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From Toda to KdV

D. Bambusi? T. Kappeler! T. Paul

Abstract

For periodic Toda chains with a large number N of particles we con-
sider states which are N~2-close to the equilibrium and constructed
by discretizing arbitrary given C?—functions with mesh size N~!. Our
aim is to describe the spectrum of the Jacobi matrices Ly appearing
in the Lax pair formulation of the dynamics of these states as N — oc.
To this end we construct two Hill operators H4 — such operators come
up in the Lax pair formulation of the Korteweg-de Vries equation —
and prove by methods of semiclassical analysis that the asymptotics
as N — oo of the eigenvalues at the edges of the spectrum of Ly are
of the form £(2 — (2N) 72\ + ... ) where (A\),>0 are the eigenvalues
of H.. In the bulk of the spectrum, the eigenvalues are o( N ~2)-close
to the ones of the equilibrium matrix. As an application we obtain
asymptotics of a similar type of the discriminant, associated to L.

1 Introduction and main results

The Toda lattice is a well-known Hamiltonian integrable system. It consists of a
chain of classical particles with nearest neighbor interaction described by an ex-
ponential function. More precisely, in the setting of periodic boundary conditions
with period N > 2, it is the Hamiltonian system with Hamiltonian
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Here ¢,, denotes the displacement from the equilibrium position of the n’th par-
ticle, p, its momentum and (g, py) is defined for any n in Z by requiring that
(¢i+nN,Pi+N) = (qi,pi) for any i € Z. When expressed in Flaschka coordinates,
b, = —p, and a, = e%(q”_q"“)([?]), the Hamiltonian equations of motion associ-
ated to H take a Lax pair formalism description given by

i=[B,I] (1.1)

where the N x N matrices L = L(b,a) and B = B(a) are of the form

by a1 0 ... 0 an 0 a0 ... 0 —ayn
al b2 as ... 0 0 —al 0 a9 0 0
0 a9 bg 0 0 0 —a9 0 0 0

. . and . .

0 bN,1 anN-—1 0 0 anN—1
ay 0 an—1 by an 0 : —anN_1 0

respectively, with a = (ap)1<n<n € ]Révo and b = (by)1<n<nN € RY. Notice that
the matrix L(Oy,1y) with b = Oy = (0,...,0) and a = 1y = (1,...,1) is an
equilibrium for (1.1). We are interested in the N — oo asymptotics of various
spectral quantities of L(b",a’") for bV, a” of the form

b = 5,8(%) and Y =1+ 504(%) (1.2)
where ¢ is a coupling parameter and «, 8 are functions in Cg(’]l‘, R), i.e. 1—periodic
C?—functions with [a] = [8] = 0 with [a] denoting the mean of «, [a] = fol a(z)dr.
We consider data which are close to the equilibrium to order ¢ = ey = (2N)72.
Our aim is to compute the asymptotics of the eigenvalues of L(b",a’), and of
the correponding discriminant as N — oco. Let us note that in view of the Lax
pair representation, the spectrum of L(b",a'V) is conserved by the Toda flow. To
obtain a set of independent integrals of motion it turns out to be more convenient
(see e.g. [8]) to double the size of L(b",a”) and to consider

Q% = QN aN) = L((N, V), (aV,a™)), (1.3)



namely

AR 0 aly
a¥ oY el 0 0
0 o by & o ... ... . 0
Q=10 ... 0 oy, BN & 0o ... ... 0
0 0 daf Y &Y o 0
9\7 .. ... 0 a%d 6%71 a%]\;l
ay 0 ... 0 an_; by

The eigenvalues of Q?V’ﬁ when listed in increasing order and with multiplicities
satisfy
A <A <A << Avog < Avia < Mg

By Floquet theory (cf. e.g. [8]) one sees that in the case where N is even,
A0s A3, M, -, AaN_5, Aan 4, Aay_1 are the N eigenvalues of L(b",a’v). For N
odd, they are given by A1, A2, A5, Ag, ..., Aan—5, Aay—4, Aoany—1. To describe the
asymptotics of )\nN at the edges, n ~ 1 or n ~ 2N — 1, we need to introduce two
Hill operators Hy := —0? + g4 with potentials

g+ (x) = —20(22) F B(2x). (1.4)

Note that g+ are periodic functions of period 1/2. The periodic eigenvalues
(Af)n>0 of Hy on [0,1], when listed in increasing order and with multiplicities,
are known to satisfy )\S—L < )\f < )\éc < ---. It turns out that the asymptotics of
the eigenvalues of Q?‘V’B exhibit three different regions: the bulk and the two edges,
which shrink to {—2} and {+2}, respectively, as N — oo. Each of these three
parts of the spectrum has its proper asymptotics: in the bulk, the spectrum is
close to the one of the equilibrium matrix by a distance smaller than the distance
between the given Jacobi matrices and the equilibrium matrix, whereas in each of
the two edges, the first correction is of the same order as this distance and involves
the spectrum of one of the two Hill operators H..

To define the two edges of the spectrum consider a function ' : N — R>; satisfying

F lim F(N) = oc; increasing; F(N) < NT"with 0 <n < 1/2.
n

N—oo

Theorem 1.1 Let F satisfy (F) and let o, 3 € CZ(T,R). Then the asymptotics
of A\ are as follows:



at the left edge: for 0 < n < 2[F(N)]
AN =24 X\ +O(F(N)’2N3)

at the right edge: for 0 < n < 2[F(N)]

b
4N?
in the bulk: for n = 20,20 — 1 with [F(N)] < £ < N — [F(N)],

MoN-1-n =2 g Ah +O(F(N)*N7?)

l
MV = —2cos Nﬂ +O(NT2F(N)™h).
These estimates hold uniformly in 0 < n < 2N — 1 and uniformly on bounded
subsets of functions a, B in CZ(T,R).

To prove Theorem 1.1 we use singular perturbation methods, more specifically
methods from semiclassical approximation. Indeed it has been proved in [5]
that Jacobi matrices such as ?V’ﬁ can be viewed as matrix representations of
certain semiclassical Toeplitz operators T in the framework of the geometric
quantization of the 2d torus. Note that the Jacobi matrices Q%ﬁ — and hence
the associated Toeplitz operators — are perturbations of size % of the equi-
librium matrix Q(Ox,1x) whose spectrum is {—2cos ¥, I = 0,...,N}. Since
cos lﬁﬂ—cos % =O(N~%)forl ~ 1orl~ N, thesize of the perturbation is of the
same order as the spacing between the unperturbed eigenvalues so that regular per-
turbation methods fail. Using semiclassical methods, we compute the asymptotics
of the eigenvalues at the two edges of the spectrum by constructing semiclassical
(Lagrangian) quasimodes for Ty, for which the two Hill operators appear in the
transport equation associated to the construction. As customary for the quantiza-
tion of compact symplectic manifolds, the Toeplitz operators T act on a Hilbert
space of dimension 2N with N playing the role of the inverse of an effective Planck
constant. In the bulk, i.e. for 1 < [ < N, one has | cos le —cos %\ > N2 and
thus regular perturbation methods apply. Finally let us mention that our method
allows to obtain the full asymptotic expansion in ﬁ of the entire spectrum — see
the discussion at the end of Section 7.

As an application of Theorem 1.1 we derive asymptotics for the characteristic
polynomial yn(u) of Q%ﬁ as N — oo. Note that yn(u) gives rise to the spectral
curve {(i,z) € C%z% = xn(p)} which plays an important role in the theory of
periodic Toda lattices. These asymptotics will be of great use in the subsequent



work [3]. By Floquet theory, xn(p) can be expressed in terms of the discriminant
associated to the difference equation (k € 7Z)

ap yy(k — 1)+ b y(k) + af y(k + 1) = py(k). (1.5)

Indeed denote by yi¥ and 3 the fundamental solutions of (1.5) determined by

v (0 p) =1, g1’ (1,u) = 0 and 33 (0,p) =0, 33’ (1,) = 1.
The discriminant of (1.5) is then defined as the trace of the Floquet matrix asso-
ciated to (1.5) and given by

An(p) =y (N, ) + y2 (N + 1, 1)

In view of the Wronskian identity, p is an eigenvalue of L(bY,a") | ?V’ﬁ] iff Ay(p)—
2 = 0 [A%(p) —4 = 0}]. Hence up to a multiplicative constant, A% — 4 and
xn coincide. From the recursive formula for 3 (k, 1) one then sees ([8]) that

N
A2 (1) — 4 = g2xw () where gy = 111(1 +La(2)).
Analogously, denote by Ay(\) = A()\, g+) the discriminant of

=y (2, A) + qx(2)y(z, ) = Ay(z, A) (1.6)
defined as the trace of the Floquet operator associated to (1.6),
Ar(N) =i (1/2,0) + (43)'(1/2,)
where y= (2, \) and (y5)'(z,\) are the fundamental solutions of (1.6) defined by
yr(0.A) =1, (51 (0,A) =0 and 35 (0,A) =0, (33°(0,1)) =1.

Similarly as in the case of the Toda lattice, A is a periodic eigenvalue of HL on the
interval [0, 1] iff AZ((\)—4 = 0. Note that A% ((\)—4 is an entire function and can
be viewed as a regularized determinant of H, referred to as characteristic function
of (1.6). It leads to the spectral curves {(\, z) € C?| 22 = A%Z()\) — 4} which play
an important role in the theory of the KdV equation. We will state our result on
the asymptotics of xn in terms of the discriminant Ay. With M = [F(N)] and

F as before, let ATM = A;t’M be the box

£ M . £ + .

and choose Ny € Z>1 so that

)\:I:

S~ N5 26 Y B> F(E(N)) (1.7)

By the Counting Lemma for periodic eigenvalues (cf e.g. [9]), Ny can be chosen
uniformly for bounded subsets of function «, 8 in C3(T,R).

bt



Theorem 1.2 Let F satisfy (F), M = [F(N)] with N > Ny, and o, 3 € C3(T,R).
Then uniformly for X in A=M

2
(o2 e o (T
Similarly, uniformly for X in AHM
2
AN~ ) = A (V) +0 (F(]\]‘j) ) . (L.9)

These estimates hold uniformly on bounded subsets of functions a and 3 in CS(T, R).

