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Abstract

The clique number C of a graph is the largest clique size in the graph.
For a random geometric graph of n vertices, taken uniformly at random,
including an edge beween two vertices if their distance, taken with the
uniform norm, is less than a parameter r on a torus Td

a, we find the
asymptotic behaviour of the clique number. Setting θ = ( r

a
)d, in the

subcritical regime where θ = o( 1
n
), we exhibit the intervals of θ where C

takes the same value asymptotically almost surely. In the critical regime,
θ ∼ 1

n
, we show that C is growing slightly slower than lnn asymptotically

almost surely. Finally, in the supercritical regime, 1
n

= o(θ), we prove
that C grows as nθ asymptotically almost surely. We also investigate
the behaviour of related graph characteristics: the chromatic number, the
maximum vertex degree, and the independence number.

1 Introduction
In graph theory, a clique of a graph is a subset of its vertices such that

every two vertices of the subset are connected by an edge. Cliques are one
of the basis concepts of graph theory and are the subjects of many research
articles since the middle of the twentieth century [7]. A maximum clique is a
clique of the largest possible size in a given graph. The clique number of a
graph is the number of vertices in a maximum clique of this graph. Then the
clique number, as the chromatic number, is a graph characteristic and occurs in
various problems. Such as the NP-complete clique problem in computer science,
which is finding a particular clique such as a maximum clique or whether there
exists a clique larger than a given size, had been highly documented, see [15]
for instance. The clique number also appears outside graph theory, in simplicial
homology, where cliques are named simplices and the clique number is thus
the size of implementation of a simplicial complex. It ls then a key factor in
the implementation complexity of simplicial homology algorithms, see [16] for
instance.

One of the most famous random graph is the Erdös-Rényi model G(n, p)
with n vertices and each edge is added with probability p. In this model, the
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probability distribution of the clique number is known when the number of
vertices n goes to infinity and p is fixed [2]. This result was derivated from the
investigation of Matula in [8], who proved the 2-point concentration of the clique
number distribution. However such results are not yet available for the random
geometric graph G(n, r) of n vertices sampled uniformly and including an edge
between two vertices if their distance is less than r. Indeed, it is necessary to
consider the variations of r depending on n, thus consider different regimes,
incrementing the complexity of the problem. Regimes were also investigated
for the Erdös-Rényi model, considering the variations of p depending on n. In
[6], the authors proved the phase transition at p = 1

n for the connectivity. For
the random geometric graph case, Penrose in [10] distinguished two types of
regime transition. One can consider regimes transition through percolation, or
through connectivity. In [5], Kahle studied the homology of the clique complex
of the random geometric graph in the three regimes delimited by percolation
(subcritical, critical and supercritical), and in the connected regime.

In this paper, we find the asymptotic behaviour of the clique number of a
random geometric graph G(n, r) with the uniform norm when n goes to infinity.
Derivated from the stochastic analysis made in [14], the authors of [3] give the
explicit moments of the number of cliques of size k for the random geometric
graph on the torus. Thanks to these results, we are able to find the asymptotic
behaviour of the clique number for the three regimes defined by percolation.
In the subcritical regime, we find the intervals where the clique number takes
asymptotically almost surely a given finite value. In the critical regime, we show
that the clique number grows slightly slower than lnn asymptotically almost
surely. Then in the supercritical regime, we prove the growth of the clique
number asymptotically almost surely. We also investigate the behaviours of the
related quantities: the chromatic number, the maximum vertex degree and the
independence number.

To our knowledge, this is the first result for the behaviour of the clique num-
ber of a random geometric graph for all three regimes. In [4], the authors proved
that monotone properties of random geometric graphs, such as the connectivity
of the graph, have sharp thresholds. In [11], then in [9] for a weaker assumption,
the authors prove a conjecture of Penrose [10] stating that, in the subcritical
regime, the clique number becomes concentrated on two consecutive integers, as
in the Erdös-Rényi model [8]. Moreover, in the subcritical regime, weak laws of
large numbers [13] and central limits theorems [12] have been found by Penrose
and Yukich for some functionals, including the clique number, in random geo-
metric graphs. Then in the supercritical regime, using the uniform norm, Appel
and Russo [1], were able to find strong laws for the maximum vertex degree
and for cliques. In particular, they found the behaviour of the clique number in
the supercritical regime via the behaviour of the maximum vertex degree. We
propose here the opposite approach and find the same result.

