_N$ are of the form $\pm (2-(2N)^{-2} \lambda ^\pm _n + \cdots )$ where $(\lambda ^\pm _n)_{n \geq 0}$ are the eigenvalues of $H_\pm $. In the bulk of the spectrum, the eigenvalues are $o(N^{-2})$-close to the ones of the equilibrium matrix. As an application we obtain asymptotics of a similar type of the discriminant, associated to $L_N$.
Fichier principal
Vignette du fichier
todaspectral5.pdf (309.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00864320 , version 1 (20-09-2013)
hal-00864320 , version 2 (06-05-2015)

Identifiants

Citer

Dario Bambusi, Thomas Kappeler, Thierry Paul. From Toda to KdV. 2013. ⟨hal-00864320v1⟩
216 Consultations
89 Téléchargements

Altmetric

Partager

More