We remark that we did not aim at getting the maximal range of the \’s for which
(1.8) and (1.9) hold. Moreover, although we didn’t state such a result here, our
method allows to compute the asymptotics of the discriminant for A in the bulk
region as well. In the companion paper [3], the results of Theorems 1.1 and 1.2
will be used as an important ingredient for computing the asymptotics of actions
and frequencies of Toda lattices in terms of the corresponding quantities of the
KdV equation.

Organisation of paper: The proof of Theorem 1.1 relies on the construction of
quasimodes for the Jacobi matrices Q%ﬁ . This construction is done in the frame-
work of the geometric quantization of the torus (Section 2). The matrices Q?‘V’B
are shown to be the matrix representation of Toeplitz operators (Section 3), whose
action on a certain type of Lagrangian states is described in detail in Theorem
3.4. Proposition 4.1 in Section 4 states an abstract result on the construction of
quasimodes that we couldn’t find in the literature and which is crucial for the proof
of Theorem 1.1. The two cases corresponding to the bulk and the edges of the
spectrum are treated in Section 5 and Section 6 respectively. The proof of Theo-
rem 1.1 is summarized in Section 7. In Section 8 we first compute the asymptotics
of the Casimir functionals of the Toda lattice (Proposition 8.1) and then, using
Theorem 1.1, obtain the asymptotics of the discriminant of Q?V’ﬁ in terms of the
discriminants of H, stated in Theorem 1.2. In addition, we apply Theorem 1.2 to
prove similar asymptotics for the derivatives of Ay (u) and to derive aymptotics
of the zeroes of 9, An (1) at the two edges.

Methods: The methodology used in this paper, based on the geometric quantization
of the torus, is strongly inspired by [5]. In that paper, the authors consider the
large N asymptotics of Toda lattices, both for Dirichlet and periodic boundary
conditions, in the case where the a,’s and b,’s are given by the discretization
of regular functions, i.e. the coupling parameter ¢ equals 1, and they derive the
limiting PDE.



Related work: One of the main novelties of Theorem 1.1 consists in the fact that
we found two Hill operators, H_ and H,, with the help of which we describe
the asymptotics of the spectrum of Q?‘V’B . The spectrum of H_ [H,] is used to

describe the asymptotics of the eigenvalues of the matrices Q?V’ﬁ at the left [right]
edge. This is in contrast with earlier formal work of Toda [12], who constructed
only one limiting operator by interpolating the coefficients of L(b",a) and its
eigenvectors — see also the fundamental work by Zabusky and Kruskal [14] as well
as the review article [6]. On the other hand the work of [13] and [4] shows that
two KdV equations — and hence two Hill operators — are needed to describe the
asymptotics of the dynamics of Toda lattices. Finally we mention that this work
has been announced in [2].

Acknowledgments: The authors would like to thank the University of Milan, the
Swiss National Science Foundation, the University of Ziirich, the CNRS and the
Ecole polytechnique for financial support during the elaboration of this work.

2 Geometric quantization of T?

The geometric quantization of the two dimensional torus (resp. sphere) and the
underlying so-called Toeplitz operators theory has been shown in [5] to be a natural
set-up for studying the large N limit of the Toda lattice with periodic (resp.
Dirichlet) boundary conditions. Although most of the computations in the present
papers are going to be carried out from scratch, we recall in this section the basic
facts concerning Toeplitz operators.

Consider the standard 2-dimensional torus T? = R?/Z?, identified with C/(Z+iZ),
with canonical symplectic form w = dz A dy and Planck constant (47N)~!. Let
E — T? be a holomorphic line bundle with connection V = d — 2mizdy and

denote by & the curvature form, k = d(—2mizdy). Then -~k = w. In particular,

i
2 t
[ [

the Chern class of E, given by the cohomology class [ﬂﬂ], satisfies [ﬂﬂ] = [w].

Denote by (H5y (-, -)~) the Hilbert space whose elements are holomorphic sections
T? — E®2N | viewed as entire functions f : C — C satisfying

f(z+m+in) = eQN”[Z(m_m)JF%(mQJF"QHf(z) Y(m,n) € Z*, z€C.

The inner product is given by (f,g)~ = f[o 12 f(z)g(z)e*QN’T'z'dedy. We identify
H5n (isometrically) with the space Han of theta functions of order 2N, i.e. entire
functions f : C — C, satisfying

f(z+m+in) = eQN”("Q_sz)f(z) V(m,n) €Z? zeC



with inner product (f,g) = f[o 12 F(2)g9(2)e 4N dady. For 0 < j < 2N — 1, let

HJN(Z) _ (4N)1/4e—7rj2/2N Z e—7r(2Nn2+2jn)627riz(j+2Nn). (21)

nez

One verifies that (va Jo<j<2n—1 is an orthonormal basis of Hay. Observe that
in contrast to the ’standard’ case of the quantization of a cotangent bundle, the
Hilbert space Hsy is finite dimensional. From a point of view of physics, this fact
is justified by the Heisenberg uncertainty principle. The Toeplitz quantization
of a function F : T? — R is given by the sequence of operators TIJTV s Hony —
Hon, f — Py(fF) where Py : (L2([0,1]2, e *N™* dzdy) — Han denotes the
orthogonal projector,

2N—1
(PnF)(z) = D> (£,60)6] (2).

Jj=0

More generally, a Toeplitz operator is a sequence of operators (T%) ~N>1 Where for
N > 1,TN : Hony — Hon is an operator of the form TV ~ Z;‘io N_JTé\j. The
function Sp : T? — R is referred to as principal symbol.

3 Jacobi matrices as Toeplitz operators

In this section we study Jacobi matrices with entries defined in terms of discretiza-
tions of functions of a certain regularity, from a *Toeplitz operator’ perspective. In
particular we show how their action on certain families of elements in the Hilbert
spaces Hap, referred to as Lagrangian states, can be explicitly described in terms
of differential operators — see Theorem 3.4 below. This theorem is key for our
construction of quasimodes.

For o, B in Cg(’]l‘, R) and N > 3, denote by T]‘\X,’ﬁ the linear operator on Hsn whose
representation with respect to the basis [0 ,,...,00] is Q%B . As an example,

consider the operator T]%’O. To study its properties let us begin by recording the
following elementary result.

Lemma 3.1 ((:Fl)”) s an eirgenvector on?\’,O corresponding to the eigen-

0<n<2N—1 '
value F2, and, for any 1 < £ < N — 1, the vectors (e”r(N*Z)"/N)OSnSQN_1 and
(e“r(]\”rz)”/]\f)0<n<2N_1 are eigenvectors of Q?\}O corresponding to the eigenvalue

—2cos %. They form an orthogonal basis in C*N.



From Lemma 3.1 it follows that ™V'F(z), 0 < k < 2N — 1, is an orthonormal basis

of Haon of eigenfunctions of T](\],’O, T]%’O?/) = 2cos 5 km )Nk K where
IN—1
YVE(z) = (2N) 1/22 emNON,_ (2) = (2N) /2 Z e TN ON (2 (3.1)

Alternatively, ¥/V'F can be expressed with the help of the kernel

2N—-1

= > 67(2)8) (w). (3.2)
j=0

Lemma 3.2 For any 0 <k <2N —1,
1
PN (2) = (4N)1/4/ pn(z,k/2N —{—is)efQN”sts.
0

Proof: In view of (2.1) and (3.2), the claimed identity follows easily from the

identity >, 7 o 1 =27 N(n+s+5%)% Jg — ffooo e—(V2rNz)? 1. (2N)~1/2, 0

It is useful to introduce for an arbitrary real or complex valued function f € L*(T)
and 0 < k < 2N —1,

w}Vk(z) = (4N)~1/4 /01 f(s)pn (2, k/2N +Z'S)€72N7T52d8. (3.3)

It is an element in Hoy. For f € L2?(T), denote by f, the n’th Fourier coef-

ficient of f, f, = fol f(x)e~ 2™z and by | f||¢ the ¢-th Sobolev norm || f|, =
. 1/2

<Zn€Z | fnl?(1 + ]n!)2£> . Further denote by || f||c¢ the following norm of f €

CUT): || fllge = sup 3o 104 (x)].
0<z<1

Lemma 3.3 For f,g € L*(T) and 0 < k,{ <2N — 1

(i) w}V,k( ) = \/_ ZQN 1 HN( Je —inkj/N ZmeZ fm67”m2/2Ne*i7rmj/N_
Alternatively, with A = —d?/dz?,

2N—
PR (z) = Z (e /5N Y (= j/2N)e NN (). (3.4)

7=0

(ii) <¢;V7k7wé%€> _ ZnEZ fnignJrkigefﬂnQ/2Nef7r(n+k72)2/2N.

9



i) [t = (f.9) | < mwlflo-lgllo ¥ f.g € HN(T).
(iv) The linear maps L*(T) — Hon, f +— z/)jfv’k, are bounded, qujcv’kﬂ <1 fllo-

Proof: (i) By the definitions of ¢§V’k and py

2N—-1
R = 0N ) [ 00 BTN T ) P s
7=0

Using the definition (2.1) of HN one gets

4N 1/4/ f ——|—’LS) _2N7T82d$ —mN Z/ —2m N ( n+s+2N) f( )d .

neL
(3.5)

; 2 . 9 )
As ZnGZ 6727I'N(TL+S+_]/2N) 627rn(s+]/2N) e~ /2N (POISSOH Ssumma-

1
- V2N 2 nez

tion formula) it then follows that

1 e
(4N)~1/4 / f(s)@év(k:/QN + is)e_zN”Sst = — Z T e "N [y,
0

yielding the claimed formula. To verify the alternative formula, note that by (3.5)
and the fact that f is periodic, one has

2N—1
w}\ﬁk(z) _ Z Mrk]/NZ/ —2wN(n+s+j/2N)? f( )d
Jj=0 nez
2N—1 o . -
= Z gjv(z)e—mkj/N/ e~ 27N (y+37/2N) f(y)dy.
j=0 —oo
Evaluating the heat flow for the initial data f at x = —% and time t = %ﬁ we

obtain the claimed identity (3.4).