The remainder of this paper is organized as follows. First in the following
section, we present our model with the definitions necessary to its construction,
and the previous results that have allowed us to write this article. Then the
third section is devoted to the subcritical regime results. We find critical regime
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results in section 4. We expose the results obtained in the supercritical regime in
section 5. Finally, the last section is devoted to the investigation on the related
quantities to the clique number in graph theory.

2 Model
In order to describe our model of random geometric graph we need some

preliminary definitions from graph theory and probability.

Definition 1 Let f be the uniform probability density function on the torus Tda,
let x1, x2, . . . be a set of independent and identically distributed d-dimensional
random variables with common density f , and let Xn = {x1, . . . , xn}. For
the set of n points Xn and the positive distance r, let us define the random
geometric graph G(n, r) as the graph with n vertices V (G) = Xn and edges
E(G) = {[x, y] | d(x, y) ≤ r}.

Definition 2 In a graph, a clique is a subset of vertices such that every two
vertices in the clique are connected by an edge.

Definition 3 The clique number of a graph, that we denote C, is the number
of vertices in a clique of the largest possible size in the graph.

Definition 4 We say that G(n, r) asymptotically almost surely has property P
if P[G(n, r) ∈ P ]→ 1 when n tends to infinity.

For the remainder of this paper, we consider a random geometric graph
G(n, r) of n vertices sampled following a uniform distribution on the torus of
size a in dimension d, and including an edge between two vertices if their distance
is less than r. Taking the torus Tda instead of the cube [0, a]d allows us to not
considerate boundaries effect. We note C its clique number.

In [3], the authors provide expressions for moments of random variables of
a C̆ech complex by means of Malliavin calculus. Thanks to their use of the
uniform norm the so-called C̆ech complex is the exact same as the Vietoris-rips
complex, which is the clique complex of the random geometric graph. Indeed in
simplicial homology, instead of considering only vertices and edges as in graph
theory, cliques of n connected vertices are also considered and called simplices.
And the Vietoris-Rips simplicial complex is the complexe whose simplices are
the cliques of the random geometric graph. Then we are able to apply the
results of [3] to random geometric graphs, in especially the expressions of the
expectation and the variance of the number of cliques of size k.

In order to use the results from [3], we first need to make a few assumptions:

1. First, we use the uniform norm to calculate the distance between two
vertices. Note that [3] also provides the needed results for the Euclidean
norm, however their expression are not as tractable as the ones for the
uniform norm.
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2. Let us denote θ =
(
r
a

)d, then we must have θ ≤
(
1
2

)d. This insures that
the graph is small on the torus, and that there is no vertex which is its
own neighbor.

These assumptions hold for the remainder of the paper.
Thus, let us denote Nk the number of clique of k vertices, then N1 = n is

the number of vertices, and the results of [3] state that:

Theorem 1 ([3]) The expectation and variance of the number of k-vertex cliques,
for k > 1, in a random geometric graph G(n, r) on a torus Tda are given by:

E [Nk] =

(
n

k

)
kdθk−1, (1)

and,

V [Nk] =

k∑
i=1

(
n

2k − i

)(
2k − i
k

)(
k

i

)
θ2k−i−1

(
2k − i+ 2

(k − i)2

i+ 1

)d
. (2)

In this paper, we are interested in the asymptotic behaviour of the clique
number as n tends to infinity. Throughout the article, we use Bachman-Landau
notations. For non-negative functions f and g we write as n tends to infinity:

• f(n) = o(g(n)) if for every ε > 0 there exists n0 such that for n ≥ n0, we
have that f(n) ≤ εg(n). We say that f is dominated by g asymptotically.

• f(n) = O(g(n)) if there exists k > 0 and n0 such that for n ≥ n0, we have
that f(n) ≤ kg(n). We say that f is bounded by g asymptotically.

• f(n) ∼ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)). We say that f and g
are equal asymptotically.

• f(n) � g(n) if f(n)
g(n) = o(1). We say that f is small compared to g

asymptotically.

3 Subcritical regime
In this section, we consider that θ = o( 1

n ). In the subcritical regime for the
percolation, the random geometric graph is mainly disconnected components,
the clique number is small compared to the number of vertices n. Therefore we
can focus on k-vertex cliques for k asymptotically small compared to n.

Lemma 1 For k ≥ 1 small compared to n, according to Theorem 1,

E [Nk] ∼ nkθk−1kd, and V [Nk] ∼ nkθk−1kd.
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Proof This is a direct consequence of the subcritical regime hypothesis applied
to Equations 1 and 2.

