Clique number of random geometric graphs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2013

Clique number of random geometric graphs

Résumé

The clique number C of a graph is the largest clique size in the graph. For a random geometric graph of n vertices, taken uniformly at random, including an edge beween two vertices if their distance, taken with the uniform norm, is less than a parameter r on a torus Tda, we find the asymptotic behaviour of the clique number. Setting θ = (r)d, in the a subcritical regime where θ = o( 1 ), we exhibit the intervals of θ where C n takes the same value asymptotically almost surely. In the critical regime, θ ∼ 1 , we show that C is growing slightly slower than ln n asymptotically n almost surely. Finally, in the supercritical regime, 1 = o(θ), we prove n that C grows as nθ asymptotically almost surely. We also investigate the behaviour of related graph characteristics: the chromatic number, the maximum vertex degree, and the independence number.
Fichier principal
Vignette du fichier
CliqueNumberRandomGeometricGraph.pdf (348.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00864303 , version 1 (23-09-2013)
hal-00864303 , version 2 (05-12-2013)
hal-00864303 , version 3 (21-03-2014)
hal-00864303 , version 4 (04-09-2017)

Identifiants

  • HAL Id : hal-00864303 , version 1

Citer

Laurent Decreusefond, Philippe Martins, Anaïs Vergne. Clique number of random geometric graphs. 2013. ⟨hal-00864303v1⟩
746 Consultations
1881 Téléchargements

Partager

More