(ii) By the definition of py and the fact that (va )Jo<j<2N—1 is an orthonormal basis
of Hopn, we have that

1
/ PN (:U + iy, k/2N + is)pN (CE +1iy,L/2N + it) 6_4”N92d:cdy
0

2N—-1

ZZHf(k/2N+i5)9éV(€/2N+zt CARASE ZHN —+259 (%4—@7&)

j7n
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Hence <¢j¢v’k, wév’£> is equal to

2N-1

1 1
Z \/T/ /<:/2N+zs)f( Je _2N7T82ds/va(k/QN+it)%e_2Nﬂt2dt.
j=0 0 5

By (i) and the fact that ZQN L gin(l—n—k+m)j/N — = 2N&p_p —m We get that

WP 00 = 3 FomGmnmge AN Rk 2N,
meZ

(iii) From item (ii) it follows that for k = ¢,

<¢}Vk, g]]\fk angn —mn?/N _ ,g> _ an?]_n(l _ 6—7rn2/N)‘

nez neL

As0<1—e™/N < qp? /N one has by the Cauchy-Schwarz inequality

£oa —7n?
|3 Fuind - ) | € oSl 2en)? < ol

neZ nez

and the claimed estimate follows.

(iv) By (ii) (for f =g and k=) |97 = 32,z [ ful?e™™ N < ||£[13. D

a7ﬁ

Next we describe how T\” acts on chv’k. This result will be an important in-

gredient to obtain the asymptotics of the eigenvalues of Q?‘V’B at the edges. For
f € L*T) and 0 < ¢ < 2N — 1, introduce, with as(z) := a(22),

I 3
N 2N

D?’ﬁ(f) :=2cos (f—ﬂ - L@ )+

N 2N (ﬁ2( ) + 2aa(x) cos (

d)) f-
(3.6)

4N2

This expression is to be understood in the sense of functional calculus. More

precisely, cos (% — ﬁ@x) is viewed as a multiplier operator in Fourier space

cos ({n/N —i/2N0,) f = an cos (¢m/N + 2mn /2N )e?™*,
neL

Theorem 3.4 For any f € C? and 0 < ¢ < 2N — 1

N/ .
T3P0yt — Ko gl flloe with Kop = |lallc2 + |8l c2 + 1.

Daﬂ )HSW

11



To prove Theorem 3.4 we ﬁrst need to establish some auxiliary results. First note

that QY = QY + (Qy" -~ QY) Q% + Qn (QY" — Q) where
01 0
0 0
eav=1. .
: 1
1 0 0

and @ is the transpose of Qj{,. Denote by Tﬁ the operator on Hany whose matrix
representation with respect to the basis [HéVN_l, e ’9(])\/ | are Qﬁ Notice that Tﬁ
are isometries as Qi are the matrix representations of permutations. Further
TJQ;O =Ty + Ty as Q?\}O = Q%+ Qy Forany f € L*(T) and 0 < ¢ < 2N — 1,

define
27l —i0/0x

Dif(f) = exp (£i=——~—)f and D =D} +D; .

Lemma 3.5 For any f € L*(T) and 0 < ¢ < 2N — 1,

4+  NJ& NJZ 0,0 N,/
TN¢f _¢Dzi(f) and TN ¢f —¢Doo )

Proof: Since 1/1}“ is linear in f it suffices to verify the claimed identities for
f(x) = ep(x) == ™ By Lemma 3.3 (i) and the fact that (e!™/N)o<jcon_1 is
an eigenvector of Qﬁ with eigenvalue e*™/N one has

+ Nt _  +in(k+€)/N  NtL _ N}t
TNve, =e€ (b+6/ ek —weim(ku)/zvek

718/81

. tin(k+£€)/N ji2wkz +iml /N :l:
Ase e

=e ( i2”k“3) = DEE (eizwm) the claimed identi-
ties follow. O

The key result used in the proof of Theorem 3.4 is the following one.

Lemma 3.6 Let f,g € C*(T). Then with fa(x) := f(2z), one has

0, 0,0 1 Nk
(TN = TN — st (I1(g£2)" oo + lIfllcolly”llco).

—
— 327 N3

Proof: Note that QO’ QN is a diagonal matrix with entries (2N)~2f(j/N),
1 < j <2N. By the definition of T 0.f , it then follows that

(T3 = TR°)0) = 2N) £ (2N = §)/N)0Y = 2N) 2 f(— j/N)oY

12



Hence by Lemma 3.3 (i)

2N—-1 )
AN (T — T30 () = 1 Z (= 2N (Z)e—mkj/N(e—SwANg)(_%).

VoI

Furthermore, one has wé\;f( ) =

\/_ ZQN 19N( Je fmk‘j/Ne*A/gWN(ng)(_j/QN)'

As (0j)o<j<an—1 is an orthonormal basis of Hay, it then follows

2N—-1

[g = AN (T = TR )0 1P < Z [l Mplg( = 55 |

where My, denotes the operator on L?*(T) of multiplication by fo and [-,-] is the
commutator of operators. Hence

0, 00 —A/8m
I = AN = TR < s (e Mplg(o) |
x

We estimate the latter expression using e 2t = Id — A fg e~ Asds,

(87N)~
fa(@)(e 25N g)(z) = falx)g(x) = fo(x) </0 e~ 2ds Ag) ().

Using the formula of the heat kernel on R and the identity ffooo e~ (@=v)?/ Sdy =

V4ms one gets

(87N)~1
K /0 e~2%ds Ag)(2) | < llg"llco(87N)! and

(87 N)~1 A ) -
| /0 e MdsA(gf2) (@) | < (gf2)"llco (87N)

Combining these estimates yields the claimed estimate. O

Finally, for the proof of Theorem 3.4 we will also need the following lemma.

Lemma 3.7 For f € C}(T), denote by My, the multiplication operator on L*(T)
by fo(x) == f(2x). Then the operator [Dif, My,] on L*(T) satisfies

(D M) = (f22) — @z £ L)DF and |[DF, Mplzaoze < 1 o

Moreover 1
0, 0,0
TN = TR Tl sty < 71 o

13



. 27k—id/0x | | . .
Proof: Recalling that D,ic =TT 2av | it is straightforward to verify that the

values of the two operators coincide for any g = ™. The claimed identity
then follows by linearity. The claimed bound of the operator norm of [D,f,M ]
then follows from the unitarity of DZE. The second estimate is proved using
the matrix representation of the operators involved. Recall that Q?\}f — Q?\}O =
diag((2N)2f(j/N)i<j<on ). Thus [(Q% — Q%"), Q4] is the 2N x 2N matrix

0 Y1 0
0 0 : . i i+1
with :f(N) —f( N ).
: : Y2N-1
yn O 0
Hence
0.f _ 100y A+ _ ¢ it
_ ’ — su _ < =
H[( N ) QNH‘R?NaR?N 1§¢§I2)N |f(N) ( ) | Hf [ co-
As QX,( Q?VO) is the transpose of ( Q?VO) }, the same estimate holds
07
for [( Nf %) Qxl- O

Proof of Theorem 3.4: We write Tﬁ}’ﬁ as a sum of operators
T](\X[’ﬁ TO 0 + (T 0,8 T]?[’O) + (TO o TO O)T+ + T (TO N TO 0)
= TR0+ (1% - TR°) + TRO(TR" - TR°) + [(T3 — 1), 5]

By Lemma 3.5 and Lemma 3.6 we get, respectively, T]%’Olbjev’z = ¢gffo ) and
£

|37 = T80 ] < i lBllcelfler  and

0,0 /-0, 0,0\ N0 N/ 0,0/ /0, 0,0\ N2 N/
Ty (TN =Ty )y = 4N2 ¢D00 (azf) ~ 1N ((TN" = T )y - 4N2 e Var)
As T]%’O = T]J\? + Ty and Tﬁ are isometries it follows from Lemma 3.6 that

e N XU [ = Y A 1 e

By Lemma 3.7 and Lemma 3.3 (iv) it follows that

o o
(e~ 780), 1)) < 1o ey < Wl gy,

14



Finally, we need to estimate ¢i\7720,0f — wggfo (azf)’ As by Lemma 3.3 (iv), the
2L, Vi 2

linear map g — wé\az is bounded by 1 on L?(T), it follows from Lemma 3.7 that

N, N - .
H¢QQD2,0JC - T/JD?,O(&QJC)H < ||O‘2Dzrf - DZ(OQJC)HO + HOQDg f= D, (a2f)llo

2
< < lle’llcoll o

Taking into account the simple identity, D?’B(f) = Dg’o(f) s Baf+ Afwang’O(f),
the obtained estimates imply the claimed one. O

4 Spectral results by quasimodes

In this section we prove results on quasimodes used in the proof of Theorem 1.1.
Assume that # is a finite dimensional Hilbert space with inner product (1, ¢) and
induced norm ||¢|| = (¢, )2, Further assume that A : H — H is a selfadjoint
linear operator.

Proposition 4.1 (i) Assume that there exist ¢ € H with ||¢|| = 1,u € R and
C >0 so that

(A= pyll <C. (4.1)

Then there exists an eigenvalue A of A so that |A — u| < C.
(ii) Assume that there exist two elements ¥y € H,||[¢Y+| = 1,u € R,0 <0 < 1,
and C > 0 so that

(A= @y <C and | {¥y,9-)] <96.

Then for any D > 8C(1 — )7, there exist two eigenvalues A+ of A so that
[Ar — pu| < D. If \y = A_, then the multiplicity of Ay is at least two.

Proof: (i) Denote by (\;);er the eigenvalues of A listed with their multiplicities.
As A is selfadjoint H has an orthonormal basis of eigenvectors, (1)j)jer, where
1; € H is an eigenvector corresponding to the eigenvalue \;. Assume that for any
J €1, |A\j — u| > C. Then the vector ¢ = 3. (), 9;)1; satisfies

C% = G2l < 3 [ w,w) | (0 — ) = (A = w)y||* < €2,

jel

a contradiction. Hence the assumption is not true and (i) follows.

15



(ii) By item (i), there exists an eigenvalue A;; with |u — A;;| < C. Let us assume
that A;; has multiplicity one and

lw— A > D VA€ spec(A)\{\;, }. (4.2)

Then P := % fK(z — A)~!dz is the orthogonal projector of H onto the one di-
mensional eigenspace of the eigenvalue )\;, where K denotes the counterclockwise
oriented circle of radius D/2 centered at A;,. To estimate Pi1 note that ¢y =
(z—A) M z—=A)pyr = (2= A) " z— i)+ +(2— A)"Lry where r4 = (A, — A)h.
Note that ]| < [|(s — A)a| + 1 — Ay | < 2C and

(2= A) s = (2= X)) e — (2= X)) TNz = A) e (4.3)
Write 74 as 74 = Pry + (Id — P)ry and use (z — A)"'Pry = (z — \;;) "' Pry to
see that 5= [1-(z — A;) "} (z — A) "' Prydz = 0. Hence

1 _ _ 1 _ _
5 K(z—)\il) Lz —4) 1ridz:2—m, K(z—)\il) Yz — A)7YId — P)ridz.