In this regime, the random geometric graph G(n, r) is similar to the Erdös-
Rényi graph G(n, p) which we define:

Definition 5 Let n be an integer, and 0 < p < 1. Then the Erdös-Rényi
random graph G(n, p) is the graph of n vertices where each edge occurs with
probability p.

When n tends to infinity with p unchanged, the graph G(n, p) is composed of
many disconnected components as the random geometric graph in the subritical
regime. Therefore our investigation of the asymptotic ehaviour of the clique
number in this regime is similar to the one exposed in [2] by Bollobás and
Erdös. The authors first define nk and n′k such that the expectation of the
number of cliques of size k is respectively upper bounded by k−(1+ε) and lower
bounded by k1+ε for ε > 0. The values of nk and n′k are approximated by p−k/2

and (1 + 3 log k
k )p−k/2 respectively. This leads to the result:

Theorem 2 ([2]) For almost every graph G(n, p) there is a constant c such
that if n′k ≤ n ≤ nk+1 for some k > c then the clique number C is C = k.

In the random geometric graph G(n, r) case, we observe the variations of
θ = ( ra )d instead of n when n tends to infinity. Indeed θ varies with n, and
it makes more sens to find the interval of θ where the clique number take a
finite value. The first step is to find the regimes of θ where we can bound the
expectation of the number of cliques of size k integer in a similar way:

Definition 6 We define for η > 0 and for k ≥ 1:

θ′k =
k

1+η−d
k−1

n
k
k−1

, and θk =
k−

1+η+d
k−1

n
k
k−1

.

Then for θ > θ′k, thanks to the approximations of Lemma 1 we have that

E [Nk] ≥ nk
(
k

1+η−d
k−1

n
k
k−1

)k−1
kd ≥ k1+η.

And for θ < θk,

E [Nk] ≤ nk
(
k−

1+η+d
k−1

n
k
k−1

)k−1
kd ≤ k−(1+η)

This leads to our main theorem for the subcritical regime:

Theorem 3 In the subcritical regime, for k ≥ 1 small compared to n, and
θ′k < θ < θk+1, the clique number is asymptotically almost surely C = k.
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Proof For k ≥ 1 small compared to n when n tends to infinity, we can easily
check that if n > k2(1+η)k. This holds in particular when n tends to infinity and
k is fixed. Then we have that θk+1 > θ′k.

We can now consider θ such that θ′k < θ < θk+1. Thanks to the approxima-
tions of Lemma 1, we can, on the one hand, upper bound the probability of the
non-existence of clique of size k:

P[Nk = 0, θ > θ′k] ≤ V [Nk]

E [Nk]
2 ∼

1

E [Nk]
≤ 1

k1+η
.

On the other hand, we can upper bound the probability of existence of cliques
of size k + 1:

P[Nk+1 > 0, θ < θk+1] ≤ E [Nk+1] ≤ 1

k1+η
.

Finally we have that:

P[∃θ, θ′k < θ < θk+1, C 6= k] <
1

k1+η
+

1

(k + 1)1+η
.

As the sum
∑∞
k=1 k

1+η converges, the Borel-Cantelli theorem implies that with
the exception of finitely many k’s, for all θ such that θ′k < θ < θk+1, one has
C = k. Then when n goes to infinity, we have asymptotically almost surely that
C = k:

P[C = k, θ′k < θ < θk+1]→ 1,

concluding the proof.

4 Critical regime
In the critical regime, where θ ∼ 1

n , percolation occurs: disconnected com-
ponents of the random geometric graph begin to connect into one sole connected
component. The clique number is still rather small compared to n, allowing us
to consider only the k-vertex cliques for k = O(n) when n goes to infinity.

In this regime we have a direct approximation of our variable θ, allowing us
to compute an approximation of the expected number of cliques of size k integer
from the Equation 1.

Lemma 2 For k = O(n), and according to Theorem 1, we have that:

E [Nk] ∼ 1√
2π
nkd−k−

1
2 , and V [Nk] ∼ 1√

2π
nkd−k−

1
2 .

Proof We have from Equation 1 that E [Nk] =
(
n
k

)
θk−1kd.

After some calculations via the Stirling’s approximation n! ∼
√

2πn
(
n
e

)n,
we obtain the result for the expectation.

