Behavior of beam web panel under opposite patch loading - Archive ouverte HAL
Article Dans Une Revue Journal of Constructional Steel Research Année : 2013

Behavior of beam web panel under opposite patch loading

Résumé

Elastic buckling is studied for a panel with various boundary conditions including simple supports, fixed supports and elastic restraints. The panel is subjected to opposite patch loading. Following a review of existing work on the effects of localized compression, also known as patch loading, a study is conducted to take into account the restraints provided by the flanges of the I beam in a realistic manner. This study is based on a finite element model implemented in the CAST3M software. A new equation is proposed to calculate the buckling critical coefficient for a beam web panel considering the rotational stiffness provided by the flanges. The model is then applied to longitudinally stiffened web panels which are subjected to opposite patch loading. A parametric analysis is performed to determine the transition from a global buckling mode to a local buckling mode where the sub-panels on each side of the stiffener behave separately. The numerical results show that the flexural rigidity of the stiffener is the appropriate parameter that governs the buckling mode. From these results, a formula is proposed to calculate the buckling critical coefficient of stiffened web panels.
Fichier principal
Vignette du fichier
Averseng_al_Behavior_beam_web_panel_J.Cons.Steel.Res._2013.pdf (1.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00856019 , version 1 (21-10-2016)

Licence

Identifiants

Citer

Omar Mezghanni, Julien Averseng, Abdelhamid Bouchaïr, Hichem Smaoui. Behavior of beam web panel under opposite patch loading. Journal of Constructional Steel Research, 2013, 83, pp.51-61. ⟨10.1016/j.jcsr.2012.12.018⟩. ⟨hal-00856019⟩
562 Consultations
200 Téléchargements

Altmetric

Partager

More