By Cauchy’s theorem we then get

1

— [ (2= i) Mz = A radz = (N, — A)7HId - P)rs. (4.4)
21 Ji

Hence integrating (4.3) along the contour K one concludes from (4.4) that
P = e+ Ny = A)7H(Id = P)r.

By (4.1) - (4.2) we then have ||(\;, — A)~'(Id — P)ry|| < D~'2C and thus, with
n:=2CD~1 <1, it follows that 0 < 1 — ||Pyy||? < 7?, ie.

[Py > V1=72>1—n, (4.5)
and | (Pyy, Py_) — (¢4, ¢-) | <2n+n?, implying that
| (Py, Pyo)| <0+2n+n". (4.6)

In order to assure that Py, and Pi_ are linearly independent we request that
| (Pyy, PY_)| < ||[Pyy|||Py—]|. In view of (4.5) and (4.6) this latter inequal-
ity is satisfied when 0 < n < 1%49. But by the definition of n and D, one has
20~ = D > %. Thus we proved that Py, and Pi_ are linearly indepen-
dent, contradicting our assumption. Hence there are at least two (counted with

multiplicities) eigenvalues of A inside the circle of radius D and center A, . g
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5 Quasimodes for the bulk of Spec(T]‘\)‘,’ﬁ)

We want to apply Proposition 4.1 (ii) to the bulk of the spectrum of TO"B,
{M_1, Ay | M < £ < N — M}

where M = My = [F(N)]. For M < ¢ < N — M and N > 3 arbitrary choose
= ,uév to be the £’th double eigenvalue of T]?,’O, ,uév := —2cos %r Our construction
of quasimodes follows the standard procedure of perturbation theory of double
eigenvalues: first we construct two approximate eigenvectors ¢g,i of the operator

Hgo(Ta’ﬁ — TO’O | B, where E, denotes the two dimensional eigenspace of the

£7r

eigenvalue —2 cos =& of T]%’O and the operator is the composition of the restriction

of the perturbation TN’B — T]?;O to Ey with the orthogonal projection [[, onto Ej.
The two quasimodes Q,Z)ft are then obtained by adding a first order correction to

1/16 4. To this aim introduce W = NN+ and {/;g NNt where we recall that

™% denotes the eigenvector of T0 with eigenvalue 2 cos &% ~ defined by (3.1). One

has
2N-1

Gh = (@N)T2 Y R g

n=0
0,070 br — e e
Ty Q,Z)i:—Qcosﬁ-i/)i and (¢} ,9°) =0
Denote by dy, Bk, k € Z the Fourier coefficients of «, 8 and set
~ A I, —ing JIIN RPN ine AP
Ap := By — 2 cos w7 & e =/|5el if %4 #0, and € :=1if 4, =0.

For any M < £ < N — M, let ¢ := wgi + ¢4 where

ph £ eyl and ¢f=— 3 (N, (TR TO’O)%Q
Yy>re v b=

wN,n
V2 ANl 2cos L& +2cos

Yot 1=

Lemma 5.1 The elements Y., M < { < N — M, of Hon satisfy

£);

) ,B—|—2cos S| =0 <a5N2M> where K, g = ||a||c2+]|8]|c2+1.

(i) <wﬁ,w€>=o<%> and g4 =1+ 0(52

First we need to establish the following auxiliary result.

17



Lemma 5.2 (i) For any M <{ <N — M andn # N +¢

n K, . 1 1
‘W’N (T v - Jgf’o)ib(l;,iﬂ =0 ( N2ﬁ <mmim + N)) .

(ii) For any M < ¢ < N — M, <¢0+’( TOO)Q’Z)O )= O<KJ\7§’B) and

6727rf2/N K
(Wb (T8 = TR0 = 5 Rie +0 (T ).

o 6727r€2/N K,
(W5 (157 - %°>w3_>:——2 R+ 0 ().

wN ,N+2 :I:e”” wN

Proof: By (3.1), 7/’01 = 7 . Recall that by (3.3), one has for f =1
the identity ka = ¢Nk and by Proposition 3.4, for f arbitrary, ]‘i‘[’ﬁqu[v’k =
¢ + O( Ka, %) where D)’ T given by

DY Bf
2cos (km/N — i(QN)flam) + (2N) 7% (B2(x) + 2aa(x) cos (km /N — i(QN)flam)).

For f = 1 one has Dz"ﬁl = 2cos (kn/N) 4 g(x) where g(z) = (2N)"2(B2(z) +
2ap(x) cos (km/N)) and

; 0,0 ko , 0,0\ Nk
(TP — TNk = (TP — T )] _q,z)N’wo( A‘;f).

By Lemma 3.3(ii) we have

Wi 0)™h) = @N) 7 (B, + 2eos (km/N) (az),_, ) e RPN,

Choosing k = N + ¢, item (i) then follows as by assumption «, 3 € C§(T,R). T
prove item (ii) note that for n = N 4+ ¢, one has N + /¢ — k € {0,£2¢}. It then
follows from the definition of € that <¢0 . wN NHE_ gime ¢éV’N_£> =0 and

e—2m? /N

<¢€,+, T/JéV’NM + BW%V’N_£> = ' (@2@ — 2cos (EW/N) (0/2\)2() TANZ

e—2m? /N e—2m? /N

Fe e ((ﬁ/g\)_% — 2cos (fﬂ'/N)(oz/Q\)_%) NI INe 2509,.

From these and similar computations the claimed estimates follow. O
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Proof of Lemma 5.1: () First note that for any M </ <N - M and 0 <n < N
with n # N0, |2 cos 22 +2cos 2| > 2M7r . Indeed, in the case where M < ¢ < N/2
andogk::N—n<€onehas

L L
Im km N N 2%
- | = 1 > _
|2 cos 2cos —| =2 [3& sin(z)dx > 2 [%r — dx

leading to the claimed lower bound. All other cases are treated in a similar way.
By Lemma 5.2 (i) one then concludes that

1
L —

On the other hand, 1%7 4 and ¢S are orthogonal to each other, and both are
orthogonal to ¢%. Hence (4, 9%) = (¢4, " ). Combined with the above estimate

K2

one gets (Y, 9t) = O( i
K2

[94] =1+ O(53#)- (i) We apply standard perturbation theory and write

#). Using in addition that [[¢§ .|| = 1 one then has

Tyl = (TR + (T — T") Wb+ + ¢) (5.2)

and split the right hand side of (5.2) into four parts

0,0 0,0 , 0,0 , 0,0
TR, TRy, (T —TR")vbe. (Tw” —TR)eh

Note that Tg;ozbé,i = —2cos %w(lg,i and
0 _ 00
00 l _ Z 9¢ n7r <¢Nn ( wh )wg:t>¢N,n
e 2cos & “ ~ T 2cos &

2 cos &
o Z (1 2 cos & X ) <¢N7n’ (Tﬁfﬁ - TJOV’O)%,iWN’n-

ANl +2COS

In view of the definition of gpft, this yields the identity

4
TN'¢h = —2cos ook — D (N (TR = TR e
n#NEL

Combined with

(Tﬁ’B—TJgr’OWé,i: Z <7/)N’n,(Taﬁ TOO)T/)Oi PN Z 7/)05’ ’6 TOO)¢0i>¢08

n#N+L se{+,—}
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one gets

I

, 0,01 £ 0,0 TO0VHE sl

(T’ — Ty o+ + T @y = —2cos ﬁ%: + E (W6 (T Ty — Ty )¥0,4)%0,-
se{+,—}

By Lemma 5.2 (ii) it then follows that

4 K, 1 1
o, _ 40,0y ¢ 00 ¢ _ _ tm B 1
(Ty Ty )wo,i%—TNgD QCosngi+O<N2 <_M2+N>>'

Finally, the expression

N.n 04 0,0
(T](\Xfﬁ 0 0 Z ¢ ( T )¢0 :|:> (Tﬁé/jﬁ

_TO,O N,n
2(:os +2cos N N J

#N+

can be estimated by Lemma 5.2 (i) to get for some constant C' > 1,

N? K, 1

a,8__ 70,0y ¢ o, : a,8 40,0y /N,

TR =Tkl <C > SVARE <mlnim > (TN =T )"
n#ENLL

Inspecting the proof of Lemma 5.2 (i) one sees that ||(T} L o O)Q,Z)N M| = (K]\‘;f )

yielding H(Tﬁ,’ﬁ - T]?,’O)goftﬂ = (]I\; +%). Combining all the above estimates, item

(ii) follows. O

Lemma 5.1 allows to apply Proposition 4.1 and leads to the following result.

Proposition 5 3 For any N > 3and M < { < N — M, there exists a pair of
N, . .
etgenvalues N < 7" of TV satzsfymg

l 1
| 72" + 2 cos Wﬂ | =0 <Ka,ﬁm> where Ko g = |allc2 + |B]lc2 + 1.
For N sufficiently large these pairs are separated from each other,

'<Tiv7£§’7' <

PN Tiv,z+1 ...

Proof: According to Lemma 5.1, for any N >3 and any M </ < N — M

i + 2 16 =0 25 )
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By Proposition 4.1 (ii), there are two eigenvalues Ve < Tiv,e of Tﬁ}’ﬁ satisfying

K2
|T:]|:V’é—|—2COS%| :O< aﬁ).