Thanks to the fact that k = O(n), we can still approximate the variance of
Nk by its dominating term in i = k, and V [Nk] ∼ E [Nk].
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From that approximation and using the same process as in the previous
section, we can write the main theorem of this section:

Theorem 4 In the critical regime, the clique number grows asymptotically al-
most surely slower than lnn with an arbitrarily small distance:

(lnn)1−η < C < lnn, ∀η > 0.

Proof First, for k > lnn, we can upper bound the expectation approximation
of Lemma 2 by:

E [Nk] < n(lnn)d−
1
2−lnn.

One can easily check that n(lnn)d−
1
2−lnn → 0. Since P[Nk > 0] ≤ E [Nk],

the probability that there exists k-vertex cliques tends to 0 and:

P[C > k] = P[Nk > 0]→ 0 ∀k > lnn,

and C < lnn asymptotically almost surely.
Then, for k < (lnn)1−η with η > 0, we can now lower bound the expectation

approximation by:

E [Nk] > n(lnn)(1−η)(d−
1
2−(lnn)

1−η)

And one can check that n(lnn)(1−η)(d−
1
2−(lnn)

1−η) → +∞. Then, thanks to
the asymptotic equivalence of the variance and the expectation of Nk, we have
P[Nk = 0] ≤ 1

E[Nk]
: the probability that there exists no k-vertex cliques tends

to 0, and:

P [C < k] = P[Nk = 0]→ 0 ∀k < (lnn)1−η.

Thus, C > (lnn)1−η asymptotically almost surely.

5 Supercritical regime
In the supercritical regime, 1

n = o(θ), the random geometric graph G(n, r) is
connected and tends to become the complete graph. The asymptotiic behaviour
of the clique number has already been studied in this regime in [1] by Appel
and Russo. They first find the almost sure asymptotic rate for the maximum
vertex degree, then by squeezing the clique number between two values of the
maximum vertex degree, they obtain its asymptotic behaviour. We propose
here an alternative approach, where the cliue number asymptotic rate is used
to squeeze the other related quantities such as the maximum vertex degree.

In this regime, percolation has occured, that is to say that the graph is
connected and the number of k-cliques is not asymptotically small anymore
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compared to n. Therefore an upperbounding via the expected number of k-
vertex cliques is not a good enough approach anymore. Instead, we came back
to the definition of the random geometric graph.

For the first step of our exploration, we use a similar argument as in [1]. To
cover the torus Tda, one needs at least d 1θ e balls of diameter r in dimension d. If
one places these balls along a lattice square grid with spacing r, we can denote
Bi, for 1 ≤ i ≤ d 1θ e, the d

1
θ e needed balls centered on the points of the grid

and of radius r
2 . Then the number of vertices n is smaller than the sum of the

number of vertices in each ball Bi:

n <

d 1θ e∑
i=1

#{Bi}

where #{Bi} is the number of vertices in Bi.
On the other hand, vertices in the same ball Bi are within distance r of each

other, therefore form a clique. By definition, for every i we have #{Bi} ≤ C.
Thus we have:

C >
n

d 1θ e
≥ nθ

1 + θ

When θ tends to 0, the clique number is asymptotically greater than nθ. We
can now write the main result of this section:

Theorem 5 In the supercritical regime, the clique number C grows as nθ asymp-
totically almost surely.

Proof We have yet to prove that the clique number is asymptotically almost
surely smaller than nθ.

In the random geometric graph G(n, r), a clique of size k occurs when k
vertices are in the same ball of diameter r. Without loss of generality we can
center the ball on one of the vertex of the graph. We have:

P[C > nθ] = P[Nnθ > 0]

= P[∃ x,#{B(x,
r

2
)} ≥ nθ − 1],

where x is a vertex of the graph G(n, r), and #{B(x, r2 )} the number of vertices
of G(n, r) in the ball centered in x and of radius r

2 .
Let us denote x1, . . . , xn the n vertices of the graph G(n, r), their positions

are independant, thus we can write:

P[∃ i ∈ {1, . . . , n},#{B(xi,
r

2
)} ≥ nθ − 1] ≤ P[

n⋃
i=1

#{B(xi,
r

2
)} ≥ nθ − 1]

≤
n∑
i=1

P[#{B(xi,
r

2
)} ≥ nθ − 1]

≤ nP[#{B(x1,
r

2
)} ≥ nθ − 1].
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The number of vertices in the ball B(x1,
r
2 ) follows a binomial distribution

Binom(n− 1, θ). Therefore Hoeffding’s inequality implies that:

P[#{B(x1,
r

2
)} > nθ] ≤ P[#{B(xi,

r

2
)} > (n− 1)(θ +

θ

n− 1
)]

≤ exp (−2
θ2

n− 1
).