N2M

In case T_]FV’E = Tiv’z, the eigenvalue has multiplicity at least two. To see that for NV

N,+1

sufficiently large, one has TJ]FV’Z <T , recall from the proof of Lemma 5.1 that

(41 2M
(J;V)ﬂz o M<i<N-M

14
|2COSN7T — 2cos

Hence by choosing Ny sufficiently large, the pairs of eigenvalues Tiv £ with N > Ny
satisty 7VMHL < NMHL  NMA2 o N2 o NN-I=M o NN-1-M

7 0
6 Quasimodes for the edges of Spec(Tﬁ,’ﬁ)

In this section we want to apply Proposition 4.1 to the two edges of the spectrum
of T]‘\X,’ﬁ . They are treated in the same way, so we concentrate on the left edge only,

ANV <XV <AV < < M <Ay,

where again M = My = [F(N)]. For 0 < j < 2M, choose as approximate
eigenvalue

; 1
N,j _ —
where \; < A\] <\, < ... are the periodic eigenvalues of H_ = —d?/dz* + q_,

considered on the interval [0,1]. Here

g— = B2 —2ay and ao(z) = a(22), Pf2(x) = B(2x).
Furthermore choose as quasimodes

1

N.j N,N - - 1 2

7 (2) == ¢g__’ (2) = (4N) 1/4/ g; (s)on(z, 3 +is)e 2N s (6.2)
J 0

where (g; );>0 is an orthonormal basis of eigenfunctions of H_. First we need to

establish bounds for g, and its derivatives. By the counting lemma (cf e.g. [9]),
for any N with
My > 2(1+ [lg- o)1 (6.3)
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it follows that for 0 < j < 2M,
1
- 2 2 2 2
])\j | <4n*(M + 5) < 8m°F(N)~. (6.4)

Recall that K, 5 = ||ac2 + ||B]lc2 + 1 for any «, 8 € C*(T).

Lemma 6.1 For any N satisfying (6.3) and any a, 3 € C*(T),

©)  NI(g;) llo < (2Kap +87°F(N)*)Y25 (ii) [I(97)"[lo < 2Ka,6 + 87°F(N)?;
(i) [1(97)"lo < (2Kas + 872 F(N)2)2 4 2K o 5

(i) [1(g;) llo < 3(2Ka,s + 87°F(N)?)? + 2Ka,5 < 4(2Ka 5 + 872 F(N)?)%.

Proof: (i) Taking the inner product of —(g;)"+¢-g; = A, g; with g; , integrating
by parts and using (6.4) and ||g; [lo = 1 yields the bound (i) for [|(g; )'[lo- (il) Using
again (g; )" = ¢-g; — A; g; one gets

1(g;)"llo < lla=llollg; llo + 127 lllg; llo < 2Kas + 87*F(N)?.

(ii) is obtained by deriving (g; )" = ¢—g; — A;jg; and using (i). (iv) is obtained
by arguing in the same way. O

We also need bounds for [|g; [[co and ||g; [|c2. It is convenient to formulate the

result in a general form. For a real valued potential ¢ € L*(T), denote by (f;);>0
an orthonormal basis of periodic eigenfunctions of H = —d?/dx? + q on [0, 1].

Lemma 6.2 (i) The expression sup,sg || fillco is bounded uniformly on bounded
sets of potentials in L?(T).
(ii) For any N with M = [F(N)] > 2(1 + ||qllo)ello and any 0 < j < 2M

1£/llco < (lallo + 872 F(N)?) || £illco and || £jllco < 2(llgllco + 87*F(N)?).

Proof: (i) It is well known that fo doesn’t vanish on [0,1]. As for any j > 1, f; is
orthogonal to fo, it has to vanish at least once. Hence there exists 0 < z; < 1 so
that fj(z;) = 0. As a consequence, the translate Ty, f; = f;(- + ;) is a Dirichlet
eigenfunction for the translated potential T3 ,q. Note that ||T%,qllo = [lq[lo and
Tz, fillco = || fillco. Therefore sup;~; || fjllco is bounded uniformly on bounded
sets of potentials in L2(T) by the corresponding result for the Dirichlet problem
—see e.g. [11, p. 35]. It remains to bound || fo||co. As Ao(g) is never a Dirichlet
eigenvalue, one has

1

_ 1 1 —y1(1, )
co

fO(x) y2(1’)\0)

(yl(ﬁﬂ, o) + ya(z, )\0)) where
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- B 1 1—y1(1, o)
o= o) = ([ (e o) + 5

and y1,yo are the fundamental solutions of —y” + qy = A\y. By [11, p. 7]

ya(z, AO))zdx) 1/2

lyi(z, Xo(q),q)] < el v 0<z<1andi=1,2

Further, by [11, p 18], y;(x, A, ¢) is a compact function of ¢ € L?(T), uniformly on
bounded subsets of [0,1] x C. By [9, p 199], L*(T) — R,q — Xo(q) is a compact
function as well and so is g — y2(1, Ao(q),q). As Ao(q) is never a Dirichlet eigen-
value y2(1, Mo(q),q) > 0 for any ¢ in L?(T). By the compactness, y2(1, A\o(q),q) is
uniformly bounded away from 0 on bounded sets of potentials in L?(T). Similarly,
one argues by compactness to conclude that c¢y(g) > 0 is uniformly bounded away
from 0 on bounded sets of potentials in L?(T).

(ii) Note that [[f[lco < (llgllco + [Aj])IIfillco. Hence the claimed estimate of
1] lco follovvs from item (i) and (6.3) - (6.4). Finally, for any 0 < z,y < 1,
f ’( )= fiy)+ f fi(s)ds. Integrate in y and apply the Cauchy-Schwarz inequality
to conclude that

Ifilleo < l1£illo + 157 llo < (lallco + 87*F(N)?)

where the latter inequality follows from the proof of Lemma 6.1 (i), (ii). O

1/2
4+ (lgllco + 87> F(N)?)

Lemma 6.3 For any N with M = [F(N)] > 2(1 +||g_]|Jo)el?-l0 and any 0 < j <
2M, the elements @7’J in Hon satisfy the following estimates:

Q) [N, oNF) =64 < iy (2Ka g + 872 F(N)?) Y0 < k < 2M.
.. R _ N,' F(N 2

(i) [Ty +2 - g A0 | < BE- (Ko s +1)2C

where C > 0 can be chosen uniformly on L?-bounded subsets of C*(T).

Proof: (i) By the definition (3.3) and Lemma 3.3 (iii), [(¢"7, o™ F) — (97 9, <

#wll(g;) loll (g )'llo- By Lemma 6.1 (i), we get [(g;) lloll(g, )0 < 2Kap +
872 F1(N)? and hence the claimed estimate. (ii) By the triangle inequality

) N7 N7 j ) ’ N? B
L L i i L e Tl |
(6.5)
Let us begin by estimating the latter term. By definition, Lp]_v’j = w]\EN and hence
TARICARE ¢N]’VJ,\J-7 _. By Lemma 3.3 (iv) we then conclude
n_’g;
Nj Nj Bl — Nj —
it gy ~ #2722 < IDP(67) = 12 g5 . (6.6)
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J41e

As Daﬁ = 2cos (4 — 550, ) + = (B2 + 92 cos(5E — 559,)) one gets for =
Daﬁ 2c0s (= 5x0z) + 12 (B2 — a22cos(—558,)). Furthermore, s Yg; =
( 4]{,2 82) + ﬁ ﬁ 20@) . Hence we get

a,B, — N,j\ — 2\ —
IDY" (g5 )= (1=)g; llo < [|12cos (— 2N8 )g; — (2+ W&v)gj llo .

1
202 (1 = cos(—5-84))g5 o

2N
The latter two terms are estimated individually.
1 _ TNy TN
2 cos ( — ﬁam)gj = Z 2 cos (W) (gj )neﬂ’mx.
neL

Using the Taylor expansion of 2 cos 75, one concludes that

12cos (— == 0x ) - 24— 5 x)g] llo
2N 4N

1 1

2(2%4 ;elzlwnnl )" < 5oy )4H<gj )™ Jo.

By Lemma 6.1, it then follows that

' 11
L@C)g] (2+ —aQ)gj o < =7 (2Kas + 8772F(N)2)2. (6.8)

1208 (= 35 AN2 %" 48 N4

In a similar way one estimates

1 llee]| co T4~ 1 2\1/2
WHQO@(l_COS( 2N g] )HO— 4NCQ’ (Z(W) |(gj )n| ) /
neL
_ lladico ) | N
< @il 7)o < 1o b (2K 5 + 872 F(N)?) < sy (2ap + 817 F(N)?)

where for the latter inequality we again used Lemma 6.1. Combining (6.6) - (6.8)
yields

F(N)*
o, — i) < S5 4 2 69

It remains to estimate the first term on the right hand side of (6.5). By Theo-
rem 3.4 (with £ = N),

[FaeEE: ng H<N3 Ko pllg; llcz- (6.10)
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By Lemma 6.2, for any 0 < j < 2My
lg ez < (2Ka,p + 87 F(N)*)C (6.11)

where C' > 1 can be chosen uniformly on bounded Subsets of L*(T). Combin-

ing (6.5), (6.9), (6.10), and (6.11) yields ||Ty B N N N ]H 1((5]]\\[,214 (872 +

2Ka,5)2 + F%\;) Ko 32K + 872 )C' where C' > 1 can be chosen uniformly on
bounded subsets of L?(T). O

Proposition 6.4 For any N > 3 and any 0 < j < 2M there exists an eigenvalue
Nyj ayﬁ Y y
77 of T\ satisfying
; ; F(N)?
N,j N,j
|T— M- | = N3

(Kop+1)%C

where C > 0 can be chosen uniformly on L?-bounded subsets of C*(T). For N

sufficiently large, the eigenvalues N9 can be listed in increasing order
0 < 7' < TN2 <...< TiV’QM_l < T]]VV’ZM.

Proof: According to Lemma 6.3, for any N >3 and 0 < j, k < 2M,

B Ny NI _ Py’ 2
I(TR" = n27)e2? || < On 1= — = (Kap + 1)*C
where C' can be chosen uniformly on L2-bounded subsets of C?(T). Further-
more, for Ny sufficiently large, |<<p]_v ,cka> S| < % VN > Np. We now

apply Proposition 4.1 (i) or (ii) depending on whether p” is sufficiently iso-
lated or not. Note the the pair ,u]_V QZ,MJ_V 21 g separated from {,u]f’] | 0<5<
oMW Y21 by at least O(N™2), uniformly on L2-bounded sets of a’s

and f’s. If MJ_V’M — ,uj_v’%_l < 2C, then

H (T](\X[’ﬁ _ MJ_V,QZ) N,20—1 N,2¢ N,20—1 | HLPJ_V,QZ—lH

| <OnA+ | p2™ —pl
< Oy +20n(14+ O(F(N)>’N 1))

Applying Proposition 4.1 (ii) to ,uN QZ,QDJX 2t @Jj,zZ—l and Dy = 2-8-3CyN we

conclude that there are two eigenvalues Tiv72€_1 < Vot T ﬁ/ﬁ so that

17N Nt < p F(N)?

<Dy = —(Kag+1)°C

for j € {2¢,2¢ — 1}, where C can be chosen uniformly on L2?-bounded subsets of
C?*(T). If Miv’%—,uiv’%_l > 2C'y, then apply Proposition 4.1 (i) to conclude that for

25



j € {20,201}, there exists an eigenvalue 77 of T K‘[’B so that |77 — M| < Oy

In particular, we then conclude that L N2

Recall that the pairs MJ,V’M, ui\f’ﬂ_l are separated from each other by O(N~2). As
F(N) < N"with 0 < n < 1/2 it then follows from the definition of Cx that for N
sufficiently large VO N N2 pNENEL o N2M O

7 Asymptotics of the periodic eigenvalues

The aim of this section is to prove Theorem 1.1 stated in the introduction.

Proof of Theorem 1.1 In view of Proposition 5.3, Proposition 6.4, and the result
corresponding to Proposition 6.4 for the right edge of the spectrum we have ob-
tained three groups of eigenvalues. At the left and right edge of spec(Tﬁ,’ﬁ ) there
are according to Proposition 6.4, 2M + 1 eigenvalues, which for N sufficiently
large are different from each other when counted with multiplicities. In the bulk
of spec(T' ﬁ‘,’ﬁ ), we found according to Proposition 5.3, N — M — 1 pairs of eigen-
values of Tﬁ,’ﬁ which for N sufficiently large are again different from each other.
It remains to show that

~N2M N,2M+1 N2N—2M—2 N2N—2M—1

<T and T <T

To see it, note that by the Taylor expansion of cos and (6.4), we have

1 (M +1/2)?
N2M _ 2
pot = =2 ey < 24—
Hence —2 COSW — MJ_VvQM > %@2 + O(%) Moreover, by Proposition 6.4,
TN,ZM _ ,U,JXQM _ O(%_;) and TN72M+1 + 2cos 7(Mj\}1)7r = O(ﬁ) by PI'OpOSi—
tion 5.3. Therefore, for N sufficiently large, 7V2M < 7N:2M+1 Qimilarly one
shows that 7V:2NV=2M=2 o FN2N=2M=1 Hence the eigenvalues (77¥'")o<p<an—1

of Tﬁ,’ﬁ are listed in increasing order (and with multiplicities) and thus coincide
with (A))o<n<an—1. The claimed estimates now follow from Proposition 5.3 and
Proposition 6.4. U

To finish this section, let us mention that for smooth potentials and with some
effort, our method allows to compute the full asymptotic expansion in ﬁ of all

the eigenvalues of Tﬁ,’ﬁ . For eigenvalues in the bulk, such an asymptotic expansion
is obtained by regular perturbation theory at any order. As the eigenvalues come
in separated pairs and the eigenvalues forming such a pair might coincide, their
asymptotics are obtained via a 2 x 2—block diagonalization and a subsequent
straightforward diagonalization of the (symmetric) 2x2—blocks. For eigenvalues in
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one of the edges of the spectrum, the asymptotics is obtained by adding corrections
to the ’densities’ gji in (6.2), obtained by improving Theorem 3.4 so that the
remainder term can be chosen to be of arbitrary order in N~2. These corrections
can be explicitly computed by solving homological equations, obtained from the
asymptotic expansion of the operator D?’B in (3.6) and solved by inverting certain
Hill operators. As the eigenvalues of a Hill operator come in separated pairs and
two eigenvalues forming such a pair might coincide, one obtains their asymptotics
also via a 2 x 2—block diagonalization.

8 Asymptotics of the discriminant

The principal goal of this section is to prove Theorem 1.2 concerning the asymp-
totics of the discriminant Ay (). Recall (cf. [8], Section 2) that A% (u) — 4 is

related to the characteristic polynomial of Q%ﬁ as follows

2N—1
Av(p)?—4=qy* [T OF —w). (8.1)
=0

First we derive asymptotics of gy = H{V(l + ﬁa(%)). For later reference we
derive at the same time also asymptotics for py := Str( %ﬁ) = %Zngl PR
e SV B(i/N). Tt turns out that the asymptotics of py is better than one could
expect from the asymptotics of the eigenvalues in Theorem 1.1.

Proposition 8.1 Uniformly on bounded subsets of functions a, 3 in CZ(T),
gNn=1+O0O(N"3) and py=O(N3). (8.2)

Proof: As fol B(x)dx = 0 it follows from (A.2) that
1 AN
py = 5tr(Qy") = @N) 2 Y B(5;) =0V,
i=1
Similarly, one has zg\;l(QN)”a(%) = O(N~3) and thus
al 1
_ _ -3
qN = exp (;log <1 + Wﬁ(ﬁ))) = exp(O(N™7))
leading to the claimed estimate gy = 1+ O(N~3). O
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In the introduction we have also introduced the discriminants Ay. For g+ = 0
one gets A(\) = 2cos(vA/2) (cf end of Appendix A) and hence, with 7, = 7n for
n>1,
(4n?m? — )\)2

1672

AN)? —4 = —4sin’(VN/2) = H

n>1

Similarly (see [9]), for ¢+ arbitrary, one gets the following product representation

(Ag:n T )‘)(Ag:nfl T )‘) )

2 _(\E
n>1
Finally recall from the introduction that A** denote the boxes
+,M _ p\E, M + .
AEM =AM = DE - 2, N0ramy T 2] +i[—2,2]
where M = [F(N)] and N > Ny. We chose Ny € Z> so that
Agpi1 — Ao, =6 V> F(F(No)). (8.4)

The estimates (1.8) and (1.9) of Theorem 1.2 are obtained in a similar fashion
so we concentrate on the proof of (1.8) only. We first need to establish several
auxiliary results. We cover A~ by open neighborhoods, each containing one
spectral band and its adjacent gaps,

AM= ) A,

n<[F(M)]
where A7, :=[A\g — 3, Ay +2p] +i[-3,3] and for 2 <n < [F(M)] - 1,
A, = g3 = 2p, A5, + 2p] +i[—3, 3] and
Apany
with p > 0 chosen so that

A +20 < Agjy1 —20 V>0 (8.5)

We will study the asymptotics of A%\, ( -2+ ﬁ)\) in each domain A, , separately.
For this purpose introduce

BN o= B0 ) and PY(0) = e T2, O — ) V2 < < M
where ¢ = 1/4N~2. Furthermore define for 1 <n < M, QN (1)

AR () —4=£"PY()Q} ().

28



Defining 71, = km for k # 0 and my = 1, we write similarly A%2()\) — 4 =
Py (A)Q7 (A) with

(Ao = Mgy = A)
1671'%

ﬁP{(A)Q;(A) with

Py (A) =Hogj<2(A; —A) and  Qp (A) = =2

whereas for 2 < n < M, we define A2 (\) —4 =

1
16mr_,

PJ ()‘) = (Agn - A)()‘Qinfl - A)()‘Qinf2 - )‘)(A27n73 o )‘)

e (g~ N )
- [P Ao = M) Agpg — A
Qn (A) = —2()‘0 - )‘) H 4 :
47Tn k#n,n—1 167Tk
By Theorem 1.1, for A in A, , with 2 <n < M,
2n N —
1 AN = (=24¢€X))
N _ j j -
Pn(—2+m>\)—AH ( - +(A; =)
j=2n—-3
2n
M? M?
= g —)) =P~ 3 )
AL =240 =P +0l ) - 69

where we used that A\, —A = O(n) for A € A, , and 2n — 3 < j < 2n. Similarly ,
for n = 1, one has

1 M?
N e
P (—2+ W)\) =P (\)+ O(W)
In order to prove (1.8) we show that, for 2 <n < M,
1 1 M? M? 1
2 — 3 —
An(=2+e)) -4 = Fﬁ;_lﬁ(g‘ (N +0(n" 7))@ (V) + O(F7) +O(57)
(8.7)
uniformly for A in A, , and, for n =1,
1 M? M? 1
2 _ _
AN(=242X) =4 = o (P () + O(7))Qr N + O() +O(57)  (88)

uniformly for A in Ay ,. The estimates (8.7) and (8.8) are proven in two steps.

Lemma 8.2 Uniformly for any pp = —2+eX where A€ A, , and 1 <n < F(M)

2N—-2M -2 N NAM+2 n2
‘21;4[“ O =) = oymramr (U O(5p)-
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(8.9)

Proof: Set{é\f\, ;=4and, for1</<N -1
N
a0 = 01 = 2( COSN)

Note that £V is an increasing sequence satisfying for 2M +1 < j < 2N — 2M — 2
1 M7T)>M27T2( 7T2M2)
— COS —— - ——).
N N2 12 N2
in view of Theorem 1.1

&Y > v > Eonr = 2(

For j € {2(,2¢ — 1} and p = —2 + X with A € A, ,
% 1
N
)\j —M:—QCOSN‘FO(W) +2—e)
= ¢N —5A+O(#) = §N+O(n—2)
J F(N)N? N?
where we used that A = O(n?) for \ € A, ,- Hence
2N—2M—2 2N—2M—2 2
N
I &-w= 11 ¢ (1+£_NO( 7))
j=2M+1 j=2M+1
2N—2M 2 2N—2M—2 1 n2
= JI ¢ 1I (1+§_NO(W))' (8.10)
j=2M+1 j=2M+1 J
The latter two products are estimated separately. As by (8.9) v = O(Aj\g—z) for
J
2M < j < 2N —2M —1 and hence O(K,—) = O(%MQ)Q) for 1 <n < F(M) one
can estimate K
2N—-2M—2 2 9 N-M-1
1 n n 1
>, log(1+ 50(5)) =0(5) &
j=2M+1 & N N (o LT oSy
Note that 7 is a monotonically decreasing function on [%, |. Hence
_ M=
- N—-M-1 da
R
Pyt 1—cosN o — COS X
N
Taking into account that 1 —cosz = 2sin” § and making the change of variable of
integration t := 5 we get
— I (U i
M
L A / 1 N
2 sin? N sin? ¢ sint M
Mn
2N



Thus Z] 21@]\4{1 ?Jog (1 +z O("—2)) O("M) leading to

2N—2M—2 2 )

[[ (1+—0(%)) =06 =140

J=2M+1 J

It then follows that
ON—2M—2 9 ON—2M—2

[I o-w=0+0())- II &

j=2M+1 J=2M+1

2

)