Then the clique number C is asymptotically almost surely smaller than nθ,
concluding the proof.

6 Maximum vertex degree, chromatic number,
and independence number

In this section, for the graph G, we will denote C(G) its clique number.
We find, in this section, some of the results of [1], found by a slightly different
approach.

6.1 Maximum vertex degree
Let us first define the degree of a vertex, then the maximum vertex degree

of a graph:

Definition 7 The degree of a vertex of a graph is the number of edges incident
to the vertex.

Definition 8 The maximum degree of a graph G, denoted ∆(G), is the maxi-
mum degree of its vertices.

By its definition we have the following inequality between the maximum vertex
degree and the clique number of any graph G:

C(G)− 1 ≤ ∆(G). (3)

Then if we consider the random geometric graphs G(n, r) and G(n, 2r), by
doubling the adjacency distance between two vertices, we ensure that:

∆(G(n, r)) ≤ C(G(n, 2r))− 1. (4)

Finally we have, for any graph G of n vertices v1, . . . , vn and N2 edges, the
equality 2N2 =

∑n
i=1 deg vi. For the graph G(n, r), taking the mean we have

then, thanks to Equation 1:

2d(n− 1)θ ≤ E [∆(G(n, r))] . (5)
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Theorem 6 In the subcritical regime, for k ≥ 1 small compared to n and θ such
that θ′k < θ < θk+1, the maximum vertex degree ∆(G(n, r)) is asymptotically
almost surely greater than k − 1.

In the critical regime, the maximum vertex degree ∆(G(n, r)) grows asymp-
totically almost surely faster than (lnn)1−η pour tout η > 0, and slower than
2dnθ.

In the supercritical regime, the maximum vertex degree ∆(G(n, r)) grows as
2dnθ asymptotically in mean. It is asymptotically almost sure that ∆(G(n, r))
grows slower than 2dnθ.

Proof For the first part of the theorem, this is a direct consequence of Theorem
3 and inequality 3.

In the critical regime, we use inequalities 3 and 4, and the result from The-
orem 4 for C(G(n, r)). Then one has to observe that the graph G(n, 2r) is in
the supercritical regime, then C(G(n, 2r)) asymptotically almost surely grows
as 2dnθ accroding to Theorem 3.

In the supercritical regime, using Theomem 5 in inequalities 4 and 5 con-
cludes the proof.

6.2 Chromatic number
Definition 9 The chromatic number of a graph G, denoted χ(G), is the small-
est number of colors needed to color the vertices of G such that no two adjacent
vertices share the same color.

Since two vertices in the same clique can not have the same color, we have that
for any graph G:

C(G) ≤ χ(G).

A greedy coloring, assigning for each vertex the first available color, shows that
for any graph G, χ(G) ≤ ∆(G) + 1. Then we can write:

C(G(n, r)) ≤ χ(G(n, r)) ≤ C(G(n, 2r)). (6)

Theorem 7 In the subcritical regime, for k ≥ 1 small compared to n and θ such
that θ′k < θ < θk+1,the chromatic number χ(G(n, r) is asymptotically almost
surely greater than k.

In the critical regime, the chromatic number χ(G(n, r) grows asymptotically
almost surely faster than (lnn)1−η pour tout η > 0, and slower than 2dnθ.

In the supercritical regime, the chromatic number χ(G(n, r) grows asymptot-
ically almost surely faster than nθ, and slower than 2dnθ.

Proof This is a direct consequence of inequality 6 and our three main theorems
3, 4, and 5.
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6.3 Independence number
Definition 10 An independent set of a graph is a set of its vertices of which
no pair is adjacent.

Definition 11 The independence number of a graph G, denoted α(G) is the
size of the largest independent set of G.

The independence number and the chromatic number of a graph G are related
by:

α(G)χ(G) ≥ n, (7)

where n is the number of vertices of G.
Then, in the graph G(n, r), to have an independent set of size k, k balls

centered on the independent vertices and of radius r, must me disjoint on the
torus Tda:

krd ≤ ad.

This is true for the largest independent set:

α(G(n, r)) ≤ 1

θ
. (8)

Theorem 8 In the critical and the supercritical regime, the independence num-
ber α(G(n, r)) decreases asymptotically almost surely slower than 1

2dθ
, and faster

than 1
θ .

Proof This is a direct consequences of inequalities 7 and 8 and of Theorem 7.
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