N21\/11NM1 I \\2 n?
:11\_4[ 1—cos N) -(1+O(M))

_ 22(N—2M—1)( év 11 (1~ cos h) 214 O(n—

Héﬂil( CO&N)HZ 1(1_COS(N ﬁ)ﬂ')) ( M))
By Lemma A.1, Lemma A.3, and Lemma A.4 this latter expression can be esti-
mated by

92N—4M~2 (2N2 V)2 (1+0(5)) (1+ O(n_Q))
7T_22MM|41_0%3 22M1_O%3 M
(35=)" (M1 - O(F=))2*M (1 - O(F=))
1 NAM+2 n2
= 24—M7'r4M(M!)4 (1 + O(M))
which is the claimed estimate. O

Lemma 8.3 Uniformly for p = —2+eX with A in A, , and 1 <n < M,

2N -1 3

[T O -w=220+0(;))
j=2N—2M—1

Proof: In view of Theorem 1.1 (right edge), for any 0 < j <2M, A € A,

M? M?2
Mn_ioj—m=2-e\ + O(ﬁ) —(—24+e)) =4+ O(W)

as )\;r = O(M?) for any 0 < j < 2M. Thus

2N—-1 2M 2M

M2
II & ==y —m = [[ 1+ 0(F))
j=2N—2M-1 i=0 o
2M M2
= 24M+2exp(jzolog (1 + O(W)))
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Using the bound Z?f@ log (1 + O(]\]\/,[—;)) = O(]\]\/[[—;) we get

Ei N AM+2 M? AM+2 M?
[I O —w=2""ep(0(57)) =22 (14 0(5z))
j=2N—-2M—1
which is the claimed estimate. O

Lemma 8.4 Uniformly for p = —2+eX with A € A, ,, the product szfo()\év — )

satisfies the following estimates: (i) for 2 <n < F(M)

M 4 n3 M2 2 )
4 Jgfﬁ)ﬁmwilﬁ(&“HO( ]]\\[4 ))-Q;(A)-(1+O(M))-(1+0(MW));
(ii) for n =1
M 4 2 )
1 JEZZZ‘;ZL? 161774 (Pr (M) + 0<MW)) QT (V- (1+ O(%)) 1+ O(MW)).

Proof: In view of the asymptotics of Theorem 1.1, with & = (2IV)~2

_ M? M?
A == —24e) +2-eA+0(57) =) — A+ O0(F))-
M M (y— 2 . . .
Hence H?ZO(Aé»V —p) = g2M+l H?:O()‘j — A+ O(X7)). The items (i) and (ii) are
proved in a very similar way - in fact (ii) is a little simpler. Hence we concentrate
on (i), i.e. the case where 2 <n < F(M). Given A in A} ,, the latter product is
split up into three parts,

2n—4 2 2n 2 2M 2

_ M ) v ) y
jl;[o()\j —A+O(W))-j:12;[3(Aj _)\+O(W)).j=12;[+1()\j ol
Note that ,
T 2 n3 /2
H ()\__)\+O(M ) =P, () +O( Jifw )
j=2n-3

uniformly for A € A, , with 2 <n < M, cf. equation (8.6). Next consider

H 3 a0y~ Lo H1+ —0(0):
=0 =0 =0

We claim that

2n—4
1 M? M?
jHO(HAj_AO(W)) 1+0(N)
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uniformly for A in A; . Indeed, by the choice of g, the factors (A — )\;)*1, 20 —

1 < j < 2/, can be estimated by O((n? — ¢%)~!) uniformly for A € A, , and
2n—4

1<¢<n-—2. Hence ) /\_1>\, is a bounded analytic function of A € A, ) with a
§=0 j

bound depending on p. Similarly one treats

oM e oM oM 1 2
H ()\]-_—)\JFO(W)):'H ()\J-_—)\)"H (1+)\,——>\O(W))'
j=2n+1 j=2n+1 Jj=2n+1 J

Again, by the choice of ¢ and the asymptotics of A} i Z imon+t1 )\_1 S is a bounded
analytic function of A € A, ;. Thus

2M
1 M? M?
1 —)) =1 —).
I 0+ =—0(5) =1+0(F)
j=2n+1 J
Combining the estimates obtained we have
2M M n—2 /\— _
Agr = M (Agpmy — )\) 1
AN —p) =ML T 247 (Ag = \) -
jl;IO ’ kEIl e 1};[1 24} 167Tn 1
1 _ n’ M? 1 O =N =N M?
n k=n+1

Finally we note that, with A\;” = 4k27? + aj for j € {2k, 2k — 1}, where aj = O(1),

= (A — NNy — N Y Ao — A
| B > tog (B2 s10g (22

47Tk
k=M+1 k=M+1

:exp{ Z log 1—|—

k=M+1

A)+1c>g( 2’“;Z_A)} :1+0(”M2)

47y

uniformly for A € A, o 1 <n< M. Here weused Y0° /1 7 <[4 dw = ;.
Furthermore Hk 247t == (2m)*™M(M1)%. By the definition of Qn( ), we then
obtain that H ()\N — 1) equals

OM+1 (27T)4M(M!)4 3M2 M2 n2

as claimed. O
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Lemma 8.5 Uniformly for A€ A, ,, 1 <n <M, Q, (\) =O0(n?).

Proof: By the Counting Lemma (cf [9]) for periodic eigenvalues there exits ng > 1
so that |\ — 4n%72| < 1 for any n > ng. Note that ng can be chosen uniformly
for bounded sets of functions «, 8 € Cg. It turns out that the cases 1 < n < nyg
and ng < n < M have to be treated separately. However they can be proved in a
similar way and so we concentrate on the case ng < n < M only.

_ I (A =N Agp1 =)
QN =150 =) 11 2k 16;1’? ! (8.11)
n k#n,n—1 k
and that % can be written as an infinite product,

22 p)
\/X/Q wsy T et 472,

sin(v/A/2) H m2n? — \/4 _ H 472, — )\.

Hence for A € A, ,,

0 — sin ? 72 . A2 2
Q;<A>:AZW%A< %Z”) (=)~ e

A=V Agp_1=A)

where f;7(A) = [Tjznn1 FreE v Clearly, uniformly for A € A, ,, ng <
n < M, one has )\4_7:;‘7 =14 0(%) and
2 2 42 2
sin(v/A/2) < Adms - Ams ) B
VA/2 (4m% = M) (dms = )
2
Sin(\/X/Q) 43 ﬂéﬂ'g—l _ O(TL2)
(7t — VA/2)(Tn—1 — VA/2) A2my, 4+ VA2 (21 + V)2
where we used that for A € A, ,, ng < n < M, (wn—\/;i/I;)(({ri/,Ql)—\/X/z) = 0(1).

Finally we need to estimate f, (\). For n > ng, by the choice of p > 0 there exists
P >0 so that [477 — A| > %|kz2 —n?, Vk#n,n—1, YA€ A, , Thus

Ao =M1 =N < <1 e > L
(471-]% _ )\)2 — 47rz7)\ 4#,%*)\
— _ A2 - _ 7.‘.2
(re o) (ot
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Using that 3+, k=2 < 2/6, one has by Cauchy-Schwarz

D Y

k#n,n—1 k#n,n—1

Ao — 47'(']%
2 _ 2

- 2
Agk—1 — 4,

2 5 < 7K where
-n

1
K = (Z Ay — 47212 + Ay — Am2l?) 2.
E>1

Hence, uniformly for A € A, ng <n < M,

n,o?

o= [ P N0ua

2 _))2
k#n,n—1 (47Tk )\)
A\, — 4n? Ay — 42
sow| Y log(lrs |F=GE)+ X (s | )
k#n,n—1 k#n,n—1

< exp(2p/7K).
Altogether, Q,, () = O(n?) uniformly for A € A, ,, no < n < M as claimed. [

n79’
Proof of Theorem 1.2: By Proposition 8.1 the factor q&Z appearing in the product
representation (8.1) of A%\, — 4 satisfies the asymptotics

_ 1

Combining Lemma 8.2, Lemma 8.3, and Lemma 8.4 one obtains, uniformly for A
in A, , with 1 <n < F(M)

M? n? M?
A) = 4=[A2(0N) =4+ 0(—55)Q (W] (1 +0(3)) (1 + O0(F7))-
As Q;, (M) = O(n?) (Lemma 8.5) and A2 (X) —4 = O(1) uniformly for A € A;,,
with 1 <n < F(M) it then follows that

A% (=2 + —

L y—a=azy -4t oY)

AZ (=2
wl TN M

To determine how the signs of Ay and A_ are related note that for A in the set

{zeC| dist(z,[Ay,_1,A5,]) <20}, 1<n<F(M),
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one has

1

=N = ()N K/A?V(—Q + ﬁx) and A_(\) = (—1)" {/AZ(N).

N F(M)?
An(— 2+W)\) (=DM A_(N) +O( % ).
The estimates for A in A}, with 1 <n < F(M) are obtained in a similar fashion.
Finally, to see that these estimates are uniform on bounded sets of a, 5 in 002 (T,R)
it suffices to note that p of (8.5) can be chosen uniformly on such sets as the periodic
eigenvalues of —92 + ¢+ are compact functions of a, 3 — see [9], Proposition B.11).

0

An(—2+

Hence

As An(pn) and A_(\) are analytic functions one can apply Cauchy’s theorem to de-
duce from Theorem 1.2 correspondmg estimates of the derivatives Bj A or equiv-
alently (9JAN( 2—|—4N2) o} AN( 2—{—4N2) as well as (9JAN(

(ElNQ))J OhAN (2- 4N2) Let

T - )

+ M _ + .
AT =0\ - L A5pany + 1 +il=1,1].

Corollary 8.6 Let F satisfy (F), M = [F(N)] with N > Ny, and o, 3 € C3(T,R).
Then, for any j > 1 and uniformly for X\ in Al_’M,

(4N2)J8“A ( 2t 4]17”) = (-D¥RA- (V) +0 (F(M)2>

_y AEM
and similarly, for X in Aj

(Zvlz); OAN (2 - ﬁg = %A+ (N +0 (%W) _

These estimates hold uniformly on bounded sets of functions a, 3 in C3(T,R).

Proof: By Cauchy’s theorem, for j > 1,

dz

1 11 AN(—24 2=2)
4N2 A AN 24N T o o (z =N
( J aA
and 11 A(2)
A\ 2% g
A ( ) j' 27TZ ON— M (Z — )\)1+-7 *
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where 9A~M denotes the boundary of the rectangle A=—M = A, M with counter-
clockwise orientation. Hence

FHAN (=24 A/AN?)

dz.

11 / An(=2+ gt22) = (-DVA_(2)
gl 2mi (z — \)itHl
any M

For A in A;’M, |z — A2 > 1 and hence by Theorem 1.2, uniformly on AI’M

HAN (—2+ A/AN?)

_ d
(4N?)] ¢

11 AN(=2+ 3=2) — A_(2)
J! 2mi (z = N)itl
any ™M

o(ti)

By this argument, also the uniformity statement with respect to «, 8 follows. [J

— A\ =

Corollary 8.6 allows to obtain asymptotics of the zeroes of Ay (u) := %AN(,u) at
the edges in terms of the zeroes of Ay(\) 1= %Ai()\). One sees in a straightfor-
ward way that the N — 1 zeroes of the polynomial Ay (u) are all real and simple
and when listed in increasing order, satisfy A, | < AN < AN for any 0 < n < N.
Similarly one sees that the zeroes of )\f are all real and simple, and when listed in
increasing order, satisfy )‘Qinq < )\,jf < )\Qin for any n > 1.

Corollary 8.7 Let F satisfy (F), M = [F(N)], and o, 3 € C3(T,R). Then for
any 1 <n < F(M),

: A, n? F(M)? : At n® F(M)?
N _ n R N —_9 _ n o
An = 2—|—4N2—|—O<N2 % ) and Ay_, =2 4N2+O<N2 % >

These estimates hold uniformly on bounded sets of functions o, 8 in CS(T,R).

Proof: The asymptotics of the zeroes of A ~(u) at the two edges are obtained in
a similar fashion so we concentrate on the ones at the left edge. Let I', be the
contour of the box [\, _; — p, A5, + p| +i[—1, 1], contained in AI’M,

where p is chosen as in (8.5). By Theorem 1.1, for N sufficiently large, )\nN is
the only zero of Ay(p) in the box —2 4+ = ([A5,_1 — p, A5, + o] +i[—1,1]). In
particular, Ay (u) doesn’t vanish on the contour TY = —2 4 ﬁr;. By Cauchy’s
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theorem it then follows that for any 1 < n < F(M), 1 = 5= fr Oi Ndu and

N oLA
ANV = o fFN a“ Nd,u Hence

- 1 AN (1)
N—_o4 — L _—")d

and with the change of variable p = —2 + ﬁ

1 RAN (24 2
AN2(AN 4+ 2) = /_)\ WA (24 ) )

3 o “ondix (2 1)
Similarly one has A, = L fl‘ d)\ The difference 4N2(AYN +2) — A~ thus
equals
1 RAN (24 70)  CDVRA W)
2mi Jr;  \ AN (—2+ 22)  (DVHA-(N)
_ L[ RAN (24 g) - (EDVRA-(
i " (2 )
n L )\aiAf()\) . ((—1)N8AA,()\) — AN (—2 + ﬁ)) )\
2mi Jp- NAN (=24 132) DHA_(N) '

The two latter integrals are estimated separately. Use Corollary 8.6 and the facts
that on I';,, A = O(n?) and

1 1
RA_(N), , =0(1)
g NAN(—2+ 22) HA_(N)
to conclude that each of the two integrals is O <n2 F(M)2>, yielding

: . F(M)?
AN2(AN +2) =), +0O <n2¥> .
M
The statement on the uniformity of the estimates is obtained by using that a

corresponding one for the discriminants and their derivatives holds. O

A Auxiliary results

In this appendix we prove auxiliary results needed to compute the asymptotics of
the discriminant.
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Lemma A.1 For N — oo,

N-1
IT (1 —cos %) —2N2 N1+ 0N (A1)

Proof: Note that 1 — cos(nd) > 0 for 1 <n < N, and § := 7/N. To compute the
product in (A.1) we therefore can take the logarithm, yielding,

log(1 — cos(nd)) log 1 — cos( n6 + log (nd)?
S Z

n=1

Clearly
N

Zlog(né)2 = Nlog? 4 log(N")? = log ((N)NNI)
n=1

To compute the asymptotics of Z 1 log (1 (COS)(Qn 5)) introduce

1_
f(x)zlog(ﬁ) 0<z<m.
x
Note that for 0 < z <,
1—-cosz 1 12+ 1(1 1 +..)>0
— = — = .. — 2 .
2 2 4! 2 12

Hence f(z) is a well-defined, smooth function on the interval [0,7]. Now apply
the well known formula for approximating the sum Z _1 f(nd) by an integral (cf

e.g. [1])

N . B
S fnd) = % /0 F@)de + M +0(8) (A2)
n=1

where the error term O(6) is bounded by

5= sup |f"(x)] - length((0, 7).
12 0<z<mw

Clearl
e f(7r)—f(0)_11 2 1 1 _ 2
Hm = T0) ~ 2 (1oa( ) ~log ) = log >

Further, 4 5 fo r)dr = 3 fo (log(1 —cos x) — 2log x)dx can be explicitly computed
by Lemma A. 2

1 (7 1
5/0 10g(1—cosx)——glog2—log2N
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and o fm 5
——/ log xdx = — (mlogw—x)| —2N+log
5 J, 5

Combining all these estimates yields

N N
21 1 T 9 1
nz:llog(l — cos(nd)) = log (—Q—N—N) +2N+10g(N NY) +O(N)
or N
n 2 2N 1
n=1

By Stirling’s formula, N! = v2rNNYe V(1 + O(%)) it follows

N
4N
H(l—cosn—]:;) 2N( +O0(—= ))
n=1
and as (1 — cos &% ) | N = = 2 we then conclude that
N-1
2N
H 1—0087;\7;) 2N( +0(= )) O

Lemma A.2 [ log(l + cosx)dr = —mlog2.

Proof: First note that by the change of variable of integration x := 7w — s,

/ log(1 + cos z)dx = / log(1 + cos(m — s))ds = / log(1 — cos s)ds.
0 0 0

Hence, with I := f07r log(1 — cos z)dz, one has

™ w/2
21 = / (log(1 4 cos x) 4 log(1 — cos x))dx = 2/ log(sin? z)dz.
0 0

Using that sin? z = %(1 — €os 2:13) and making the change of variable s = 2x, one
gets [ = % fow log(1 — cos s)ds — 5 log2 and the claim follows. ([l

Lemma A.3 Foranyl <M < N,

2 2 3
(2N2 H 1—005 )2 (W)M(M')Qexp( O(%)) (A.3)



Proof: As in the proof of Lemma A.1, consider the logarithm of the product in
(A.3), to obtain, with ¢ := /N

Zlog (1 — cos(nd))

M:

sy

where b, =1 — cosnd — nd)” ) . Clearly

Z log M = log ((M')

T
2 2M (N)QM) = log ((M')Q(W)M) (A-4)
n=1
Further not that ( )2 < 0 and
2b, | 2. 5 2, 1 5  M?
g | = | - 9+ ) - | < 5500 <
As for —1 < z <0,
0>log(l+z) = (]w\+| |2+@+ ) > —|z|
2 3 ’ - 1 — |z
it then follows that
2by, M? M2, 4 M?
0<—log(l4+—— —(1—— —
< —log (1+ (m;)Q) NQ( NQ) (NZ)
Summing up these estimates yields
2by, M? M3
<M O(=) =0(—=).
— ( (n5)2) O( N2) O( N2)
Combined with the estimate (A.4) one gets the claimed estimate O

Lemma A.4 Foranyl <M < N

3
QMEH(l—i—cos%)zQMeXp(—O(%

Proof: Note that 1 + cos &&

N[

(%) +
1:[1(1—{—005— 1:[ ...)<2M
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and

M nm M nm
H (1+cosﬁ) :2Mexp(nz:1log(1—(ﬁ)2+...)) >

n=1

T M M3
M 2 2 M
> 2 exp(—(ﬁ) ;n)EQ exp(—O(W)). O
Finally we compute the spectral data for the operator —d?/dz? when considered
with periodic / antiperiodic boundary conditions on the interval [0, T]. The funda-
mental solutions of —d?/dz? are given by y1(z, \) = cos v Az and ya(z, \) = %
Thus the periodic / antiperiodic eigenvalues are

— (Z)* wn>1

)‘OT = 0; )\2 )‘211 1= Up

and a basis of eigenfunctions is given by
nm . NT
fo=1  fon(z) = cos (2z); fon—1(z) =sin (+x).
T T
The discriminant can be computed to be
AT(A) = y1(T, A) + (T, A) = 2cos(VAT)

hence

Ar(N)? — 4 = 4cos’(VAT) — 4 = —4sin®(VAT).
Assiny/= /i ]],5 w272k it then follows that

n27r2 )
2 2 —A 2
Ar(V? —4 =T [T (& n27r2 = 4T AH :

n>1 n>1 T2

In view of the values of AL, it follows that

2 gn 1 )‘)
Ar(N)? 4_—4T)\H M) :
n>1 T

Furthermore we compute the entire functions ¢,7;( ), k > 1, leading to the nor-

YY)

malized differentials
AZ(N)—4

d)\ characterized by

T
i/ wki()‘)cp\:&mk Vo, k> 1
FT

2 It o/ A2,(\) — 4
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where, as usual, 'L is a counterclockwise contour around A}, = AT | so that all
other eigenvalues )\g, k # 2n,2n — 1, are in the exterior of I'”’. We claim that

- I\’ 2772
ek | | Jl with JlT’k = (—W> and c;‘g = —.
l7r T km
[ T)

Indeed, as UlT’k is in the £’th gap interval, it follows that JlT’k = (%)2, Vi # k.

. . v (V)
The constant cg is then determined by 1 = fFT {/#d)\. As
2
U a1 (%)

T — %%
c A%()\)—ﬁl ZQT\/X)\—)\%;C

one gets by Cauchy’s Theorem that ck = QkT as claimed. In the special case where

= 1/2 one gets

A( 4= )\H )‘Qn_)\ )\Qn 1_)\)

2n7r
n>1

where )\, = AT

T=1/2 for any n > 0 and A(A) = Ar(}) T—1/2 For the entire

functions g () := wg(A)\T:% one gets

1 (207)2 — A T 1
= d o= - .
k(M) 2km ll;£ (2(m)? MG Glr=3 T 9pr
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